МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Экономический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству соразования первый

проректор

«26» мая 2023

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДЭ.01.01 Многокритериальная оптимизация (код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки: <u>27.03.03 Системный анализ и управление</u> (код и наименование направления подготовки/специальности)

Направленность (профиль):

Интеллектуальная бизнес-аналитика и управление экономическими процессами

(наименование направленности (профиля) / специализации)

Форма обучения:

очная

(очная, очно-заочная, заочная)

Квалификация: бакалавр

Рабочая программа дисциплины Многокритериальная оптимизация составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 27.03.03 Системный анализ и управление

Программу составил(и): Г.В. Калайдина, доцент, к. ф.-м. н.

Kanaud nonning

Рабочая программа дисциплины Многокритериальная оптимизация утверждена на заседании кафедры анализа данных и искусственного интеллекта протокол № 8 «18» мая 2023г.

Заведующий кафедрой Коваленко А.В.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 5 «19» мая 2023 г.

Председатель УМК факультета Коваленко А.В.

Рецензенты:

В.Н. Дейнега, доктор экон. наук, генеральный директор ООО Аудиторская компания «Кубаньфинэксперт»

А.В. Павлова доктор физ.-мат. наук, профессор, профессор кафедры математического моделирования ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целю дисциплины является заложить в студентах знания и умения в области решения задач многокритериальной оптимизации; обеспечить им понимание фундаментальных концепций в методах решения таких задач; привить им практические навыки и углубить способность разбираться в приложениях теории.

1.2 Задачи дисциплины

Задачи дисциплины:

- изучение математической базы решения многокритериальных оптимизационных задач;
- формирование навыков экспериментальных исследований при выборе метода многокритериальной оптимизации;
- научить студентов: формулировать математические задачи исследования, выбирать методы экспериментального и вычислительного экспериментов;
- уметь применять адекватные методы математического и системного анализа и теории принятия решений.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Многокритериальная оптимизация» относится к части, формируемой участниками образовательных отношений учебного плана - Элективные дисциплины 1 (ДЭ.1).

Входными знаниями для освоения данной дисциплины являются знания, умения и опыт, накопленный студентами в процессе изучения дисциплин «Дискретная математика и математическая логика», «Линейная алгебра и аналитическая геометрия», «Исследования операций».

Знания, полученных в ходе изучения дисциплины «Многокритериальная оптимизация» используются в ходе изучения курсов «Бизнес планирование», «Методы и средства проектирования информационных систем», а также для написания выпускных квалификационных работ.

В соответствии с рабочим учебным планом дисциплина изучается на 4курсе по очной форме обучения. Вид промежуточной аттестации: зачет

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине	
ПК-4 Способен обосновывать возможные реп	ления и выбирать наиболее оптимальные правод	
ИПК-4.6. Применяет методы многокритериаль-	ИПК-4.6. 3.1 Знает формальные математические поста-	
ной оптимизации для решения профессиональ-	новки задач многокритериальной оптимизации сложно-	
ных задач	организованных систем.	
	ИПК-4.6 У.1 Умеет пользоваться различными методами	
	решения задач многокритериальной	
	ИПК-4.6 В.1 Владеет навыками выполнения операций	
	выбора оптимального решения в сложных системах для	
	профессиональных задач.	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетных единиц (108 часов), их распределение по видам работ представлено в таблице

Виды	работ	Всего	Форма обучения
		часов	очная
			3 семестр (часы)
Контактная работ	а, в том числе:	38,2	38,2
Аудиторные заняті	ия (всего):	34	34
занятия лекционного	о типа	18	18
лабораторные занят	Я	16	16
практические заняти	Я	-	=
семинарские заняти:	R	-	-
Иная контактная р	абота:	4,2	4,2
Контроль самостоят (КСР)	ельной работы	4	4
Промежуточная атто	естация (ИКР)	0,2	0,2
Самостоятельная р числе:	работа, в том	33,8	33,8
Расчётно-графическ (подготовка)	ая работа (РГР)	20	20
Самостоятельное из моподготовка (прор лекционного матер учебников и учебн	учение разделов, са- аботка и повторение риала и материала ых пособий, подго- ым и практическим имам и т.д.)	13,8	13,8
Контроль:		-	-
Подготовка к экзамену		-	-
Общая трудоем-	час.	72	72
кость	в том числе кон- тактная работа	38,2	38,2
	зач. ед	2	2

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 7 семестре (4 курс) (**очная** форма обучения)

	Наименование разделов (тем)		Количество часов			
№			A	Аудиторная работа		Внеауди- торная работа
			Л	ПЗ	ЛР	CPC
1.	Критерии оптимизации. Постановка задачи многокритериальной оптимизации. Концепции решений по Парето и Слейтеру	5,8	2			3,8
2.	Лексикографическая схема компромисса Метод главного критерия. Метод уступок	8	2		2	4
3.	Метод идеальной точки Вержбицкого Метод линейной свертки. Свертка Ю.Б. Гермейера	8	2		2	4
4.	Модели функций используемые в многоэкстремальной оптимизации Примеры детерминированных моделей многоэкстремальных функций	8	2		2	4
5.	Обобщение условий экстремума на задачи векторной оптимизации. Условия оптимальности в дифференциальной форме для многокритериальных задач оптимизации специального и общего вида	8	2		2	4
6.	Решение многокритериальной задачи линейного (нелинейного) программирования по нахождению эффективных альтернатив с помощью с помощью метода последовательного ввода ограничений.	8	2		2	4
7.	Многокритериальные задачи оптимального управления с дискретным временем.	8	2		2	4
8.	Принцип максимума в многокритериальных задачах.		4		4	6
	ИТОГО по разделам дисциплины		18	-	16	33,8
	Контроль самостоятельной работы (КСР)	4				
	Промежуточная аттестация (ИКР)					
	Контроль	-				
	Общая трудоемкость по дисциплине	72				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
	Постановка задачи многокритериальной оптимизации. Концепции	Математическая формулировка задачи принятия решений при единственном критерии. Математическая формулировка задачи принятия решений при нескольких критериях. Понятия доминирования по Парето и Слейтеру. Решение задачи принятия решений при нескольких критериях	Опрос
	Лексикографическая схема компромисса Метод главного критерия. Метод уступок	Объект и его описание, модель процесса рационального выбора и постановки оптимизационных задач Лексикографическая схема компромисса Метод главного критерия. Метод уступок	Проверка выполнения лабораторных работ. Доклад-презентация
3.	Метод идеальной точки Вержбицкого	Метод идеальной точки Вержбицкого	Проверка выпол- нения лаборатор-

4	Модели функции ис- пользуемые в многоэкс- тремальной оптимиза- ции Примеры детерми- нированных моделей многоэкстремальных функций	Модели функций, используемые в задачах оптимального выбора. Модели функций, основанные на представлениях о выпуклости Модели функций используемые в многоэкстремальной оптимизации Примеры вероятностных моделей многоэкстремальных функций	нения лаборатор- ных работ. Кон- трольные во-
5	. Обобщение условий экстремума на задачи векторной оптимизации. Условия оптимальности в дифференциальной форме для многокритериальных задач оптимизации специального и общего вида	Обобщение условий экстремума на задачи векторной оптимизации Условия оптимальности в дифференциальной форме для многокритериальных задач оптимизации специального и общего вида Элементы теории двойственности в задачах математического программирования с одним критерием	
6	. Решение многокритери- альной задачи линей- ного (нелинейного) программирования по нахождению эффектив- ных альтернатив с по- мощью с помощью ме- тода последовательного ввода ограничений.	Метод внешнего штрафа. Методы, учитывающие предпочтения ЛПР при построении решающего правила. Функция полезности. Аддитивные функции полезности. Построение поверхностей безразличия в случае аддитивной структуры предпочтений Эвристические подходы к построению решающего правила	ных работ. Кон-
7		Процедура Зайонца-Валлениуса МетодШтойера Методысцелевымиточками Метод STEM Методы, использующие визуализацию точек и кривых на паретовой границе Метод "Шаг по паретовой границе"	Проверка выполнения лабораторных работ. Контрольные вопросы.
8	. Методы поддержки выбора из малого числа альтернатив на основе парных сравнений.	Метод анализа иерархий Метод ELECTRE Пример использования метода ELECTRE	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.

2.3.2 Занятия семинарского типа (лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Математическая формулировка задачи принятия решений приединственном критерии. Математическая формулировка задачи принятия решений при нескольких критериях. Понятия доминирования по Парето и Слейтеру. Решение задачи принятия решений при нескольких критериях	ЛР
2.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Объект и его описание, модель процесса рационального выбора и постановки оптимизационных задач Лексикографическая схема компромисса Метод главного критерия. Метод уступок	ЛР

3.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Метод идеальной точки Вержбицкого Метод линейной свертки. Свертка Ю.Б. Гермейера. Проблема оценивания всего множества эффективных точек	ЛР
4.	проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Модели функций, используемые в задачах оптимального выбора. Модели функций, основанные на представлениях о выпуклости Модели функций используемые в многоэкстремальной оптимизации Примеры вероятностных моделей многоэкстремальных функций	ЛР, РГЗ
5.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Обобщение условий экстремума на задачи векторной оптимизации Условия оптимальности в дифференциальной форме для многокритериальных задач оптимизации специального и общего вида Элементы теории двойственности в задачах математического программирования с одним критерием	ЛР
6.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Метод внешнего штрафа. Методы, учитывающие предпочтения ЛПР при построении решающего правила. Функция полезности. Аддитивные функции полезности. Построение поверхностей безразличия в случае аддитивной структуры предпочтений Эвристические подходы к построению решающего правила	ЛР
7.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Процедура Зайонца-Валлениуса Метод Штойера Методыс целевымиточками Метод STEM Методы, использующие визуализацию точек и кривых на паретовой границе Метод "Шаг по паретовой границе"	ЛР, РГЗ
8.	Проверка выполнения лабораторных работ. Контрольные вопросы. Опрос по результатам индивидуального задания.	Метод анализа иерархий Метод ELECTRE Пример использования метода ELECTRE	ЛР, РГЗ

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вил СРС	Перечень учебно-методического обеспечения дисциплины по
		выполнению самостоятельной работы

1	Занятия лекционного и се-	Методические указания для подготовки к занятиям лекционного и семи-	
	минарского типа	нарского типа. Утверждены на заседании Совета факультета компьютер-	
		ных технологий и прикладной математики ФГБОУ ВО «КубГУ». Прото-	
		кол № 2 от 22 мая 2020 года.	
2	Подготовка эссе, рефератов,	Методические указания для подготовки эссе, рефератов, курсовых работ.	
	курсовых работ.	Утверждены на заседании Совета факультета компьютерных технологий	
		и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 2 от 22 мая	
		2020 года.	
3	Выполнение самостоятель-	Методические указания по выполнению самостоятельной работы обуча-	
	ной работы обучающихся	ющихся. Утверждены на заседании Совета факультета компьютерных	
		технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол №	
		2 от 22 мая 2020 года.	
4	Выполнение расчетно-гра-	н- Методические указания по выполнению расчетно-графических заданий	
	фических заданий	Утверждены на заседании Совета факультета компьютерных технологий	
		и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая	
		2020 года.	
5	Выполнение лабораторных	Методические указания по выполнению лабораторных работ. Утвер-	
	работ	ждены на заседании Совета факультета компьютерных технологий и при-	
		кладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая 2020	
		года.	
10	Интерактивные методы	ы Методические указания по интерактивным методам обучения. Утв	
	обучения	ждены на заседании Совета факультета компьютерных технологий и при	
		кладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая 2020	
		года.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В соответствии с требованиями ФГОС программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологий: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

— Технология коммуникативного обучения — направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.

- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал. Создание и использование диагностических тестов является неотъемлемой частью данной технологии.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Технология индивидуализации обучения помогает реализовывать личностно-ориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Системы компьютерной математики».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме эссе, доклада-презентации по проблемным вопросам, разноуровневых заданий лабораторных работ, контрольных вопросов и **промежуточной аттестации** в форме вопросов и индивидуальных заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

3.0	Код и наименование ин-	пых средеть для теку	Наименование оце	
№ п/п	пикатора		Текущий контроль	Промежуточная аттестация
1	ИПК-4.6. Применяет методы многокритериальной оптимизации для решения профессиональных задач	ИПК-4.6. 3.1 Знает формальные математические постановки задач многокритериальной оптимизации сложноорганизованных систем.	Лабораторная работа №1-8	Вопросы на зачет 1-23 Индивидуальное за- дание № 1-4
2		ИПК-4.6 У.1 Умеет поль- зоваться различными ме- тодами решения задач Ј многокритериальной		Вопрос на зачет 5-20 Индивидуальное задание № 2
3		ИПК-4.6 В.1 Владеет навыками выполнения операций выбора оптимального решения в сложных системах для профессиональных задач.	Вопросы для устного опроса №1-30 Лабораторная работа №1-8	Вопрос на зачет 1-15 Индивидуальное за- дание №4
4			Вопросы для устного опроса №1-15 Лабораторная работа №1-8	Вопрос на зачет 12- 23 Индивидуальное за- дание № 3
5	ИПК-4.6 У.1 Умеет поль-		Вопросы для устного опроса №20-23 Лабораторная работа №1-8	Вопросы на зачет Индивидуальное за- дание №2, 4
6		ИПК-4.6 В.1 Владеет навыками выполнения операций выбора оптимального решения в сложных системах для профессиональных задач.	Вопросы для устного опроса №1-15 Лабораторная работа №8	Вопрос на зачет 18- 23 Индивидуальное за- дание № 3

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Перечень вопросов для устного опроса

- 1. Общие сведения о многокритериальных задачах оптимизации.
- 2. Математическая модель объекта.
- 3. Постановка задачи многокритериальной оптимизации.
- 4. Проблемы решения задач многокритериальной оптимизации.
- 5. Классификация задач выбора.

- 6. Отношение доминирования по Парето. Парето-оптимальность.
- 7. Аналитические методы построения множества Парето.
- 8. Способы сужения Парето-оптимального множества.
- 9. Методы определения весовых коэффициентов.
- 10. Формальные методы определения весовых коэффициентов.
- 11. Методы замены векторного критерия скалярным.
- 12. Метод идеальной точки.
- 13. Метод справедливого компромисса. Метод равномерной оптимизации.
- 14. Метод справедливого компромисса.
- 15. Метод последовательных уступок.
- 16. Метод свертывания критериев.
- 17. Метод группировки критериев.
- 18. Методы замены векторного критерия скалярным.
- 19. Проблемы построения обобщённого критерия для векторных задач оптимизации.
- 20. Постановка детерминированной лексикографической задачи оптимизации.
- 21. Методы анализа иерархий.
- 22. Ранжирование альтернатив по модифицированному алгоритму Кемени-Снелла.
- 23. Meтод ELECTRE.

Типовые задания

Задание 1

Задача. Метод последовательных уступок.

Пусть в области D={0;4} заданы два критерия

 $F_1(x)=(x-1)^2+1$ $F_2(x)=(x-2)^2+2$, которые нужно минимизировать Критерий F_1 важнее критерия F_2 (F_1 предпочтительнее F_2).

Задание 2

Выбор места работы

Предположим, что Вам предстоит выбрать место работы из девяти вариантов, представленных в таблице. В качестве основных критериев взяты: зарплата (3), длительность отпуска (Д), время поездки на работу (В). Какой вариант является оптимальным?

Вариант	Критерий			
	Зарплата (руб)	Зарплата (руб) Отпуск (дни)		
			(мин)	
1	900	20	60	
2	500	30	20	
3	700	36	40	

4	800	40	50
5	400	60	15
6	600	30	10
7	900	35	60
8	600	24	10
9	650	35	40

Задание 3

Организация производит 2 продукта стоимостью 6 и 2 единицы, социальная значимость которых -5 и 6 единиц соответственно.

Разница между объемами второго и первого товаров — не более 3. Разница между 1 и 2 товаром — не более 3. Ресурс, расходуемый на единицу 1 товара — 1, на единицу 2 товара — 5, в наличии 27.

Сформулировать экономическую задачу с двумя критериями эффективности и ограничениями и найти решение методом идеальной точки.

Задание 4

$$\min_{x \in D} F_1(x) = \min_{x \in D} 4(x-2)^2 + 5,$$

$$\min_{x \in D} F_2(x) = \min_{x \in D} (x-4)^2 + 1,$$
 определить значения весовых коэффици-
$$D = \{0 \le x \le 5\}.$$
 ентов.

Задание 5

Требуется сравнить сначала два альтернативных варианта мест работы A и B, векторные оценки которых приведены в табл., а затем добавить третий вариант C.

	Зарплата (руб.)	Длительность отпуска	Время поездки
		(дни)	(мин)
A	900	20	-60
В	500	30	-40
С	400	60	-100

Задание 6

Используя метод идеальной точки найти решение

$$L_1 = 2x_1 + x_2 + 1 \rightarrow \max;$$

 $L_2 = x_1 - x_2 + 5 \rightarrow \max$

при ограничениях:

$$\begin{cases} x_1 + 2x_2 \le 8, \\ 0 \le x_1 \le 6, \\ 0 \le x_2 \le 3. \end{cases}$$

Расчетно-графические расчеты (типовые задания)

Типовой расчет №1

- 1 Изучить теоретический материал.
- 2 Построить блок-схемы алгоритмов.
- 3 Найти минимум функции u = f(x, y) на области определения функции. Функцию выбрать по указанию преподавателя.
- 4 Разработать на ЭВМ программу, реализующую каждый из рассмотренных методов.
- 5 С использованием программного обеспечения исследовать каждый из алгоритмов на заданной функции, осуществляя спуск из различных исходных точек (не менее трех). Исследовать сходимость алгоритма, фиксируя точность определения минимума, количество итераций метода и количество вычислений функции в зависимости от задаваемой точности поиска. Результатом выполнения данного пункта должны быть выводы об объёме вычислений в зависимости от задаваемой точности и начального приближения. Получить решение задачи тремя методами с различной точностью с помощью разработанной программы.
- 6 Построить траекторию спуска различных алгоритмов из одной и той же исходной точки с одинаковой точностью. В отчете наложить эту траекторию на рисунок с линиями равного уровня заданной функции.

7 Исследовать сходимость алгоритмов и провести сравнение по числу вычислений функции для достижения заданной точности.

Варианты заданий

Варианты заданий представлены в таблице 2 *Типовой расчет №2*

Таблица 2 – Варианты заданий

A	а	b		
$f(x, y) = A - (x - a)e^{-(x - a)} - (y - b)e^{-(x - b)}$				
20	1	2		
10	2	3		
10	3	1		
20	3	2		
30	2	1		
	$ \begin{array}{c} A \\ f(x, y) = A - (x - 6) \\ 20 \\ 10 \\ 10 \\ 20 \\ 30 \\ \end{array} $	$ \begin{array}{c cccc} A & a \\ f(x, y) = A - (x - a)e^{-(x - a)} - (y - b)e^{-(x - b)} \\ \hline 20 & 1 \\ 10 & 2 \\ 10 & 3 \\ 20 & 3 \\ 30 & 2 \end{array} $		

Типовой расчет №2

- 1 Изучить теоретический материал.
- 2 Построить блок-схемы алгоритмов.
- 3 Найти минимум функции на области определения функции. Исходные данные представлены в таблице 4.
- 4 Разработать на ЭВМ программу, реализующую каждый из рассмотренных методов.
- 5 С использованием программного обеспечения исследовать каждый из алгоритмов на заданной функции. Исследовать сходимость алгоритмов, фиксируя точность определения минимума.
- 6 Получить решение задачи двумя методами с помощью разработанной программы.
- 7 Провести сравнение исследуемых методов.

Варианты заданий

Варианты заданий представлены в таблице

Номер варианта	Ограничения для функции $f(x) = x_1^2 - x_2^2$
помер варнани	
1	$\varphi(x) = 2x_1 - x_2 - 2 = 0$
2	$\varphi(x) = x_1 - 2x_2 - 5 = 0$
3	$\varphi(x) = x_1 + 2x_2 - 5 = 0$
4	$\varphi(x) = x_1 + 4x_2 - 3 = 0$
5	$\varphi(x) = x_1 + x_2 - 3 = 0$
6	$\varphi(x) = 3x_1 + x_2 - 1 = 0$
7	$\varphi(x) = x_1 + x_2 = 1$
8	$\varphi(x) = 2x_1 + x_2 - 3 = 0$

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Контрольные вопросы

- 1. Какая задача называется задачей безусловной оптимизации?
- 2. Какая задача называется задачей многомерной оптимизации?
- 3. Что такое математическая модель объекта оптимизации?
- 4. Сформулируйте математическую постановку задачи оптимизации.
- 5. Дайте определение оптимального решения задачи оптимизации.
- 6. Какая последовательность называется релаксационной?
- 7. Сформулируйте идею методов прямого поиска нулевого порядка.
- 8. Каким образом выбирают направления и параметр шага в методе Гаусса-Зейделя?

- 9. Сформулируйте основную идею метода Пауэлла.
- 10. Как выбирается направление и параметр шага в методе наискорейшего спуска?
- 11. В чем отличие выбора направлений метода сопряженных градиентов и метода сопряженных направлений?
- 12. Сравнительные характеристики исследуемых алгоритмов.

13. .

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«Зачет» ставится, если студент строит свой ответ в соответствии с планом. В ответе представлены различные подходы к проблеме. Устанавливает содержательные межпредметные связи. Развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа. Выводы правильны. Речь грамотна, используется профессиональная лексика. Демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации.

«Незачем» ставится, если ответ недостаточно логически выстроен, план ответа соблюдается непоследовательно. Студент обнаруживает слабость в развернутом раскрытии профессиональных понятий. Выдвигаемые положения декларируются, но недостаточно аргументируются. Ответ носит преимущественно теоретический характер, примеры отсутствуют.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Гончаров, В. А. Методы оптимизации: учебное пособие для вузов / В. А. Гончаров. Москва: Издательство Юрайт, 2020. 191 с. (Высшее образование). ISBN 978-5-9916-3642-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/463500 (дата обращения: 12.06.2023).
- 2. Методы оптимизации : учебник и практикум для вузов / Ф. П. Васильев, М. М. Потапов, Б. А. Будак, Л. А. Артемьева ; под редакцией Ф. П. Васильева. Москва : Издательство Юрайт, 2020. 375 с. (Высшее образование). ISBN 978-5-9916-6157-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/450435 (дата обращения: 12.06.2023).
- 3. Девятков, В. В. Методология и технология имитационных исследований сложных систем: монография / В. В. Девятков. Москва: Вузовский учебник: ИНФРА-М, 2021. 444 с.: ил. (Научная книга). Библиогр.: с. 423-437. ISBN 978-5-9558-0338-8. ISBN 978-5-16-009215-7
- 4. Колбин, В. В. Специальные методы оптимизации : учебное пособие / В. В. Колбин. Санкт-Петербург : Лань, 2022. 384 с. ISBN 978-5-8114-1536-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211448 (дата обращения: 12.06.2023).
- 5. Пантелеев, А. В. Методы оптимизации в примерах и задачах : учебное пособие / А. В. Пантелеев, Т. А. Летова. 4-е изд., испр. Санкт-Петербург : Лань, 2022. 512 с. ISBN 978-5-8114-1887-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/212129 (дата обращения: 12.06.2023).
- 6. Методы оптимизации: теория и алгоритмы: учебное пособие для вузов / А. А. Черняк, Ж. А. Черняк, Ю. М. Метельский, С. А. Богданович. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 357 с. (Высшее образование). ISBN 978-5-534-04103-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/492428 (дата обращения: 12.06.2023).

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 3FC «BOOK.ru» https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/

- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля) Форма и способы изучения материала определяются с учетом специфики изучаемой

Форма и способы изучения материала определяются с учетом специфики изучаемой темы. Однако во всех случаях необходимо обеспечить сочетание изучения теоретического

материала, научного толкования того или иного понятия, даваемого в учебниках и лекциях, с самостоятельной работой студентов, выполнением практических заданий, подготовкой сообщений и докладов.

Лекционное занятие представляет собой систематическое, последовательное, монологическое изложение преподавателем-лектором учебного материала, как правило, теоретического характера. Такое занятие представляет собой элемент технологии представления учебного материала путем логически стройного, систематически последовательного и ясного изложения с использованием образовательных технологий.

Цель лекции — организация целенаправленной познавательной деятельности обучающихся по овладению программным материалом учебной дисциплины. Чтение курса лекций позволяет дать связанное, последовательное изложение материала в соответствии с новейшими данными науки, сообщить слушателям основное содержание предмета в целостном, систематизированном виде.

Задачи лекции заключаются в обеспечении формирования системы знаний по учебной дисциплине, в умении аргументировано излагать научный материал, в формировании профессионального кругозора и общей культуры, в отражении еще не получивших освещения в учебной литературе новых достижений науки, в оптимизации других форм организации учебного процесса.

Для подготовки к лекциям необходимо изучить основную и дополнительную литературу по заявленной теме и обратить внимание на те вопросы, которые предлагаются к рассмотрению в конце каждой темы. При изучении основной и дополнительной литературы, студент может в достаточном объеме усвоить и успешно реализовать конкретные знания, умения, навыки и компетенции при выполнении следующих условий:

- 1) систематическая работа на учебных занятиях под руководством преподавателя и самостоятельная работа по закреплению полученных знаний и навыков;
 - 2) добросовестное выполнение заданий преподавателя на практических занятиях;
- 3) выяснение и уточнение отдельных предпосылок, умозаключений и выводов, содержащихся в учебном курсе; взаимосвязей отдельных его разделов, используемых методов, характера их использования в практической деятельности менеджера;
- 4) сопоставление точек зрения различных авторов по затрагиваемым в учебном курсе проблемам; выявление неточностей и некорректного изложения материала в периодической и специальной литературе;
- 5) разработка предложений преподавателю в части доработки и совершенствования учебного курса;
- 6) подготовка научных статей для опубликования в периодической печати, выступление на научно-практических конференциях, участие в работе студенческих научных обществ, круглых столах и диспутах по антикоррупционным проблемам.

Практические занятия — являются формой учебной аудиторной работы, в рамках которой формируются, закрепляются и представляются студентами знания, умения и навыки, интегрирующие результаты освоения компетенций как в лекционном формате, так в различных формах самостоятельной работы. К каждому занятию преподавателем формулируются практические задания, требования и методические рекомендации к их выполнению, которые представляются в фонде оценочных средств учебной дисциплины.

В ходе самоподготовки к практическим занятиям студент осуществляет сбор и обработку материалов по тематике его исследования, используя при этом открытые источники информации (публикации в научных изданиях, аналитические материалы, ресурсы сети Интернет и т.п.), а также практический опыт и доступные материалы объекта исследования.

Контроль за выполнением самостоятельной работы проводится при изучении каждой темы дисциплины на практических (семинарских) занятиях.

Самостоятельная работа студентов по дисциплине «Математические методы и модели в экономике» проводится с целью закрепления и систематизации теоретических знаний, формирования практических навыков по их применению при решении задач в выбранной предметной области. Самостоятельная работа включает: изучение основной и дополнительной литературы, проработка и повторение лекционного материала, материала учебной и научной литературы, подготовку к практическим занятиям, подготовка домашних заданий, а также к контролируемой самостоятельной работе

Самостоятельная работа студентов по данному учебному курсу предполагает поэтапную подготовку по каждому разделу в рамках соответствующих заданий:

Первый этап самостоятельной работы студентов включает в себя тщательное изучение теоретического материала на основе лекционных материалов преподавателя, рекомендуемых разделов основной и дополнительной литературы, материалов периодических научных изданий, необходимых для овладения понятийно-категориальным аппаратом и формирования представлений о комплексе теоретического и аналитического инструментария, используемого в рамках данной отрасли знания.

На втором этапе на основе сформированных знаний и представлений по данному разделу студенты выполняют расчетно-графические задания, нацеленные на формирование умений и навыков в рамках заявленных компетенций. На данном этапе студенты осуществляют самостоятельный поиск эмпирических материалов в рамках конкретного задания, обобщают и анализируют собранный материал по схеме, рекомендованной преподавателем, формулируют выводы, готовят практические рекомендации, материалы для публичного их представления и обсуждения.

На сегодняшний день *тестирование* — один из самых действенных и популярных способов проверить знания в изучаемой области. Тесты позволяют очень быстро проверить наличие знаний у студентов по выбранной теме. Кроме того, тесты не только проверяют знания, но и тренируют внимательность, усидчивость и умение быстро ориентироваться и соображать. При подготовке к решению тестов необходимо проработать основные категория и понятия дисциплины, обратить внимание на ключевые вопросы темы.

Под контролируемой самостоятельной работой (КСР) понимают совокупность заданий, которые студент должен выполнить, проработать, изучить по заданию под руководством и контролем преподавателя. Т.е. КСР – это такой вид деятельности, наряду с лекциями, лабораторными и практическими занятиями, в ходе которых студент, руководствуясь специальными методическими указаниями преподавателя, а также методическими указаниями по выполнению расчетно-графических заданий, приобретает и совершенствует знания, умения и навыки, накапливает практический опыт.

Текущий контроль самостоятельной работы студентов осуществляется еженедельно в соответствие с программой занятий Описание заданий для самостоятельной работы студентов и требований по их выполнению выдаются преподавателем в соответствии с разработанным фондом оценочных средств по дисциплине «Системы компьютерной математики».

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных по-	Оснащенность специальных по-	Перечень лицензионного про-
мещений	мещений	граммного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, ноутбук	Microsoft Windows 8, 10, Microsoft Office Professional Plus
Учебные аудитории для проведения лабораторных работ	Мебель: учебная мебель Технические средства обучения:	

	T	T
Лаборатория информационных и управляющих систем 201Н Лаборатория экономической информатики 202Н	экран, проектор, компьютеры, но- утбуки Оборудование: ПК, Терминальные станции, Уси- литель автономный беспроводной	Microsoft Windows 8, 10, Microsoft Office Professional Plus 1C: Предприятие 8 SPSS Statistics
Лаборатория управления в технических системах 207H	Типовой комплект учебного оборудования "Теория автоматического управления", Презентации и плакаты Усилитель автономный беспроводной с микрофоном	Microsoft Windows 8, 10, Microsoft Office Professional Plus
Лаборатория организационно- технологического обеспечения торговой и маркетинговой дея- тельности 201А	Панель интерактивная, Конференц-система, Микшер-усилитель, Подавитель акустической обратной связи, Настенный громкоговоритель, Радиосистема, Микрофон на гибком держателе, Моноблок НР, Документ-камера, Беспроводная точка доступа, Система видеоотображения, ЖК панель, Сплитер, Мультимедийная трибуна лектор, Система видеоконференцсвязи, Плакаты	Microsoft Windows 8, 10, Microsoft Office Professional Plus 1C: Предприятие 8
Лаборатория экономики и управления 212H	Презентации и плакаты, Многофункциональный профессиональный видео детектор банкнот и ценных бумаг, Счетчики банкнот, Инфракрасный детектор банкнот и ценных бумаг, Универсальный детектор банкнот и ценных бумаг, Детектор подлинности банкнот, Ящик денежный, Планшетный импринтер, Усилитель автономный беспроводной	Microsoft Windows 8, 10, Microsoft Office Professional Plus
Лаборатория безопасности жиз- недеятельности 105A	Лабораторные стенды, Типовой комплект учебного оборудования, Стенды-тренажеры, Стендпланшет, Тренажерный комплекс по применению первичных средств пожаротушения, Комплекс — тренажер по оказанию первой доврачебной помощи, Робот-тренажер, Комплект плакатов, Комплект демонстрационных пособий, Комплект аудиовизуальных пособий	Microsoft Windows 8, 10, Microsoft Office Professional Plus

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

TT V		т.
Наименование помещений для	Оснащенность помещений для	Перечень лицензионного про-
самостоятельной работы обучаю-	самостоятельной работы обучаю-	граммного обеспечения
щихся	щихся	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows 8, 10,
работы обучающихся (читальный	Комплект специализированной	Microsoft Office Professional Plus
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к инфор-	
	мационно-коммуникационной	
	сети «Интернет» и доступом в	
	электронную информационно-об-	
	разовательную среду образова-	
	тельной организации, веб-ка-	
	меры, коммуникационное обору-	
	дование, обеспечивающее доступ	
	к сети интернет (проводное со-	
	единение и беспроводное соеди-	
	нение по технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows 8, 10,
работы обучающихся (ауд.213 А,	Комплект специализированной	Microsoft Office Professional Plus
218 A)	мебели: компьютерные столы	
,	Оборудование: компьютерная	
	техника с подключением к инфор-	
	мационно-коммуникационной	
	сети «Интернет» и доступом в	
	электронную информационно-об-	
	разовательную среду образова-	
	тельной организации, веб-ка-	
	меры, коммуникационное обору-	
	дование, обеспечивающее доступ	
	к сети интернет (проводное со-	
	единение и беспроводное соеди-	
	нение по технологии Wi-Fi)	