министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет химии и высоких технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 61.В.ДВ.01.02 ПРИМЕНЕНИЕ ИОНПОЛИМЕРОВ В ЭЛЕКТРОХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Направление подготовки 04.03.01 Химия

Направленность (профиль) Физическая химия

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины Применение ионполимеров в электрохимической технологии составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 Химия (уровень бакалавриата).

Программу составила: Н.А. Кононенко, проф. каф. физ. химии, д-р хим. наук, проф.

Кононенно

Рабочая программа дисциплины Применение ионполимеров в электрохимической технологии утверждена на заседании кафедры физической химии протокол № 11 от «20» мая 2021 г.

Заведующий кафедрой физической химии

Заболоцкий В.И.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий

протокол № 7 от «24» мая 2021 г.

Председатель УМК факультета Беспалов А.В.

Рецензенты:

Петров Н.Н., канд. хим. наук, генеральный директор ООО «Интеллектуальные композиционные решения»

Зеленов В.И., канд. хим. наук., доцент кафедры общей, неорганической химии и информационно-вычислительных технологий в химии ФГБОУ ВО «КубГУ».

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Цель освоения дисциплины «Применение ионполимеров в электрохимической технологии» состоит в формировании у студентов знаний по применению ионполимеров в различных электрохимических процессах и подготовка студентов к самостоятельной работе в избранной области химии..

1.2 Задачи дисциплины

В задачи учебной дисциплины «Применение ионполимеров в электрохимической технологии» входит:

- сформировать у студентов представления о физико-химических свойствах ионполимеров;
- сформировать представления о технологических процессах с участием ионполимеров;
 - развить умения по использованию ионполимеров в различных технологиях;
 - развить у студентов навыки работы с учебной и научной литературой.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Применение ионполимеров в электрохимической технологии» является дисциплиной по выбору вариативной части Блока 1 "Дисциплины (модули)" учебного плана, формируемой участниками образовательных отношений. Ее изучению должно предшествовать изучение таких дисциплин как «Неорганическая химия», «Физика». Дисциплина «Применение ионполимеров в электрохимической технологии» является теоретической базой для таких дисциплин, как «Процессы и аппараты в мембранной технологии», а также «Мембраны и мембранные явления». В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе. Вид промежуточной аттестации: зачет.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине	
ПК-1. Способен осуществлять стандартные на получение и исследование различных соед	операции по предлагаемым методикам, направленные цинений и материалов	
ИПК-1.1. Осуществляет стандартные	Знает способы получения ионполимеров	
операции по предлагаемым методикам,	Умеет пользоваться химическим оборудованием.	
направленные на получение и исследование химических соединений различной природы и материалов на их основе.	Владеет основными понятиями и терминологией в области синтетических ионполимеров.	
ИПК-1.2. Выбирает оптимальные	Знает области применения ионполимеров.	
лабораторные методы получения и исследования химических соединений	Умеет определить физико-химические характеристики ионполимеров.	
различной природы и материалов на их основе	Владеет навыками выполнения базовых операций по исследованию свойств ионполимеров.	

Результаты обучения дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зачетных единиц (180 часов), их распределение по видам работ представлено в таблице

Вид учебной работы		Всего часов		естры сы)
		20000000	3	4
Контактная работа, в том	числе:			
Аудиторные занятия (всег		118	68	50
занятия лекционного типа		40	34	16
лабораторные занятия		68	34	34
практические занятия				
семинарские занятия		-	-	-
Иная контактная работа:				
Контроль самостоятельной работы (КСР)		6	4	2
Промежуточная аттестация	(ИКР)	04	0,2	0,2
Самостоятельная работа,	в том числе:	55,6	35,8	19,8
Оформление лабораторных	работ	20	10	10
Самостоятельное изучение	теоретического материала	15	10	5
Подготовка к текущему кон	тролю	20,6	15,8	4,8
Контроль:	*			
Подготовка к экзамену		81 4 8	-	-
Общая трудоемкость	час.	180	108	72
	в том числе контактная работа	124,4	72,2	52,2
	зач. ед	5	3	2

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре (очная форма обучения)

	Наименование разделов (тем)		Количество часов				
№			Аудиторная работа			Внеаудит орная работа	
		Bcero	Л	ПЗ	ЛР	CPC	
1.	Получение и физико-химические свойства ионполимеров	34	10	12.51	12	12	
2.	Электромассоперенос в ионполимерах	32	10	S = 5	10	12	
3.	Электрохимия ионполимеров	37,8	14	0 = 0	12	11,8	
	ИТОГО по разделам дисциплины	103,8	34	-	34	35,8	
	Контроль самостоятельной работы (КСР)	4					
	Промежуточная аттестация (ИКР)	0,2					
-	Подготовка к текущему контролю	-					
	Общая трудоемкость по дисциплине	108					

Разделы (темы) дисциплины, изучаемые в 4 семестре (очная форма обучения)

		Количество часов				
№	Наименование разделов (тем)	Всего	A	Аудиторі работа		Внеаудит орная работа
			Л	ПЗ	ЛР	CPC

1.	Ионполимеры в процессах электродиализа	30	6	6 π %	16	8
2.	Мембранный электролиз	16	4	-	6	6
3.	Ионполимеры в топливных элементах и электрохимическом синтезе	23,8	6	-	12	5,8
	ИТОГО по разделам дисциплины	69,8	16	-	34	19,8
	Контроль самостоятельной работы (КСР)	2				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	-				
	Общая трудоемкость по дисциплине	72				

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Получение и физико- химические свойства ионполимеро	Классификация полимеров. Получение гомогенных и гетерогенных ионполимеров.	лр1
2.	Получение и физико- химические свойства ионполимеро	Методы исследования структуры. Физико-химические характеристики ионполимеров: обменная, гидратная и сорбционная емкость.	
3.	Электромассоперенос в ионполимерах	Явления переноса в мембранных системах. Поток вещества. Условие электронейтральности. Уравнение материального баланса.	
4.	Электромассоперенос в ионполимерах	Движение ионов в электрическом и концентрационном поле. Моделирование процессов переноса в ионполимерах. Уравнения Нернста-Планка-Пуассона.	
5.	Электрохимия ионполимеров	Электропроводность ионполимеров. Материалы со смешанной ионной и электронной проводимостью.	ЛР5
6.	Электрохимия ионполимеров	Электродиффузия в мембранных системах. Предельный электродиффузионный ток и сопряженные эффекты концентрационной поляризации.	
7.	Ионполимеры в процессах электродиализа	Электродиализ с ионоселективными мембранами. Деминерализация природных вод и очистка промышленных растворов.	
8.	Ионполимеры в процессах электродиализа	Концентрирование растворов электролитов методом электродиализа.	ЛР8
9.	Мембранный электролиз	Перфторированные ионполимеры для получения хлора и щелочи.	ЛР9
10.	Мембранный электролиз	Получение водорода и кислорода из воды методом мембранного электролиза. Электрохимический метод умягчения воды	
11.	Ионполимеры в топливных элементах и электрохимическом синтезе	Мембраны для твердополимерных топливных элементов. Электрохимический синтез.	ЛР11
12.	Ионполимеры в топливных элементах и электрохимическом синтезе	Модифицирование перфторированных ионполимеров для стабилизации структуры. Поверхностное модифицирование ионполимерных мембран наноразмерными частицами металлического катализатора для топливных элементов.	500 - COSTO

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.	Получение и физико- химические свойства ионполимеро	Определение транспортных характеристик ионполимеров.	ЛР1
2.	Получение и физико- химические свойства ионполимеро	Определение гидрофильных характеристик ионполимеров методом воздушно-тепловой сушки	ЛР2
3.	Электромассоперенос в ионполимерах	Определение скорости ионного обмена.	ЛР3
4.	Электромассоперенос в ионполимерах	Определение лимитирующей стадии ионного обмена	ЛР4
5.	Электрохимия ионполимеров	Определение удельной электропроводности ионполимеров.	ЛР5
6.	Электрохимия ионполимеров	Определение селективности ионполимеров потенциометрическим методом	ЛР6
7.	Ионполимеры в процессах электродиализа	Электродиализ с ионоселективными мембранами.	ЛР7
8.	Ионполимеры в процессах электродиализа	Концентрирование растворов электролитов методом электродиализа	ЛР8
9.	Мембранный электролиз	Умягчение воды методом мембранного электролиза	ЛР9
10.	Мембранный электролиз	Получение водорода и кислорода из воды методом мембранного электролиза	ЛР10
11.	Ионполимеры в топливных элементах и электрохимическом синтезе	Модифицирование ионполимеров для сепарационных процессов.	ЛР11
12.	Ионполимеры в топливных элементах и электрохимическом синтезе	Модифицирование ионполимеров для топливных элементов	ЛР12

Защита лабораторной работы (ЛР), контрольная работа (КР).

2.3.3 Примерная тематика курсовых работ Курсовая работа не предусмотрена учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Nº	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Оформление лабораторных работ	1. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В., Шкирская С.А. Мембранная электрохимия: учебное пособие. 2-е изд., испр. и доп. Краснодар, КубГУ, 2017. 290 с.
2	Самостоятельное изучение теоретического материала	1. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В., Шкирская С.А. Мембранная электрохимия: учебное пособие. 2-е изд., испр. и доп. Краснодар, КубГУ, 2017. 290 с. 2. Мембраны и мембранные технологии. / Отв. ред. А.Б. Ярославцев. М.: Научный мир, 2013. — 612 с. http://biblioclub.ru/index.php?page=book_red&id=468334&sr=1 . 3. Гнусин Н.П., Кононенко Н.А. Электромассоперенос в ионных проводниках: Учебное пособие. Краснодар.: Куб.ГУ, 2014. 87с.
3	Подготовка к текущему контролю	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические

указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В.
Лоза. – Краснодар: Кубанский гос. ун-т, 2018 89 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование технологий проблемного обучения, выполнение студентами лабораторных работ в малых группах, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Применение ионполимеров в электрохимической технологии».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме вопросов для устного опроса, тестовых работ, контрольных работ, контрольных вопросов к лабораторным работам, и **промежуточной аттестации** в форме вопросов к зачету и экзамену.

Структура оценочных средств для текущей и промежуточной аттестации

№	Код и наименование	Результаты обучения	Наименование оценочн	ого средства
п/п	индикатора (в соответствии с п. 1.4)	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация

	ИПК-1.1. Осуществляет стандартные операции	Знает способы получения ионполимеров	Лабораторная работа	Вопрос на зачете 1-3
1	по предлагаемым методикам, направленные на получение и исследование	умеет пользоваться химическим оборудованием для определения свойст ионполимеров	Лабораторная работа	-
	химических соединений различной природы и материалов на их основе	владеет основными понятиями и терминологией в области синтетических ионполимеров	Лабораторная работа Тест	Вопрос на зачете 1, 6, 14, 23
	ИПК-1.2. Выбирает	знает области применения ионполимеров	Лабораторная работа	Вопрос на зачете 17-23
2	оптимальные лабораторные методы получения и исследования	умеет определить физико-химические характеристики ионполимеров	Лабораторная работа Тест;	Вопрос на зачете 4, 5
	химических соединений различной природы и материалов на их основе	владеет навыками выполнения базовых операций по использованию ионполимеров	Лабораторная работа Контрольная работа	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Вопросы для устного опроса по теме 1 «Получение и физико-химические свойства ионполимеров»

- 1. Какова классификация полимеров?
- 2. Какие реакции используются при синтезе ионполимеров?
- 3. Какую геометрическую форму имеют ионполимеры?
- 4. Как получить гетерогенные ионполимеры?
- 5. Как получить гомогенные мембраны?
- 6. Каковы уровни неоднородности структуры ионполимеров?
- 7. Какие методы исследования структуры ионполимеров вы знаете?
- 8. В чем сущность физических методов исследования структуры ионполимеров?
- 9. Какие методы определения пористости полимеров вы знаете?
- 10. Какую информацию о структуре ионполимеров можно получить методом контактной эталонной порометрии?

Контрольная работа по теме 2 «Электромассоперенос в ионполимерах»

Вариант №1

- 1. Какие материалы относятся к ионполимерам?
- 2. Дайте определение зарядовой селективности ионполимеров.
- 3. Рассчитайте, во сколько раз изменится концентрация доннановски сорбированного электролита, если концентрация внешнего раствора увеличится в 3 раза.
- 4. Какая стадия будет лимитировать ионный обмен, если концентрация и скорость перемешивания раствора очень малы?
 - 5. Чем изотопный обмен отличается от ионного обмена?

Вариант №2

- 1. Из каких элементов состоят ионполимеры?
- 2. Что такое ситовый эффект?
- 3. Рассчитайте, во сколько раз изменится концентрация доннановски сорбированного электролита, если концентрация внешнего раствора увеличится в 4 раза.
- 4. Какая стадия будет лимитировать ионный обмен в случае крупных зерен ионполимера и высокой скорости перемешивания раствора?
 - 5. Что такое стационарное состояние?

Вариант №3

- 1. К проводникам какого рода относятся ионполимеры?
- 2. Нарисуйте изотерму обмена Na⁺ Ca²⁺ для смолы КБ-4?
- 3. Рассчитайте, во сколько раз изменится концентрация доннановски сорбированного электролита, если концентрация внешнего раствора увеличится в 5 раз.
- 4. Какая стадия будет лимитировать ионный обмен в случае ионполимера с высокой степенью сшивки и интенсивным перемешиванием раствора?
 - 5. Какую информацию позволяет получить метод прерывания ионного обмена?

Тест по теме 3 «Электрохимия ионполимеров»

1. Ионполимеры являются:

изоляторами

проводниками первого рода

проводниками второго рода

2. Ионполимеры:

растворяются в воде

не растворяются в воде

3. Удельная электропроводность ионполимера по сравнению с раствором электролита:

выше

ниже

выше или ниже в зависимости от концентрации раствора

4. С ростом обменной емкости ионполимера его удельная электропроводность

увеличивается

уменьшается

не изменяется

5. Электродиффузия в ионполимерах протекает под действием градиента:

давления

температуры

электрического потенциала

концентрации электролита

6. Величина предельного электродиффузионного тока в электромембранной системе рассчитывается по уравнению:

Кольрауша

Нернста

Пирса

Пуассона

Контрольные вопросы к лабораторным работам

Лабораторная работа №1-2

- 1. Что такое обменная емкость ионполимеров?
- 2. Какие методы определения обменной емкости вы знаете?
- 3. От каких факторов зависит обменная емкость ионполимеров?

- 4. Какие методы используются для определения плотности ионполимеров?
- 5. Как влияет природа полимерной матрицы на плотность ионитов?

Лабораторная работа №3-6

- 1. Какие гидратные характеристики ионполимеров вы знаете?
- 2. Какие факторы влияют на влагосодержание ионполимеров?
- 3. Какая стадия может лимитировать процесс ионного обмена?
- 4. Какие экспериментальные методы выявления лимитирующей стадии вам известны?
- 5. Какую информацию позволяет получить метод прерывания ионного обмена?

Лабораторная работа №7-10

- 1. Какие процессы переноса в ионполимерах вы знаете? Приведите примеры.
- 2. В каких единицах измеряется плотность потока вещества?
- 3. Какая взаимосвязь между диффузией и электропроводностью в ионполимерах?
- 4. Какие представления о структуре ионполимеров лежат в основе двухфазной модели проводимости?
- 5. Какие явления переноса в ионполимерах можно описать с помощью фрикционной модели?

Лабораторная работа №11-12

- 1. Перечислите области применения ионполимеров.
- 2. В каких процессах используются ионполимеры на перфторированной матрице?
- 3. Чем электродиализ отличается от мембранного электролиза?
- 4. Какие ионполимеры используются в процессах водоподготовки?
- 5. Как регенерировать ионполимеры?

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

1. Список вопросов для подготовки к зачету

- 1. Классификация полимеров.
- 2. Реакции полимеризации и поликонденсации в синтезе ионполимеров.
- 3. Получение гомогенных и гетерогенных ионполимеров.
- 4. Методы исследования структуры.
- 5. Физико-химические характеристики ионполимеров: обменная, гидратная и сорбционная емкость.
- 6. Явления переноса в мембранных системах.
- 7. Поток вещества.
- 8. Условие электронейтральности.
- 9. Уравнение материального баланса.
- 10. Движение ионов в электрическом и концентрационном поле.
- 11. Моделирование процессов переноса в ионполимерах.
- 12. Уравнения Нернста-Планка-Пуассона.
- 13. Электропроводность ионполимеров.
- 14. Материалы со смешанной ионной и электронной проводимостью.
- 15. Электродиффузия в мембранных системах.
- 16. Предельный электродиффузионный ток и сопряженные эффекты концентрационной поляризации.
- 17. Электродиализ с ионоселективными мембранами.
- 18. Деминерализация природных вод и очистка промышленных растворов.
- 19. Концентрирование растворов электролитов методом электродиализа.

- 20. Перфторированные ионполимеры для получения хлора и щелочи.
- 21. Получение водорода и кислорода из воды методом мембранного электролиза.
- 22. Электрохимический метод умягчения воды.
- 23. Мембраны для твердополимерных топливных элементов.
- 24. Модифицирование перфторированных ионполимеров для стабилизации структуры.
- 25. Модифицирование ионполимерных мембран наноразмерными частицами металлического катализатора для использования в топливных элементах.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

- оценка «зачтено»: студент владеет теоретическими знаниями по данному разделу, знает классификацию ионполимеров, методы исследования их физико-химических свойств, основные области их применения, допускает незначительные ошибки; студент умеет правильно объяснять экспериментальные данные с применением теоретических представлений.
- оценка «не зачтено»: материал не усвоен или усвоен частично, студент не знает способы получения и области применения ионполимеров, затрудняется в описании их физико-химических свойств.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

1. Мембранная электрохимия: учебное пособие для обучающихся по основным образовательным программам высшего образования уровня бакалавриат и магистратура по направлениям подготовки 04.03.01 и 04.04.01 / [Н. А. Кононенко, О. А. Демина, Н. В. Лоза и др.]; М-во образования и науки Рос. Федерации, Кубанский

- гос. ун-т. [2-е изд., испр. и доп.]. Краснодар : [Кубанский государственный университет], 2017. 290 с.
- 2. Мембраны и мембранные технологии. / Отв. ред. А.Б. Ярославцев. М.: Научный мир, 2013. 612 с. http://biblioclub.ru/index.php?page=book_red&id=468334&sr=1
- 3. Гнусин Н.П., Кононенко Н.А. Электромассоперенос в ионных проводниках: Учебное пособие. Краснодар.: Куб.ГУ, 2014. 87с

5.2. Периодическая литература

- 1. Успехи химии российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.
- 2. Мембраны и мембранные технологии российский научный журнал, публикующий статьи по основным проблемам получения и исследования мембран и развития важнейших направлений мембранных технологий, в том числе и водоподготовки.
- 3. Журнал физической химии один из крупнейших российских научных журналов, отражающих основные направления развития химии, публикующий работы, посвящённые актуальным общим вопросам химии и проблемам, возникающим на стыке различных разделов химии.

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. General Section of the Section of
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 9. Springer Journals https://link.springer.com/
 - 10. Nature Journals https://www.nature.com/siteindex/index.html
 - 11. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 12. Springer Materials http://materials.springer.com/
- 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);

4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «Применение ионполимеров в электрохимической технологии» требует от студентов регулярного посещения лекций, выполнения тестовых проверочных работ, выполнения и защиты лабораторных работ, ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал дословно.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

Выполнение лабораторных работ

Лабораторные работы выполняются обучающимися в малых группах (обычно 2-3 человека). В начале курса проводится инструктаж по технике безопасности работы в химической лаборатории и составляется график выполнения лабораторных работ. Выполнение лабораторной работы включает в себя следующие этапы:

- 1) подготовительный этап (самостоятельная работа студентов);
- 2) получение допуска к выполнению экспериментальной части лабораторной работы (контактная работа с преподавателем каждой малой группы);
- 3) выполнение экспериментальной части лабораторной работы под контролем преподавателя;
- 4) анализ полученных результатов, формулировка вывода и подготовка к защите лабораторной работы (может выполняться как самостоятельная работа студента дома, или

под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем);

5) защита лабораторной работы (контактная работа с преподавателем).

После выполнения всех этих этапов лабораторная работа считается выполненной.

Подготовительный этап

Перед занятием обучающимся необходимо подготовится к выполнению лабораторной работы. Теоретическая подготовка необходима для проведения эксперимента и должна проводиться обучающимися в порядке самостоятельной работы. Ее следует начинать внимательным разбором руководства к лабораторной работе. Теоретическая подготовка завершается предварительным составлением отчета в лабораторном журнале со следующим порядком записей:

Название работы.

Цель работы.

Оборудование.

Ход работы, который в том числе включает рисунки, схемы, таблицы, основные формулы для определения величин, а также расчетные формулы для определения погрешностей измеряемых величин.

Получение допуска к выполнению экспериментальной части лабораторной работы

Приступая к лабораторным работам, необходимо получить у лаборанта приборы, требуемые для выполнения работы. Разобраться в назначении материалов, химической посуды, приборов и принадлежностей в соответствии с их техническими данными. Получить допуск к выполнению лабораторной работы у преподавателя. Допуск студенты получают в результате устного опроса преподавателем о порядке выполнения эксперимента, предусмотренного данной лабораторной работой.

Выполнение экспериментальной части лабораторной работы под контролем преподавателя

Затем обучающиеся выполняют экспериментальный этап лабораторной работы, в ходе которого записываются все измеренные величины с обязательным указанием их размерности в лабораторный журнал. Не допускается использование черновиков для записи экспериментальных данных, запись карандашом и иные способы, дающие возможность корректировки полученных результатов. В случае, если в методических указаниях к лабораторной работе предложены таблицы или шаблон для записи экспериментальных данных, то заполняются эти таблицы или шаблон. В ином случае запись экспериментальных данных делается студентом в произвольной форме.

По окончании выполнения эксперимента студенты должны привести свое рабочее место в порядок и вымыть используемую химическую посуду. После этого рабочее место сдается преподавателю или лаборанту и в лабораторный журнал студента ставится отметка о выполнении экспериментальной части лабораторной работы с обязательным указанием даты ее выполнения.

Анализ полученных результатов и формулировка выводов

Может выполняться как самостоятельная работа студента дома, или под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем. Студенты должны выполнить все необходимые расчеты согласно методическим указаниям к выполнению лабораторных работ. В лабораторном журнале приводятся все необходимые расчеты с указанием размерностей полученных величин, а также все графики и рисунки в соответствии с требования лабораторного практикума.

В случае, если в ходе лабораторной работы имеет место протекание химических реакций, все они должны быть записаны в лабораторном журнале в молекулярном, полном ионном и сокращенном ионном виде.

Далее на основании полученных результатов студенты должны сформулировать и записать вывод, который должен быть согласован с заявленными целями и/или задачами лабораторной работы. Вывод должен содержать необходимую количественную информацию.

При подготовке к защите лабораторной работы необходимо ответить на предложенные контрольные вопросы, которые имеются после каждой лабораторной работы. Особое внимание в ходе теоретической подготовки должно быть обращено на понимание физической сущности процесса(ов) излучающихся в ходе работы. Для самоконтроля в каждой работе приведены контрольные вопросы, на которые обучающийся обязан дать четкие, правильные ответы.

Защита лабораторной работы

Защита лабораторных работ происходит в виде собеседования с преподавателем по лабораторной работе с обязательной проверкой преподавателем лабораторного журнала студента. Для успешной защиты лабораторной работы студент должен предоставить лабораторный журнал, оформленный в соответствии с установленными требованиями, включая наличие отметки о выполнении экспериментальной части работы. В ходе устной беседы с преподавателем студент должен продемонстрировать знание целей и задач выполненной работы, законов, которые лежат в основе наблюдаемых в ходе работы явлений, продемонстрировать умение анализировать полученную информацию и делать на ее основе выводы. В этом случае в лабораторном журнале на соответствующей работе ставится пометка «зачтено», роспись преподавателя, принявшего работу, и дата защиты работы. После этого лабораторная работа считается выполненной. Допускается защита лабораторных работ индивидуально или в составе малых групп обучающихся, совместно выполнявших данную работу.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала. Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows; Microsoft Office
Учебные аудитории для проведения групповых и индивидуальных консультаций, текущего контроля и	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows; Microsoft Office

промежуточной аттестации		
Учебные аудитории для проведения лабораторных работ (ауд. 345C и 139C)	Мебель: учебная мебель Технические средства обучения: переносное мультимедийное оборудование (ноутбук, проектор) Оборудование: специализированная лабораторная мебель (столы, стулья, шкафы для реактивов и оборудования, вытяжные шкафы), средства пожарной безопасности и оказания первой медицинской помощи, химическая посуда и оборудование, сушильный шкаф, электроплитки — 2 шт., весы лабораторные — 1 шт, весы аналитические — 2 шт, термостат воздушный — 1 шт, иономер-рНметр — 3 шт., измеритель иммитанса Е7-21 — 4 шт, источник тока импульсный Б5-50 — 3 шт, кондуктометр — 1 шт, мультиметры универсальные настольные — 5 шт, шейкер лабораторный — 2 шт; ПК-3 шт., химические реактивы.	Microsoft Windows; Microsoft Office

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучающихся	Оснащенность помещений для самостоятельной работы обучающихся	Перечень лицензионного программного обеспечения
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационнообразовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows; Microsoft Office
Помещение для самостоятельной работы обучающихся (400с, 401с, 431с, 329с)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная	Microsoft Windows; Microsoft Office

техника с подключением к информационно- коммуникационной сети «Интернет» и доступом в электронную информационно- образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет
(проводное соединение и беспроводное соединение по технологии Wi-Fi)