МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования первый

проректор

«26» мая 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.13.03 Теория вероятностей и математическая статистика

Направление подготовки:11.03.02 Инфокоммуникационные технологии и системы связи

Направленность (профиль):

Оптические системы и сети связи

Форма обучения:

очная

Квалификация: бакалавр

Рабочая программа дисциплины Б1.О.13.03 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи

Программу составил(и): Дорошенко О. В., к. ф.-м. н.

Рабочая программа дисциплины Б1.О.13.03 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА обсуждена на заседании кафедры ТЕОРИИ ФУНКЦИЙ

протокол № 10 «18» апреля 2023 г. Заведующий кафедрой (разработчика) Голуб М. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 8 «27» апреля 2023 г. Председатель УМК факультета/института Шмалько С. П.

Рецензенты:

Гусаков Валерий Александрович, канд. физ. – мат. наук, директор ООО «Просвещение – Юг»

Засядко Ольга Владимировна, канд. физ. – мат. наук, доцент доцент кафедры информационных образовательных технологий

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины – выработать базовые компетенции, необходимые для успешного применения теоретико-вероятностного и математико-статистического инструментария к решению профессиональных задач, а также привить навыки исследования закономерностей, возникающих при массовых испытаниях, методы сбора, систематизации и обработки результатов наблюдений.

1.2 Задачи дисциплины

- освоение студентами основных методов теории вероятностей и математической статистики;
- выработать у студентов понимание закономерностей, которые возникают в процессах, содержащих случайные величины и научить сопоставлять реальным физическим ситуациям их вероятностные математические модели;
- привить навыки использования вероятностно-статистических моделей для изучения реальных ситуаций и предсказания исходов явлений на основе подходящей меры неопределенности;
- овладение методикой построения статистических моделей при решении практических задач и проведения необходимых расчетов в рамках построенных моделей.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Теория вероятностей и математическая статистика» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе по очной форме обучения. Вид промежуточной аттестации: зачет.

Для изучения дисциплины необходимы знания, полученные по следующим дисциплинам раздела Б1.О «Математический анализ», «Линейная алгебра», «Алгоритмизация и программирование». Знания, полученные в рамках данной дисциплины, используются в дальнейшем при изучении дисциплин: Б1.О.18 «Общая теория связи», Б1.О.19 «Цифровая обработка сигналов», Б1.О.14.05 «Основы атомной и квантовой физики», Б1.В.ДВ.02.01.01 «Теория информации и кодирования».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения	Результаты обучения по дисциплине				
компетенции					
ОПК-1 Способен использовать положения, за	аконы и методы естественных наук и математики для				
решения задач инженерной деятельности					
ИОПК-1.2. Умеет применять физические законы и математические методы для решения	Знает постановку основных задач теории вероятностей и математической статистики, основные методы решения				
задач теоретического и прикладного характера задач теории вероятностей и математической					
	статистики.				
	Умеет анализировать содержательную сущность и применять соответствующие методы к решению задач теории вероятностей и математической статистики.				
	Владеет математическими методами теории вероятностей и математической статистики для решения				
	прикладных задач анализа данных.				
ОПК-2 Способен самостоятельно проводит					
1 1	основные приемы обработки и представления полученных данных				
ИОПК-2.2. Разрабатывает решение	Знает соответствие задач и методов теории вероятностей				
конкретной задачи, выбирая оптимальный	и математической статистики в зависимости от				
вариант, оценивая их достоинства и недостатки	исходных данных и постановки проблемы,				

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
	типологизацию задач теории вероятностей и математической статистики, основные принципы построения вероятностно-статистических моделей. Умеет определять и практически реализовывать методы вероятностно-статистического анализа по типу данных и цели исследования, проводить верификацию результатов.
	Обладает навыками решения основных типовых задач практики вероятностно-статистического моделирования данных и интерпретации полученных результатов.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетных единиц (108 часов), их распределение по видам работ представлено в таблице

Виды	работ	Всего	,	Форма о	бучения		
		часов	0.111	uo a	очно-	заочная	
			очная		заочная		
			3	_	_	_	
			семестр	семестр	семестр	курс	
			(часы)	(часы)	(часы)	(часы)	
Контактная работа	а, в том числе:	44,2	44,2				
Аудиторные заняті	ія (всего):	44	44				
занятия лекционного	типа	14	14				
практические заняти	RI	30	30				
Иная контактная р	абота:	6,2	6,2				
Контроль самостоят (КСР)	ельной работы	6	6				
Промежуточная атте	естация (ИКР)	0,2	0,2				
Самостоятельная р	абота, в том	<i>57</i> 0	57 0				
числе:	·	57,8	57,8				
Контрольная работ	а	16	16				
Самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебных пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам и т. д.)		37	37				
Подготовка к текуще	ему контролю	4,8	4,8				
Контроль:		_	_				
Подготовка к экзаме	ну	_	_				
Общая	час.	108	108				
трудоемкость	в том числе						
	контактная	44,2	44,2				
	работа	,					
	зач. ед	3	3				

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 7 семестре (*очная форма обучения*)

			Ко	личеств	о часов	
№	Наименование разделов (тем)	Всего		Аудиторі работа		Внеаудит орная работа
			Л	ПЗ	ЛР	CPC
1.	Основные понятия и теоремы теории вероятностей		4	6		11
2.	Случайные величины		2	8		9
3.	Закон больших чисел. Предельные теоремы теории вероятностей		2	2		8
4.	Основные понятия и задачи математической статистики		2	6		11,4
5.	Статистическая проверка гипотез		2	4		9
6.	Корреляционный анализ		2	4		9,4
	ИТОГО по разделам дисциплины	101,8	14	30		57,8
	Контроль самостоятельной работы (КСР)	6				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	_				
	Общая трудоемкость по дисциплине	108				

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Основные понятия и теоремы теории вероятностей	Предмет теории вероятностей, случайные события, вероятность и частота, математическая модель. Пространство элементарных событий, алгебра событий, аксиомы вероятности, свойства вероятности. Дискретные вероятностные пространства. Классическое определение вероятности. Абсолютно непрерывные вероятностные пространства. Геометрические вероятности. Операции над событиями. Независимые и зависимые события. Условная вероятность. Теоремы сложения и произведения вероятностей. Полная вероятность. Формула Байеса. Аксиоматическое построение теории вероятностей. Независимые испытания. Формула Бернулли. Предельные теоремы схемы Бернулли: теорема Пуассона, локальная и интегральная теоремы Муавра-Лапласа. Обратная задача схемы Бернулли.	K
2.	Случайные величины	Случайные величины. Типы случайных величин. Одномерные и многомерные законы распределения случайных величин. Функция распределения и функция плотности вероятности. Условная плотность вероятности. Основные числовые характеристики случайных величин. Начальные и центральные моменты случайных величин. Математическое ожидание и дисперсия случайной величины; их свойства. Основные распределения дискретных и непрерывных случайных величин. Функции от дискретных и непрерывных случайных величин. Непрерывный случайный вектор, совместная функция плотности и совместная функция распределения. Ковариация, коэффициент корреляции двумерной случайной величины.	K
3.	Закон больших чисел. Предельные теоремы теории вероятностей	Производящая функция моментов. Характеристическая функция и ее свойства. Центральная предельная теорема. Многомерная центральная предельная теорема.	К

		Неравенства Маркова и Чебышева. Закон больших чисел. Теорема Я. Бернулли. Виды сходимости случайных последовательностей. Многомерное нормальное распределение; неравенство Колмогорова; усиленный закон больших чисел.	
4.	Основные понятия и задачи математической статистики	Основные задачи математической статистики. Вероятностно-статистическое моделирование. Генеральная совокупность и выборка. Вариационный ряд и порядковые статистики. Интервальный вариационный ряд. Гистограмма, полигон и эмпирическая функция распределения. Основные выборочные характеристики и их свойства. Свойства точечных оценок (состоятельность, несмещенность, эффективность). Методы статистического оценивания: метод максимального правдоподобия, метод моментов. Интервальное оценивание и доверительные интервалы.	T
5.	Статистическая проверка гипотез	Основные типы гипотез. Общая логическая схема статистического критерия. Ошибки первого и второго рода, <i>р</i> -значение критерия. Методы проверки статистических критериев: критерии согласия, критерии однородности и критерии о числовых значениях параметров. Примеры статистических критериев.	T
6.	Корреляционный анализ	Анализ парных связей между количественными переменными. Индекс корреляции. Корреляционный анализ. Проверка гипотез, связанных со статистической значимостью парных коэффициентов корреляции. Частные и коэффициенты корреляции. Анализ множественных связей. Ранговая корреляция между порядковыми переменными.	T

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/разбор	Форма текущего контроля
1.	Основные понятия и теоремы теории вероятностей	Правило суммы и правило умножения. Элементы комбинаторики: перестановки, размещения, сочетания. Виды случайных событий. Пространство элементарных событий. Классическая вероятность и ее свойства. Геометрическая вероятность. Условная вероятность. Независимость событий. Теоремы сложения и умножения вероятностей. Формула полной вероятности и формула Байесса. Примеры вероятностных моделей. Схема Бернулли. Формула Бернулли. Предельные теоремы в схеме Бернулли. Локальная и интегральная теоремы Муавра- Лапласа. Теорема Пуассона.	KP
2.	Случайные величины	Дискретные случайные величины, законы их распределения (биномиальный, отрицательный биномиальный, гипергеометрическое, Пуассона,) и их характеристики. Непрерывные случайные величины, законы их распределения (равномерное, нормальное, показательное) и их характеристики: Функция распределения и функция плотности распределения случайной величины. Вычисление математических ожиданий и дисперсий дискретных и непрерывных случайных величин. Вычисление моментов более высоких порядков: начальных и центральных. Совместная функция распределения. Ковариация, коэффициент корреляции двумерной случайной величины. Двумерное нормальное распределение. Условные законы распределения. Линейная регрессия.	

	Закон больших чисел.	Вычисление производящих и характеристических	Решение задач
	Предельные теоремы	функций. Закон больших чисел. Неравенство Чебышева;	КР
	теории вероятностей	теорема Чебышева, Бернулли, Маркова. Центральная	
		предельная теорема.	
4.	Основные понятия и	Вариационный ряд. Построение сгруппированного	Решение задач
	задачи математической	статистического ряда. Построение полигонов частот и	РГЗ
	статистики	гистограммы. Генеральная и выборочные числовые	
		характеристики. Моменты эмпирического распределения и	
		связь между ними. Квантили, процентные и критические	
		точки. Моменты распределения Стьюдента, Фишера и хи-	
		квадрат. Методы построения оценок методом моментов,	
		методом максимального правдоподобия, методом	
		наименьших квадратов. Построение доверительных	
		интервалов: точечные доверительные интервалы,	
		асимптотические доверительные интервалы.	
5.	Статистическая	Общая схема проверки статистической гипотезы.	Решение задач
	проверка гипотез	Основные понятия и определения. Критерий проверки	КР
		гипотезы. Критерии согласия Пирсона. Проверка гипотез о	
		числовых значения параметров, о равенстве средних, о	
		равенстве дисперсий двух генеральных совокупностей.	
6.	Корреляционный	Выборочная корреляция двух выборок, извлеченных из	Решение задач
	анализ	двух генеральных совокупностей. Проверка гипотезы о	РГЗ
		значимости выборочного коэффициента корреляции.	
		Частные и коэффициенты корреляции. Анализ	
		множественных связей. Ранговая корреляция между	
		порядковыми переменными. Линейная парная регрессия.	

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и выполнение контрольной работы (КР).

При изучении дисциплины применяется электронное обучение (проектор и ЭВМ), дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

		Перечень учебно-методического обеспечения дисциплины по
No	Вид СРС	выполнению самостоятельной работы
	T .	
1	Проработка и повторение	Онлайн-курс «Теория вероятностей – наука о случайности». – Институт
	лекционного материала и	прикладной математики и компьютерных наук TTV. – URL:
	материала учебников и	https://www.coursera.org/learn/theory-of-chances
	учебных пособий	Онлайн-курс «Теория вероятностей и математическая статистика для
		инженеров». – Уральский федеральный университет имени первого
		Президента России Б. Н. Ельцина. – URL:
		https://openedu.rw/course/urfu/TheorVer/
2	Подготовка к практическим	Основные понятия, формулы и распределения теории вероятностей:
	занятиям	Методические указания к практическим занятиям Челябинск,
		Челябинский гос. ун-т, 1996 26 с. — Текст: электронный//
		Информационная система "Единое окно доступа к образовательным
		ресурсам" — URL: http://window.edu.ru/resource/196/41196
3	Подготовка к коллоквиуму	Лотов В.И. Теория вероятностей и математическая статистика.
		Конспект лекций для студентов физического факультета.
		Новосибирск: НГУ, 2003 116 с. — Текст: электронный//
		Информационная система "Единое окно доступа к образовательным
		pecypcaм" — URL: http://window.edu.ru/resource/247/28247

4	Выполнение контрольных и	Бессонова Т. Д. Вычислительная математика. Основы теории
	расчетно-графических	вероятностей, элементы математической статистики: Рабочая
	заданий и контрольных	программа, задание на контрольную работу, методические указания к
	работ	выполнению контрольной работы СПб.: СЗТУ, 2003. – 39. – Текст:
		электронный // Информационная система "Единое окно доступа к
		образовательным ресурсам" — URL:
		http://window.edu.ru/resource/176/25176
		Плотникова С. В. Математическая статистика: Методические
		разработки и контрольные задания Тамбов: Издательство ТГТУ, 2005.
		- 52 с. – Текст: электронный // Информационная система "Единое окно
		доступа к образовательным ресурсам" — URL:
		http://window.edu.ru/resource/129/38129

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, разбора конкретных ситуаций) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационноттелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая статистика».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме *тестовых заданий, разноуровневых заданий, отчетов по*

индивидуальным и проектно-групповым заданиям и **промежуточной аттестации** в форме вопросов и заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

		пви средств дли теку	щеи и промежуточнои ат	
No	Код и наименование	Результаты обучения	Наименование оценочн	
п/п	индикатора (в соответствии с п. 1.4)	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИОПК-1.2. Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера	Умеет анализировать содержательную сущность и применять соответствующие методы к решению задач теории вероятностей и математической статистики.	Вопросы коллоквиума 1-28 КР №1	Вопрос на зачете 1-14
2	ИОПК-1.2. Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера	Владеет математическими методами теории вероятностей и математической статистики для решения прикладных задач анализа данных.	Вопросы коллоквиума 28-60 КР №2	Вопрос на зачете 15-31
3	ИОПК-1.2. Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера	Знает постановку основных задач теории вероятностей и математической статистики, основные методы решения задач теории вероятностей и математической статистики.	Вопросы на коллоквиуме 1-9, 61-66 КР №3	Вопрос на зачете 2-8, 32-34
4	ИОПК-2.2. Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки	Знает соответствие задач и методов теории вероятностей и математической статистики в зависимости от исходных данных и постановки проблемы, типологизацию задач теории вероятностей и математической статистики, основные принципы построения вероятностностатистических моделей.	Tecm KP №4	Вопрос на зачете 35-39
5	ИОПК-2.2. Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки	Умеет определять и практически реализовывать методы вероятностностатистического анализа по типу данных и цели исследования, проводить верификацию результатов.	<i>PГ3 №1</i>	Вопрос на зачете 40-43
6	ИОПК-2.2. Рассматривает возможные варианты решения задачи, оценивая их	Обладает навыками решения основных типовых задач практики вероятностностатистического моделирования данных и	PΓ3 №2	Вопрос на зачете 44-47

достоинства и	интерпретации	
недостатки	полученных результатов.	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерный перечень вопросов и заданий

Контрольная работа

Типовой вариант КР № 1

- 1) Партия изделий содержит 5% брака. Найти вероятность того, что среди взятых наудачу 4-х изделий окажется 2 бракованных.
- 2) Узел машины состоит из трех деталей. Вероятности выхода этих дета-
- 3) лей из строя соответственно равны: $p_1 = 0.05$, $p_2 = 0.1$, $p_3 = 0.08$. Узел выходит из строя, если выходит из строя хотя бы одна деталь. Найти вероятность того, что узел не выйдет из строя, если детали выходят из строя независимо друг от друга.
- 4) В сборочный цех поступают детали с трех поточных линий. Производительности этих линий относятся как 5:3:2. Вероятность брака для первой линии составляет 0,01; для второй линии 0,02; для третьей линии 0,03. Найти вероятность того, что наугад взятая деталь бракована.
- 5) Игральную кость бросают 800 раз. Какова вероятность того, что число очков, кратное трем, выпадет не меньше 267раз?

Типовой вариант КР № 2

- 1) Баскетболист бросает мяч в корзину до первого попадания, но делает не более пяти бросков. Найти закон распределения числа бросков, если вероятность попадания в корзину равна 0,6 для каждого броска.
- 2) Из урны, содержащей 10 шаров, из которых 6 белых, извлекают 3 шара без возвращения. Найти математическое ожидание и среднее квадратическое отклонение числа вынутых белых шаров.
- 3) Два консервных завода поставляют продукцию в магазин в пропорции 2:3. Доля продукции высшего качества на первом заводе составляет 0,9, а на втором 0,8. В магазине куплено 4 банки консервов. Построить многоугольник распределения числа банок с продукцией высшего качества и найти вероятность того, что куплено не менее 3-х банок консервов высшего качества.
- 4) Задан ряд распределения. Найти $M(2X^2 + 3)$ и $D(2X^2 + 3)$.

X	2	4	6	8
p	0,4	0,2	0,1	0,3

Типовой вариант КР № 3

1) Задана плотность распределения случайной величины X:

$$f(x) = \begin{cases} 0, & x \le 2\\ C(x-2)(4-x), & 2 < x \le 4.\\ 0, & x > 4 \end{cases}$$

Необходимо найти константу C, интегральную функцию распределения F(X), математическое ожидание M(X), дисперсию D(X). Построить графики дифференциальной и интегральной функций.

2) Динамическая нагрузка на сцепку вагонов распределена по нормальному закону $(a=7\ \mathrm{T},\sigma=1\ \mathrm{T})$. Какова вероятность того, что нагрузка не превышает 70 т? Какова вероятность, что нагрузка не более 7 т?

- 3) Задана плотность распределения случайной величины X, возможные значения которой заключены в интервале $(-\infty;\infty)$. Найти плотность распределения случайной величины Y=|X|.
- 4) Непрерывная двумерная случайная величина (X,Y) распределена равномерно внутри прямоугольной трапеции с вершинами O(0;0), A(0;5), B(3;5), C(8;0). Найти: 1) двумерную плотность вероятности системы; 2) плотности распределения составляющих X и Y.
- 5) Найти характеристическую функцию равномерного распределения на [a; b].

Типовой вариант КР № 4

- 1) Средний размер подшипников должен составлять 35 мм. Однако для выборки из 82 подшипников он составил 35,3 мм при выборочном среднем квадратическом отклонении 0,1 мм. При 5%-м уровне значимости проверить гипотезу о том, что станок, на котором изготавливаются подшипники, не требует наладки.
- По результатам 10 замеров установлено, что среднее время обслуживания клиента

 15 мин. Предполагается, что время обслуживания клиентом нормально
 распределенная случайная величина с дисперсией 9 мин². При уровне значимости
 α = 0,05 установить, можно ли принять в качестве норматива (математического
 ожидания) время обслуживания 21 мин.
- 3) На двух заводах производят одну и туже продукцию, контролируемую по наружному диаметру изделия. Из продукции станка A было проверено 16 изделий, а из продукции станка B-25 изделий. Выборочные оценки математических ожиданий и дисперсий контролируемых изделий составили $\bar{x}_A=37,5$ мм при $s_A^2=1,21$ мм² и составили $\bar{x}_B=36,8$ мм при $s_B^2=1,44$ мм². Проверить гипотезу о равенстве дисперсий, если $\alpha=0,1$.
- 4) Средний ежедневный объем продаж для 17 продавцов района А составляет 15 тыс. руб. при исправленном среднем квадратическом отклонении 2,5 тыс. руб., а для 10 продавцов района В 13 тыс. руб. при исправленном среднем квадратическом отклонении 3 тыс. руб. Каждую группу можно считать случайной независимой выборкой из большой совокупности. Существенно ли различие объемов продаж в районах А и В при 5%-м уровне значимости?

Коллоквиум

Вопросы к коллоквиуму

- 1. Что понимается под испытанием (опытом, экспериментом)?
- 2. Дайте определение события.
- 3. Какие события называются несовместными?
- 4. Дайте определение полной группы событий.
- 5. Что понимают под элементарными исходами (случаями, шансами)?
- 6. Сформулируйте классическое определение вероятности события.
- 7. Перечислите свойства вероятности события.
- 8. Сформулируйте статистическое определение вероятности события.
- 9. Сформулируйте геометрическое определение вероятности события.
- 10. Дайте определение суммы событий.
- 11. Дайте определение произведения событий.
- 12. Дайте определение разности событий.
- 13. Запишите формулу числа размещений без повторений.
- 14. Запишите формулу числа перестановок без повторений.
- 15. Запишите формулу числа сочетаний без повторений.
- 16. Сформулируйте теорему сложения вероятностей для несовместных событий.
- 17. Сформулируйте теорему сложения вероятностей для произвольных событий.
- 18. Дайте определение условной вероятности события.

- 19. Какие события называются независимыми?
- 20. Сформулируйте теорему умножения вероятностей.
- 21. Запишите формулу полной вероятности.
- 22. Запишите формулу Байеса.
- 23. Дайте определение схемы Бернулли.
- 24. Запишите формулу Бернулли.
- 25. Запишите формулу определения наивероятнейшего числа наступления успеха в схеме Бернулли.
- 26. Запишите формулу Пуассона.
- 27. Сформулируйте предельную теорему в схеме Бернулли.
- 28. Запишите локальную и интегральную теоремы Муавра-Лапласа.
- 29. Дайте определение случайной величины.
- 30. Опишите типы случайных величин.
- 31. Определите понятия дискретной и непрерывной случайной величин.
- 32. Приведите пример дискретной случайной величины.
- 33. Запишите распределение дискретной случайной величины.
- 34. Запишите биномиальное распределение и приведите пример.
- 35. Запишите гипергеометрическое распределение и приведите пример.
- 36. Запишите распределение Пуассона и приведите пример.
- 37. Запишите формулы начальных и центральных моментов дискретных случайных величин.
- 38. Сформулируйте понятие математического ожидания дискретной случайной величины и перечислите его свойства.
- 39. Сформулируйте понятие математического ожидания дискретной случайной величины и перечислите его свойства.
- 40. Вычислите математическое ожидание и дисперсию биномиального распределения.
- 41. Вычислите математическое ожидание и дисперсию гипергеометрического распределения.
- 42. Вычислите математическое ожидание и дисперсию распределения Пуассона.
- 43. Запишите функцию распределения непрерывной случайной величины и перечислите ее свойства.
- 44. Определите функцию плотности непрерывной случайной величины и перечислите ее свойства.
- 45. Запишите функцию распределения и функцию плотности нормального закона.
- 46. Запишите функцию распределения и функцию плотности равномерного закона.
- 47. Запишите функцию распределения и функцию плотности экспоненциального закона.
- 48. Запишите формулы начальных и центральных моментов непрерывных случайных величин.
- 49. Определите математическое ожидание и дисперсию как функции моментов.
- 50. Вычислите математическое ожидание и дисперсию равномерного распределения.
- 51. Вычислите математическое ожидание и дисперсию экспоненциально распределения.
- 52. Сформулируйте правило «трех сигм».
- 53. Определите понятия моды и медиана через функцию плотности распределений.
- 54. Определите понятия квантиля и процентной точки.
- 55. Определите асимметрию и эксцесс как моменты высших порядков.
- 56. Запишите распределение дискретной двумерной случайной величины.
- 57. Что такое условная плотность вероятности?
- 58. Запишите формулу ковариации двумерной случайной величины.
- 59. Запишите формулу корреляции двумерной случайной величины.
- 60. Дайте определение характеристической функции.
- 61. Приведите примеры характеристических функций.

- 62. Сформулируйте теорему о взаимной однозначности функций распределения и характеристических функций.
- 63. Запишите неравенство Чебышева.
- 64. Запишите закон больших чисел Бернулли.
- 65. Сформулируйте закон больших чисел для независимых одинаково распределенных случайных величин.
- 66. Сформулируйте центральную предельную теорему для независимых одинаково распределенных случайных величин.

Tecm

- 1) Что такое простой случайный выбор?
- 2) Дана выборка: 3; 1; 1; 2; 3; 2; 1; 1; 2. Составить вариационный рад и найти размах.
- 3) Что такое порядковая статистика?
- 4) Что такое выборочная функция распределения?
- 5) Что такое выборочное среднее квадратическое отклонение? Что оно оценивает?
- 6) Какая из двух оценок одной и той же генеральной характеристики является более эффективной?
- 7) Напишите функцию правдоподобия для показательного распределения.
- 8) В чем состоит интервальная оценка параметра θ распределения генеральной совокупности?
- 9) Что такое ошибка 1-го рода при проверке статистической гипотезы?
- 10) Проверяется гипотеза H_0 о генеральном законе распределения с помощью критерия хи-квадрат. Известны выборочное значение χ^2_B статистики хи-квадрат и квантиль $\chi^2_{1-\alpha}(k)$ закона хи-квадрат порядка $1-\alpha$ с k степенями свободы статистики хи-квадрат, где α принятый уровень значимости. В каком случае принимается и в каком случае отвергается гипотеза H_0 ?
- 11) Запишите формулу для выборочного коэффициента корреляции.
- 12) В чем состоит метод наименьших квадратов при построении уравнения регрессии?

Расчетно-графические задания

Тип вариант РГЗ №1

1) Рассчитать и построить гистограмму относительных частот по сгруппированным данным, где m_i — частота попадания вариант в промежуток $(x_i; x_{i+1}]$.

i	1	2	3	4	5
$x_i < X \le x_{i+1}$	2–4	4–6	6–8	8–10	10–12
m_i	5	6	16	12	9

2) Найти несмещенную выборочную дисперсию на основании данного распределения выборки

x_i	-6	-2	3	6
n_i	12	14	16	8

- 3) Дана выборка x_1 : 1,8; 2,9; 5,8; 4,8; 6,5; 7,6; 2,9; 2,8; 6; 4,7; 5; 3; 2,9; 6; 8,5; 4,2; 7,5; 8,1; 7,4; 8,4. Построить интервальный вариационный ряд и гистограмму. Вычислить по построенному сгруппированному ряду выборочные характеристики (среднее, дисперсию, исправленную дисперсию, коэффициент асимметрии и коэффициент эксцесса). Вычислить эти характеристики по исходной выборке.
- 4) По результатам контрольных проверок 18 однородных торговых точек получены средняя величина их дневной выручки $\bar{x}=5100$ ден. ед. и среднеквадратическое отклонение s=630 ден. ед. Предположив, что сумма дневной выручки торговой

точки есть (a,σ) — нормальная случайная величина, определить вероятность того, что параметры исследуемой генеральной совокупности a и σ попадут соответственно в интервалы $(0.95\bar{x};1.05\,\bar{x})$ и (0.6s;1.4s).

Тип вариант РГЗ №2

Даны выборки их нормальных законов распределений

- *x*₁: 1,8; 2,9; 5,8; 4,8; 6,5; 7,6; 2,9; 2,8; 6; 4,7; 5; 3; 2,9; 6; 8,5; 4,2; 7,5; 8,1; 7,4; 8,4. *x*₂: 10,6; 5,5; 10,1; 11,4; 8,8; 12,4; 14,2; 8; 13,4; 12,6; 17,5; 9,7; 12,3; 9,1; 12,1; 12,4; 15,5; 13; 14,7; 12,6.
- *x*₃: 6; 6,4; 8,9; 7,8; 12,4; 6,8; 4,8; 3,3; 7,6; 8,1; 2,6; 5,8; 7,6; 12,4; 9,9; 9,2; 7,4; 7,5; 7,8; 6,1.
- 1) Оценить матрицу парных коэффициентов корреляции;
- 2) Проверить статистическую значимость коэффициента корреляции $r(x_1, x_2)$ при уровне значимости критерия $\alpha = 0.05$.
- 3) Вычислить частный коэффициент корреляции $r(x_1, x_2 | x_3)$ и проверить его статистическую значимость при уровне значимости критерия $\alpha = 0.05$.
- 4) Вычислить множественный коэффициент корреляции между x_1 и x_2 , x_3 и проверить его статистическую значимость при уровне значимости критерия $\alpha = 0.05$.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

- 1. Элементы комбинаторики (размещения, сочетания, перестановки). Правило суммы, правило произведения.
- 2. Случайное событие, частота события, понятие вероятности события.
- 3. Пространство элементарных событий.
- 4. Операции над событиями. Алгебра событий.
- 5. Аксиоматическое определение вероятности. Свойства.
- 6. Дискретное вероятностное пространство. Классическое определение вероятности.
- 8. Непрерывное вероятностное пространство. Геометрическое определение вероятности.
- 9. Теорема сложения вероятностей.
- 10. Условная вероятность. Независимость событий. Теорема умножения.
- 11. Формула полной вероятности. Формула Байеса.
- 12. Последовательность независимых испытаний. Формула Бернулли.
- 13. Предельные теоремы в схеме Бернулли. Локальная и интегральная теоремы Муавра Лапласа. Теорема Пуассона.
- 14. Применения предельных теорем.
- 15. Случайные величины.
- 16. Дискретные величины. Основные понятия. Функция распределения.
- 17. Основные законы распределения дискретных случайных величин: биноминальный, геометрический, закон распределения Пуассона.
- 18. Математическое ожидание дискретных случайных величин. Свойства.
- 19. Математическое ожидание биноминального закона, распределения Пуассона.
- 20. Дисперсия дискретных случайных величин. Свойства.
- 21. Дисперсия биноминального закона распределения и закона Пуассона.
- 22. Непрерывные случайные величины. Функция распределения, плотность вероятности. Основные свойства.
- 23. Числовые характеристики непрерывной случайной величины, свойства.
- 24. Начальный и центральный теоретические моменты случайной величины.
- 25. Нормальное распределение: кривая Гаусса, функция Лапласа, ее свойства.

- 26. Понятие квантиля и процентной точки. Вероятность попадания случайной величины в заданный интервал, правило "трех сигм".
- 27. Математическое ожидание и дисперсия нормального закона распределения.
- 28. Математическое ожидание и дисперсия равномерного закона распределения.
- 29. Двумерные случайные величины. Интегральная функция распределения. Свойства двумерной плотности вероятности.
- 30. Математическое ожидание и дисперсия двумерной случайной величины.
- 31. Ковариация и коэффициент корреляции. Корреляционный момент.
- 32. Неравенство Чебышева.
- 33. Закон больших чисел. Теорема Бернулли, Пуассона.
- 34. Центральная предельная теорема и ее применения.
- 35. Дискретные и непрерывные вариационные ряды. Их графическое представление. Кумулятивный ряд. Эмпирическая функция распределения.
- 36. Основные выборочные характеристики. Выборочная дисперсия. Формулы для вычисления дисперсии.
- 37. Точечные оценки параметров распределения: метод моментов, метод наибольшего правдоподобия.
- 38. Интервальные оценки параметров распределения: доверительная вероятность (надежность). Доверительный интервал.
- 39. Доверительные интервалы для оценки математического ожидания и стандартного отклонения нормального распределения.
- 40. Статистическая гипотеза. Нулевая и альтернативная гипотезы. Ошибки первого и второго рода.
- 41. Критерий согласия Пирсона. Правило проверки нулевой гипотезы.
- 42. Проверка гипотезы однородности.
- 43. Проверка критериев о числовых значениях параметров.
- 44. Выборочная корреляция двух выборок. Проверка гипотезы о значимости выборочного коэффициента корреляции.
- 45. Частные и коэффициенты корреляции. Анализ множественных связей.
- 46. Ранговая корреляция между порядковыми переменными.
- 47. Линейная регрессия. Уравнение прямой линейной регрессии.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по данному разделу, знает вопросы основного учебно-программного материала, допускает незначительные ошибки; студент умеет правильно объяснять основные задачи теории вероятностей и математической статистики и методы их решения; справился с выполнением заданий, предусмотренных программой дисциплины.

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется решить базовые задачи теории вероятностей и математической статистики, довольно ограниченный объем выполненных заданий, предусмотренных программой дисциплины.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;

– при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Буре, В. М. Теория вероятностей и математическая статистика: учебник / В. М. Буре, Е. М. Парилина. Санкт-Петербург: Лань, 2021. 416 с. ISBN 978-5-8114-1508-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168536
- 2. Дерр, В. Я. Теория вероятностей и математическая статистика: учебное пособие для вузов / В. Я. Дерр. Санкт-Петербург: Лань, 2021. 596 с. ISBN 978-5-8114-6515-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/159475
- 3. Емельянов, Γ . В. Задачник по теории вероятностей и математической статистике: учебное пособие для вузов / Γ . В. Емельянов, В. П. Скитович. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 332 с. ISBN 978-5-8114-7966-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169813

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. "Лекториум ТВ" http://www.lektorium.tv/

7. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. КиберЛенинка (http://cyberleninka.ru/);
- 2. Курсы ведущих вузов России" http://www.openedu.ru/;
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
 - 4. Онлайн-курсы и сертификаты от ведущих вузов мира https://ru.coursera.org/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

– Общие рекомендации по самостоятельной работе обучающихся.

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования— программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение о самостоятельной работе студентов (утверждено приказом № 272 КубГУ от 03 марта 2016 г.).

Положение о самостоятельной работе студентов (утверждено приказом № 272 КубГУ от 03 марта 2016 г.).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows
проведения занятий лекционного	Технические средства обучения:	Microsoft Office Professional Plus
типа	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	
проведения занятий		
семинарского типа, групповых и		
индивидуальных консультаций,		
текущего контроля и		
промежуточной аттестации		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (ауд)	Комплект специализированной	
	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	

оборудование, доступ к		
(проводное		1
беспроводное	соедине	ение по
технологии Wi-	-Fi)	