МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет физико-технический

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

<u>Б1.В.02 Экспериментальные методы исследований в физике</u> конденсированного состояния

Направление подготовки/специальность 03.04.02 Физика

Направленность (профиль)/ специализация <u>Физика конденсированного</u> состояния (теория, эксперимент, дидактика)

Фома обучения очная

Квалификация магистр

Рабочая программа дисциплины <u>Б1.В.02 Экспериментальные методы исследований в физике конденсированного состояния</u> составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки/специальности <u>03.04.02 Физика (Физика конденсированного состояния (теория, эксперимент и дидактика)</u>)

Программу составил (и):

А.В. Скачедуб, доцент кафедры теор. физики и комп. технологий, кандидат физ.- мат. наук

Рабочая программа дисциплины Б1.В.02 Экспериментальные методы исследований в физике конденсированного состояния утверждена на заседании кафедры теоретической физики и компьютерных технологий

протокол № 8 от «12» апреля 2023 г.

Заведующий кафедрой (выпускающей)

Лебедев К.А.

подпись

Утверждена на заседании учебно-методической комиссии физикотехнического факультета

протокол № 10 от «20» апреля 2023 г.

Председатель УМК факультета

Богатов Н.М.

Рецензенты:

В.А. Никитин, к.т.н., доцент кафедры оптоэлектроники

Л.Р. Григорян, генеральный директор ООО НПФ «Мезон» кандидат физико-математических наук

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Учебная дисциплина «Экспериментальные методы исследования в физике конденсированного состояния» ставит своей целью ознакомление с особенностями конкретных оптических приборов и установок, оборудования для рентгеноструктурного анализа, а также технологического оборудования для получения кристаллических и аморфных соединений.

1.2 Задачи дисциплины.

В задачи учебной дисциплины «Экспериментальные методы исследования в физике конденсированного состояния» входят:

- изучение основ и физических принципов современных экспериментальных методов анализа структуры, состава и свойств твердых тел;
- ознакомление с основными принципами построения экспериментальных приборов и элементарными навыками работы на них,
- овладение методикой экспериментов, последующей математической обработкой экспериментальных результатов исследования и интерпретацией полученных данных.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Экспериментальные методы исследований в физике конденсированного состояния» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана 03.04.02 Физика направленности «Физика конденсированного состояния вещества» и ориентирована при подготовке магистрантов на ознакомление с особенностями конкретных оптических приборов и установок для рентгеноструктурного анализа, технологического оборудования для получения кристаллических и аморфных соединений. Дисциплина находится в логической и содержательно-методологической взаимосвязи с другими частями ООП и базируется на знаниях, полученных при изучении дисциплин «Теория вероятностей и математическая статистика», «Электродинамика и электродинамика сплошных сред», «Оптика» и «Кристаллофизика». Знания, полученные в процессе обучения, необходимы для успешного прохождения производственной и преддипломной практики.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональной и профессиональной компетенций (ПК-1, ПК-3)

№	Индек с	Содержание компе-	В результате изу	чения учебной д ающиеся должны	-
п.п.	компе-	тенции (или её части)	знать	уметь	владеть
	тенции				
1.	ПК-1	Готовностью	Методы	Организовыват	Способностью к
		выбирать, осваивать и	организации	ь исследования	социальной
		совершенствовать	научно	в области	мобильности
		методы выращивания и	исследовательск	физики	для
		исследования	их работ в	конденсирован	организации
		кристаллов	области	ного состояния	инновационных
			исследований в		работ в области
			физике		физики
			конденсированн		конденсированн
			ого состояния		ого состояния

№ п.п.	Индекс компе-	Содержание компе- тенции (или её части)	В результате изу ч	чения учебной д ающиеся должни	•
11.11.	тенции	тенции (или ее части)	знать	уметь	владеть
2.	ПК-3	способностью само- стоятельно ставить конкретные задачи научных исследова- ний в области физики и решать их с помо- щью современной ап- паратуры и информа- ционных технологий с использованием но- вейшего российского и зарубежного опыта	современную аппаратуру для исследования физики конденсированного состояния	пользоваться современной техникой для физических исследований в области физики конденсированного состояния	современными методами ис- следований конденсиро- ванного состо- яния

2. Структура и содержание дисциплины.
2.1 Распределение трудоёмкости дисциплины по видам работ.
Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределениепо видам работ представлено в таблице (для студентов ОФО).

Вид учебн	Вид учебной работы		Семестры (часы)			
		часов	9			
Контактная работа, в том	и числе:	46,3	46,3			
Аудиторные занятия (всего):		46	46			
Занятия лекционного типа		16	16			
Лабораторные занятия		30	30			
Занятия семинарского типа (семинары, практические занятия)			-			
Иная контактная работа:		0,3	0,3			
Контроль самостоятельной	й работы (KCP)	-	-			
Промежуточная аттестация (ИКР)			0,3			
Самостоятельная работа, в том числе:			62			
Проработка учебного (теоретического) материала		62	62			
Контроль:		35,7	35,7			
Подготовка к экзамену		35,7	35,7			
Общая трудоемкость	час.	144	144			
	в том числе контактная работа	46,3	46,3			_
	зач. ед.	4	4			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1 семестре (очная форма)

	т азделы дисциплины, изу шемые в т ееместре (о п	T -					
			Количество часов				
№	Наименование разделов	Всего	Α	худиторн работа		Внеауди- торная работа	
			Л	ПЗ	ЛР	CPC	
1	2	3	4	5	6	7	
1.	Введение в структурные методы исследования конденсированного состояния	1	1	-	-	-	
2.	Структурные типы кристаллов	5,5	1	-	4	0,5	
3.	Неупорядоченные среды	5,5	1	-	4	0,5	
4.	Спектроскопические методы исследования конденсированных сред	7	2	-	4	1	
5.	Интерференционные методы исследования	3	1	-	2	-	
6.	Дифракционная решетка и ее применение	3	1	1	2	-	
7.	Спектрометрические измерения	3	1	-	2	-	
8.	Фотометрические измерения	3	1	-	2	-	
9.	Спектрофотометры и работа с ними	3	1	-	2	-	
10.	Принятие статистических гипотез при обработке экспериментальных данных	7	2	-	4	1	
11.	Методы обработки экспериментальных данных	3	1	-	2	-	
12.	Учет априорных данных при обработке результатов	1	1	-	_	-	
	Итого по дисциплине:		16	-	30	62	

Примечание: Π — лекции, Π 3 — практические занятия / семинары, Π 9 — лабораторные занятия, Π 9 — самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

No॒	Наименование раздела	Содержание раздела	Форма текущего
1	2.	2	контроля
1	2	3	4
1.	Введение в струк-	Элементы кристаллохимии. Решетки, как шаро-	
	турные методы ис-	вые упаковки. Структуры элементов и соедине-	
	следования конден-	ний. Координационное число. Атомный	
	сированного состоя-	и ионный радиус. Пустоты в плотнейших упа-	
	РИН	ковках.	
2.	Структурные типы	Понятие о структурном типе. Структуры магне-	Коллоквиум
	кристаллов	тиков. Железо, кобальт, никель. Редкоземельные	
		металлы. Интерметаллиды. Ферриты. Кристал-	
		лическая и магнитная структура. Подрешетки.	
		Методы определения структуры и ориентации	
		монокристаллов	
3.	Неупорядоченные	Технологические методы получения упорядо-	Коллоквиум
	среды	ченных сред. Микроскопические и термодина-	
		мические аспекты классификации неупорядо-	
		ченных систем. Виды неупорядоченных систем.	
		Способы классификации неупорядоченных си-	
		стем. Аморфное и стеклообразное состояние.	

		T	
		Технологические методы получения неупорядо-	
		ченных систем	TC
4.	_	Цели и задачи оптической спектроскопии. Спек-	Коллоквиум
	методы исследова-	тральное описание оптической среды. История	
	ния конденсирован-	становления оптической спектроскопии. Срав-	
	ных сред	нение проблемы спектрального анализа излуче-	
		ния в оптическом диапазоне и радиодиапазоне.	
		Требования к разрешению и интервалу сканиро-	
		вания оптического спектроанализатора	
5.	Интерференционные	Интерференция как основа построения спектро-	Коллоквиум
		ализаторов в оптике. Двухлучевой интерферо-	J
	ния	метр. Две ветви интерферометров (интерферо-	
		метр Релея, интерферометр Майкельсона), раз-	
		личия в их светосиле. Основные типы спек-	
		тральных приборов. Фурье-спектрометр и его	
6	П	характеристики.	V a mm a var
6.	Дифракционная ре-	Дифракционная решетка. Приближения в теории	Коллоквиум
	шетка и ее примене-	дифракции. Теория дифракционной решетки.	
	ние	Типы реальных дифракционных решеток, их	
		особенности. Призма как предельный случай	
		дифракционной решетки, сравнение их характе-	
		ристик	
7.	Спектрометрические	Базовая схема оптического спектрометра. Тре-	Коллоквиум
	измерения	бования к щелям, нормальная ширина щели.	
	-	Когерентное и некогерентное освещение щели.	
		Аппаратная функция спектрометра. Восстанов-	
		ление точного спектра как обратная задача.	
		Метрологическое обеспечение измерения длин	
		волн в оптике. Эталоны и стандарты. Калибров-	
		ка спектрометра	
8.	Фотометрические	Фотометрическое обеспечение спектроскопии.	Коллоквиум
0.	_	История развития спектрофотометрии. Флукту-	ROSISTORBITYM
	измерения		
		ации интенсивности светового поля. Современ-	
		ные оптические приемники, их шумы. Связь	
		между точностью фотометрирования и точно-	
		стью определения спектрального состава излу-	
		чения. Фотометрические инварианты	
9.	Спектрофотометры	Светосила спектрофотометра, ее ограничения.	Коллоквиум
	и работа с ними	Источник света и кюветы для абсорбционной	
		спектроскопии. Пути увеличения светосилы	
		спектральных приборов	
10.	Принятие статисти-	Интерпретация наблюдений – понятие модели,	Коллоквиум
		класс модели, выбор модели. Методы сопостав-	· ·
	обработке экспери-	ления модели с экспериментальными данными,	
		критерии сопоставления. Выбор класса модели	
	, and the second second	на основе метода проверки статистических ги-	
		потез и при информационном подходе. Косвен-	
		ный характер экспериментальных данных и об-	
11	Mama www - 6	ратные задачи.	Vолжоме
11.	Методы обработки	Первичная обработка экспериментальных дан-	Коллоквиум
	_	ных. Ошибки, возникающие при первичной об-	
	данных	работке экспериментальных данных, и их при-	

	чины. Методы усреднения экспериментальных данных. Проблемы точности, верхняя и нижняя границы ошибок эксперимента	
данных при обра- ботке результатов	Учет априорных данных и информационных оценок при выборе коэффициента регуляризации и определении нижней границы возможной ошибки. Квазиреальные эксперименты — методы, цели, решаемые задачи	,

2.3.2 Занятия семинарского типа.

Занятия семинарского типа не предусмотрены.

2.3.3 Лабораторные занятия.

No	Наименование лабораторных работ	Форма текущего
21≥	паименование лаоораторных расот	контроля
1	3	4
1.	Структурные типы кристаллов	Отчет по ЛР
2.	Спектроскопические методы исследования конденсированных сред	Отчет по ЛР
3.	Интерференционные методы исследования	Отчет по ЛР
4.	Дифракционная решетка и ее применение	Отчет по ЛР
5.	Спектрометрические измерения	Отчет по ЛР
6.	Фотометрические измерения	Отчет по ЛР

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.		Методические указания по организации аудиторной и внеа-
		удиторной самостоятельной работы, утвержденные кафед-
		рой теоретической физики и компьютерных технологий,
		протокол № 9 от «14» марта 2017г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по освоению курса «Экспериментальные методы исследования в физике конденсированного состояния» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- исследовательские методы в обучении;
- проблемное обучение.

Успешное освоение материала курса предполагает большую самостоятельную работу аспирантов и руководство этой работой со стороны преподавателей.

В учебном процессе используются активные и интерактивные формы проведения занятий: метод поиска быстрых решений в группе, мозговой штурм.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1Фонд оценочных средств для проведения текущего контроля.

4.1.1 Перечень вопросов для коллоквиума.

- 1. Элементы кристаллохимии. Структуры элементов и соединений. Атомный и ионный радиус.
- 2. Понятие о структурном типе. Кристаллическая и магнитная структура. Подрешетки.
- 3. Интерференция как основа построения спектроализаторов в оптике. Двухлучевой интерферометр.
- 4. Цели и задачи оптической спектроскопии. Требования к разрешению и интервалу сканирования оптического спектроанализатора.
- 5. Базовая схема оптического спектрометра. Требования к щелям, нормальная ширина щели. Эталоны и стандарты. Калибровка спектрометра
- 6. Методы сопоставления модели с экспериментальными данными, критерии сопоставления. Выбор класса модели на основе метода проверки статистических гипотез и при информационном подходе.
- 7. Первичная обработка экспериментальных данных. Ошибки, возникающие при первичной обработке экспериментальных данных, и их причины. Методы усреднения экспериментальных данных.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

4.2.1 Вопросы для подготовки к экзамену.

- 1. Решетки, как шаровые упаковки. Структуры элементов и соединений.
- 2. Координационное число. Атомный и ионный радиус.
- 3. Пустоты в плотнейших упаковках. Понятие о структурном типе.
- 4. Структуры магнетиков. Железо, кобальт, никель.
- 5. Редкоземельные металлы. Интерметаллиды.
- 6. Ферриты. Кристаллическая и магнитная структура. Подрешетки.
- 7. Методы определения структуры и ориентации монокристаллов.
- 8. Технологические методы получения упорядоченных сред.
- 9. Микроскопические и термодинамические аспекты классификации неупорядоченных систем. Виды неупорядоченных систем. Способы классификации неупорядоченных систем.

- 10. Аморфное и стеклообразное состояние. Технологические методы получения неупорядоченных систем.
 - 11. Спектральное описание оптической среды.
 - 12. Сравнение спектральных методов исследования в оптике и радиофизике.
- 13. Требования к разрешению и интервалу сканирования оптического спектроанализатора.
- 14. Интерференция как основа построения спектроализаторов в оптике. Двухлучевой интерферометр.
- 15. Две ветви интерферометров (интерферометр Релея, интерферометр Майкельсона), различия в их светосиле.
- 16. Основные типы спектральных приборов. Фурье-спектрометр и его характеристики.
- 17. Дифракционная решетка. Приближения в теории дифракции. Теория дифракционной решетки.
- 18. Типы реальных дифракционных решеток, их особенности. Призма как предельный случай дифракционной решетки, сравнение их характеристик.
- 19. Базовая схема оптического спектрометра. Требования к щелям, нормальная ширина щели. Когерентное и некогерентное освещение щели. Аппаратная функция спектрометра.
- 20. Восстановление точного спектра как обратная задача. Метрологическое обеспечение измерения длин волн в оптике. Эталоны и стандарты. Калибровка спектрометра.
- 21. Фотометрическое обеспечение спектроскопии. История развития спектрофотометрии.
- 22. Флуктуации интенсивности светового поля. Современные оптические приемники, их шумы.
- 23. Связь между точностью фотометрирования и точностью определения спектрального состава излучения. Фотометрические инварианты.
- 25. Светосила спектрофотометра, ее ограничения. Источник света и кюветы для абсорбционной спектроскопии. Пути увеличения светосилы спектральных приборов.
- 26. Интерпретация наблюдений понятие модели, класс модели, выбор модели. Методы сопоставления модели с экспериментальными данными, критерии сопоставления.
- 27. Выбор класса модели на основе метода проверки статистических гипотез и при информационном подходе.
 - 28. Косвенный характер экспериментальных данных и обратные задачи.
- 29. Первичная обработка экспериментальных данных. Ошибки, возникающие при первичной обработке экспериментальных данных, и их причины.
- 30. Методы усреднения экспериментальных данных. Проблемы точности, верхняя и нижняя границы ошибок эксперимента.
- 31. Учет априорных данных и информационных оценок при выборе коэффициента регуляризации и определении нижней границы возможной ошибки.
 - 32. Квазиреальные эксперименты методы, цели, решаемые задачи.

Образец экзаменационного билета

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

Кафедра теоретической физики и компьютерных технологий Направление подготовки 03.04.02 Физика («Физика конденсированного состояния вещества») 2019–2020 уч. год

Дисциплина «Экспериментальные методы исследований в физике конденсированного состояния»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Решетки, как шаровые упаковки. Структуры элементов и соединений.
- 2. Квазиреальные эксперименты методы, цели, решаемые задачи.

Зав. кафедрой теоретической физики и компьютерных технологий д. ф.-м. н. доцент

В.А. Исаев

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1) Созинов С.А. Структурные методы исследования кристаллов / С.А. Созинов, Л.В. Колесников. Кемерово: Кемеровский государственный университет, 2012. 108 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=232740.
- 2) Гольдаде В.А. Физика конденсированного состояния / В.А. Гольдаде, Л.С. Пинчук. Минск: Белорусская наука, 2009. 648 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=93309.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Каныгина О.Н. Физические методы исследования веществ / О.Н. Каныгина, А.Г. Четверикова, В.Л. Бердинский. Оренбург: ОГУ, 2014. 141 с. Режим доступа: URL: http://biblioclub.ru/index.php? page=book&id=330539.
- 2. Интерактивные системы Scilab, Matlab, Mathcad / И.Е. Плещинская, А.Н. Титов, Е.Р. Бадертдинова, С.И. Дуев. Казань: Издательство КНИТУ, 2014. 195 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=428781.
- 3. Губина Т.Н. Учебно-методическое пособие по дисциплине «Компьютерное моделирование» / Т.Н. Губина, И.Н. Тарова. Елец: ЕГУ им. И.А. Бунина, 2004. 155 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=272142.
- 4. Фомин Д.В. Экспериментальные методы физики твердого тела / Д.В. Фомин. Москва; Берлин: Директ-Медиа, 2014. 186 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=259074.

5.3. Периодические издания:

- 1. Квантовая электроника.
- 2. Физика твердого тела.
- 3. Журнал экспериментальной и теоретической физики.
- 4. Журнал физической химии.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. Сайт научной библиотеки сибирского федерального университета http://files.lib.sfu-kras.ru/ebibl/umkd/94
- 2. Сайт, содержащий справочные данные различных кристаллов: http://refractiveindex.info.
 - 3. Официальный сайт ФГБУН «ФИАН»: http://www.lebedev.ru.
 - 4. Официальный сайт ФГБУН «ИОФ РАН»: http://www.gpi.ru.

7. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал.

Сопровождение самостоятельной работы студентов организовано в следующих формах:

- оформление отчетов по лабораторным работам и подготовка к устной их защите;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых посредством изучения рекомендуемой литературы;

 консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Не предусмотрено.

8.2 Перечень необходимого программного обеспечения.

Программный продукт	Договор/лицензия
Операционная система MS Windows 8, 10	№73-АЭФ/223-Ф3/2018 Соглашение
	Microsoft ESS 72569510 от 06.11.2018
Интегрированное офисное приложение MS	
Office Professional Plus	Microsoft ESS 72569510 от 06.11.2018
Математический пакет «Mathcad»	№127-АЭФ/2014 от 29.07.2014

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru).
- 2. Сайт, содержащий справочные данные различных кристаллов, используемых для лазеров: http://refractiveindex.info.
- 3. Электронная библиотечная система "Университетская библиотека ONLINE" [Электронный ресурс] Режим доступа: http://biblioclub.ru.
- 4. Электронная библиотечная система издательства "Лань" [Электронный ресурс] Режим доступа: http://e.lanbook.com.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины (мо-
	_	дуля) и оснащенность
1.	Лекционные занятия	Учебная аудитория для проведения занятий лекционного
2.	Лабораторные заня-	и лабораторного типа; оснащенность: комплект учебной
	R ИТ	мебели; доска учебная магнитно-маркерная; комплект
		плакатов «Теория групп», «Физические свойства кристал-
		лов»; компьютерное оснащение ПЭВМ
		350040 г. Краснодар, ул. Ставропольская, 149, №320С
3.	Групповые (индивидуальные) консультации	Аудитории для проведения групповых и индивидуальных консультаций; оснащенность: комплект учебной мебели с учебными ПЭВМ; 1 ПЭВМ администратора (преподавательский); доска учебная магнитно-маркерная 350040 г. Краснодар, ул. Ставропольская, 149, № 212С, 207С
4.	Текущий контроль,	Аудитория для текущего контроля и промежуточной

промежуточная аттестация	аттестации; оснащенность: комплект учебной мебели, доска учебная магнитно-маркерная 350040 г. Краснодар, ул. Ставропольская, 149, №216С
5. Самостоятельная ра- бота	Помещение для самостоятельной работы; оснащенность: комплект учебной мебели, компьютерное оснащение ПЭВМ с возможностью подключения к сети «Интернет», программой экранного увеличения и доступом в электронную информационно-образовательную среду университета 350040 г. Краснодар, ул. Ставропольская, 149, № 208С