МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Институт географии, геологии, туризма и сервиса Кафедра геофизических методов поисков и разведки

"УТВЕРЖДАЮ"

Проректор по учебной работе, качеству образования —

первый проректор

А. Хагуров

2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.02.02 ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА В ГЕОФИЗИКЕ

Специальность 21.05.03 "Технология геологической разведки" Специализация "Геофизические методы поиска и разведки месторождений полезных ископаемых"

Квалификация (степень) выпускника: горный инженер-геофизик Форма обучения: очная

Рабочая программа дисциплины «Вычислительная математика в геофизике» Федеральным государственным c составлена В соответствии (ΦΓΟС ΒΟ) πο образования высшего образовательным стандартом «Технология геологической разведки», 21.05.03 специальности утвержденным приказом Министерства науки и высшего образования Российской Федерации №977 от 12.08.2020 г.

Программу составил:

Гуленко В.И., д-р техн. наук, профессор кафедры геофизических методов поисков и разведки

И.о. заведующего кафедрой геофизических методов поисков и разведки, канд. техн. наук, доцент Захарченко Е.И.

Рабочая программа дисциплины утверждена на заседании учебнометодической комиссии Института географии, геологии, туризма и сервиса (23) 2023 г. Протокол № ______

Председатель учебно-методической комиссии ИГГТиС, канд. геогр. наук, доцент Филобок А.А.

Рецензенты:

Курочкин А.Г., канд. геол.-мин. наук, доцент кафедры геофизических методов поисков и разведки Шкирман Н.П., канд. геол.-мин. наук, руководитель группы обработки и

интерпретации ООО «Краснодарспецгеофизика»

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1. Цели освоения дисциплины

Цель изучения дисциплины "Вычислительная математика в геофизике" состоит в приобретении студентами знаний об основных вычислительных методах решения прикладных геофизических задач, освоение принципов построения алгоритмов и методики приближенного их решения на ЭВМ.

1.2. Задачи изучения дисциплины

Основной задачей изучения дисциплины "Вычислительная математика в геофизике" является формирование у студентов представления об основных методах и задачах вычислительной математики, формирование соответствующих знаний, умений и навыков; формирование у студентов навыков решения задач прикладной геофизики с помощью численных методов вычислительной математики.

Объектами профессиональной деятельности выпускников, освоивших программу специалитета, являются горные породы и геологические тела в земной коре, горные выработки.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "Вычислительная математика в геофизике" введена в учебные планы подготовки специалиста (специальность 21.05.03 "Технология геологической разведки") согласно ФГОС ВО блока Б1, вариативная часть (Б1.В), индекс дисциплины — Б1.В.ДВ.02.02, читается в пятом семестре.

Дисциплина предусмотрена основной образовательной программой (ООП) КубГУ в объёме 3 зачетных единиц (108 часов, итоговый контроль — зачет).

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))
ПК-1. Способен управлять процесс скважинных геофизических данных	ом обработки и интерпретации полученных
ИПК-1.1. Управление разработкой перспективных планов в области обработки и интерпретации скважинных геофизических данных.	Знает методические и алгоритмические основы вычислительной математики Умеет строить математические модели геофизических полей Владеет методами решения прикладных задач геофизики с применением систем компьютерной математики
ИПК-1.2. Руководство производственно-технологическим процессом обработки и интерпретации скважинных геофизических данных.	Знает типовые операции математического анализа Умеет обрабатывать сигналы в пакетах компьютерной математики Владеет навыками обработки геофизических сигналов в пакетах компьютерной математики
ИПК-1.3. Совершенствование производственно-технологического процесса обработки и интерпретации скважинных геофизических данных.	Знает основы обработки данных и статистики Умеет применять вероятностно- статистические методы обработки и интерпретации результатов геофизических наблюдений Владеет навыками применения встроенных средств программирования в пакетах компьютерной математики
ПК-2. Способен анализировать и информацию с учетом имеющегос информационные технологии	интерпретировать геолого-геофизическую я мирового опыта, используя современные
ИПК-2.1. Владеет способностью использовать современные информационные технологии.	Знает методы численного решения типовых задач математического анализа и линейной алгебры в системах компьютерной математики Умеет применять методы численного решения типовых задач математического анализа и линейной алгебры в системах компьютерной математики Владеет навыками расчетов теоретических годографов отраженных, головных, рефрагированных и обменных сейсмических волн; навыками применения СКМ для расчета частотных характеристик интерференционных систем
ИПК-2.2. Способен анализировать и интерпретировать геолого-геофизическую информацию с учетом имеющегося мирового опыта.	Знает операции символьной математики, встроенные средства программирования; методы численного решения прямых и обратных задач геофизики Умеет анализировать и перерабатывать информацию, используя современные информационные технологии; применять пакеты компьютерной математики для фильтрации сигналов во временной и частотной областях

Код и наименование индикатора	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))	
	Владеет навыками обработки и интерпретации результатов геофизических наблюдений с помощью пакетов компьютерной математики	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице.

Виды работ		Всего	Форма обучения
		часов	очная
			5 семестр
			(часы)
Контактная раб	ота, в том числе:	34,2	34,2
Аудиторные зан	иятия (всего):		
занятия лекционі	ного типа	-	-
лабораторные зап	R ИТRH	34	34
практические зан	Р ВИТКИ	-	-
Иная контактна	ня работа:		
Контроль самост	оятельной работы (КСР)	5	5
Промежуточная	аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:		68,8	68,8
Самостоятельное	е изучение разделов,		
самоподготовка	(проработка и повторение		
	гериала и материала учебников и	68,8	68,8
учебных пособи	й, подготовка к лабораторным и	00,0	00,0
практическим з	анятиям, коллоквиумам и т.д.).		
Подготовка к тек	ущему контролю		
Контроль:			
Подготовка к экзамену		-	-
8Общая	час.	108	108
трудоемкость	в том числе контактная работа	34,2	34,2
	зач. ед.	3	3

2.2. Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 5 семестре.

	Количество часов			сов		
№ раздела	Наименование разделов (тем)	всего аудиторная работа		внеаудиторная работа		
			Л	ПР	ЛР	СР
1	2	3	4	5	6	7
1	Основы вычислительной математики	15			5	10
2	Математические модели в теории геофизических полей	17	_		6	11
3	Интегральные преобразования и спектральные представления геофизических полей	16	_		5	11
4	Цифровые методы анализа геофизических полей	20	_	_	8	12
5	Методы решения обратных задач геофизики	17		_	5	12
6	Вероятностно-статистические методы обработки и интерпретации результатов геофизических наблюдений	18	_		5	13
	Контроль самостоятельной работы (КСР)	5				
	Промежуточная аттестация (ИКР)	0,2				
	Общая трудоемкость по дисциплине	108				

2.3. Содержание разделов (тем) дисциплины **2.3.1.** Занятия лекционного типа

Занятия лекционного типа по дисциплине "Вычислительная математика в геофизике" не предусмотрены.

2.3.2. Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

Перечень лабораторных занятий по дисциплине "Вычислительная математика в геофизике" приведен в таблице.

№ раздела	Наименование раздела (темы)	Тематика лабораторных занятий	Форма текущего контроля
1	2	3	4
1	Основы вычислительной	Типы данных MathCAD и MatLab	РГЗ-1
1	математики	Операторы, функции и выражения в MathCAD и MatLab	РГ3-2
		Решение задач линейной алгебры	РГЗ-3
2	Математические модели в теории геофизических	Итерационные и рекуррентные соотношения, дифференциальные уравнения	РГ3-4
	полей	Расчет теоретических годографов отраженных, головных, рефрагированных и обменных сейсмических волн	РГЗ-5
	Интегральные преобразования и	Типовые операции математического анализа	РГЗ-6
3	спектральные представления геофизических полей	Обработка сигналов в MatLab и MathCAD с использованием пакетов расширения	РГ3-7
		Встроенные средства программирования	РГЗ-8
4	Цифровые методы анализа	Графическая визуализация вычислений	РГЗ-9
	геофизических полей	Расчет частотных характеристик интерференционных систем	РГ3-10
5	Методы решения	Применение MatLab и MathCAD в задачах моделирования геофизических процессов и объектов	РГ3-11
	обратных задач геофизики	Применение встроенных средств программирования в MathCAD	РГ3-12
6	Вероятностно- статистические методы обработки и	Вероятностно-статистические методы обработки и интерпретации результатов геофизических наблюдений	РГЗ-13
6	интерпретации результатов геофизических наблюдений	Применение MathCad, фильтрация сигналов во временной и частотной областях	РГЗ-14

Форма текущего контроля — защита расчетно-графических заданий (РГЗ-1 — РГЗ-14).

При изучении дисциплины могут применяться электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.4. Примерная тематика курсовых работ (проектов)

Курсовые работы (проекты) по дисциплине "Вычислительная математика в геофизике" не предусмотрены.

2.4. Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю)

Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю) приведен в таблице.

№	Вид СР	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	СР	Методические указания по организации самостоятельной работы по дисциплине "Вычислительная математика в геофизике", утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 11.06.2020 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Общим вектором изменения технологий обучения должны стать активизация студента, повышение уровня его мотивации и ответственности за качество освоения образовательной программы.

При реализации различных видов учебной работы по дисциплине "Вычислительная математика в геофизике" используются следующие образовательные технологии, приемы, методы и активные формы обучения:

- 1) разработка и использование активных форм лабораторных работ:
- а) лабораторное занятие с разбором конкретной ситуации;
- б) бинарное занятие.

В процессе проведения лабораторных работ практикуется широкое использование современных технических средств (проекторы, интерактивные доски, Интернет). С использованием Интернета осуществляется доступ к базам данных, информационным справочным и поисковым системам.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины "Вычислительная математика в геофизике".

Оценочные средства включает контрольные материалы для проведения текущего контроля в форме расчетно-графических заданий и промежуточной аттестации в форме вопросов к зачету.

№	Код и наименование	р _{оохин} тоту у обущому д		ание оценочного редства
7/10	индикатора	Результаты обучения	текущий контроль	промежуточная аттестация
1.	ИПК-1.1. Управление разработкой	Знает методические и алгоритмические основы вычислительной математики	РГЗ-1	Вопросы на зачете 1–2
2.	перспективных планов в области обработки и интерпретации	Умеет строить математические модели геофизических полей	РГ3-2	Вопросы на зачете 3-4
3.	скважинных геофизических данных.	Владеет методами решения прикладных задач геофизики с применением систем компьютерной математики	РГЗ-3	Вопросы на зачете 5-7
4.	ИПК-1.2. Руководство	Знает типовые операции математического анализа	РГЗ -4 РГЗ-4	Вопросы на зачете 8-9
5.	производственно- технологическим процессом обработки и интерпретации	Умеет обрабатывать сигналы в пакетах компьютерной математики	РГ3-5	Вопросы на зачете 10-12
6.	скважинных геофизических данных.	Владеет навыками обработки геофизических сигналов в пакетах компьютерной математики	РГЗ-6	Вопросы на зачете 13-15
7.	ИПК-1.3. Совершенствование	Знает основы обработки данных и статистики	РГ3-7	Вопросы на зачете 16-18

8.	производственно- технологического процесса обработки и интерпретации скважинных геофизических данных.	Умеет применять вероятностно- статистические методы обработки и интерпретации результатов геофизических наблюдений	РГ3-8	Вопросы на зачете 19-21
9.		Владеет навыками применения встроенных средств программирования в пакетах компьютерной математики	РГ3-9	Вопросы на зачете 22-25
10.		Знает методы численного решения типовых задач математического анализа и линейной алгебры в системах компьютерной математики	РГ3-10	Вопросы на зачете 26-28
11.	ИПК-2.1. Владеет способностью использовать современные	Умеет применять методы численного решения типовых задач математического анализа и линейной алгебры в системах компьютерной математики	РГ3-11	Вопросы на зачете 29-30
12.	информационные технологии.	Владеет навыками расчетов теоретических годографов отраженных, головных, рефрагированных и обменных сейсмических волн; навыками применения СКМ для расчета частотных характеристик интерференционных систем	РГ3-12	Вопросы на зачете 31-33
13.	ИПК-2.2. Способен анализировать и интерпретировать	Знает операции символьной математики, встроенные средства программирования; методы численного решения прямых и обратных задач геофизики	РГ3-13	Вопросы на зачете 34-35
14.	геолого-геофизическую информацию с учетом имеющегося мирового опыта.	Умеет анализировать и перерабатывать информацию, используя современные информационные технологии; применять пакеты компьютерной математики для	РГ3-13	Вопросы на зачете 36-38

	фильтрации сигналов во временной и частотной областях		
15.	Владеет навыками обработки и интерпретации результатов геофизических наблюдений с помощью пакетов компьютерной математики	РГЗ-14	Вопросы на зачете 39-40

4.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

К формам письменного контроля относится *расчетно-графическое* задание.

Перечень расчетно-графических заданий приведен ниже.

Расчетно-графическое задание №1. Типы данных MathCAD и MatLab.

Расчетно-графическое задание №2. Операторы, функции и выражения в MathCAD и MatLab.

Расчетно-графическое задание №3. Решение задач линейной алгебры.

Расчетно-графическое задание №4. Итерационные и рекуррентные соотношения, дифференциальные уравнения.

Расчетно-графическое задание №5. Расчет теоретических годографов отраженных, головных, рефрагированных и обменных сейсмических волн.

Расчетно-графическое задание №6. Типовые операции математического анализа.

*Расчетно-графическое задание №*7. Обработка сигналов в MatLab и MathCAD с использованием пакетов расширения.

Расчетно-графическое задание №8. Встроенные средства программирования.

Расчетно-графическое задание №9. Графическая визуализация вычислений.

Расчетно-графическое задание №10. Расчет частотных характеристик интерференционных систем.

Расчетно-графическое задание №11. Применение MatLab и MathCAD в задачах моделирования геофизических процессов и объектов.

Расчетно-графическое задание №12. Применение встроенных средств программирования в MathCAD.

Расчетно-графическое задание №13. Вероятностно-статистические методы обработки и интерпретации результатов геофизических наблюдений.

Расчетно-графическое задание №14. Применение MathCad, фильтрация сигналов во временной и частотной областях.

Критерии оценки расчетно-графических заданий (РГЗ):

- оценка "зачтено" выставляется студенту, если он правильно применяет теоретические положения курса при решении практических вопросов и задач расчетно-графических заданий, владеет необходимыми навыками и приемами их выполнения;
- оценка "не зачтено" выставляется студенту, если он не знает значительной части программного материала, в расчетной части РГЗ допускает существенные ошибки, затрудняется объяснить расчетную часть, обосновать возможность ее реализации или представить алгоритм ее реализации, а также неуверенно, с большими затруднениями выполняет задания или не справляется с ними самостоятельно.

4.2. Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

К формам контроля относится зачет.

Вопросы для подготовки к зачету:

- 1. Вычислительная математика и математическое моделирование в задачах разведочной геофизики.
 - 2. Теория поля.
 - 3. Теория потенциала.
 - 4. Интегральные уравнения в теории поля.
 - 5. Потенциальные поля в геофизике.
 - 6. Сейсмические волны и электромагнитное поле
 - 7. Ряды Фурье. Гармонический анализ.
 - 8. Преобразования Фурье и Лапласа.
 - 9. Цилиндрические функции. Преобразование Фурье-Бесселя.
- 10. Полиномы Лежандра и сферические функции. Сферический анализ.
 - 11. Методы выявления скрытых периодичностей.
 - 12. Матрицы. Системы линейных алгебраических уравнений.
 - 13. Метод наименьших квадратов.
 - 14. Собственные значения и собственные векторы матрицы.
 - 15. Билинейные и квадратичные формы.
- 16. Прямые методы решения систем линейных алгебраических уравнений.
- 17. Итерационные методы решения систем линейных алгебраических уравнений.
 - 18. Решение систем нелинейных уравнений.

- 19. Методы минимизации функций.
- 20. Методы представления функций: интерполяция и аппроксимация.
 - 21. Численное дифференцирование и сглаживание.
 - 22. Численное интегрирование.
 - 23. Некорректные задачи и методы их решения.
 - 24. Обратные задачи обработки геофизических данных.
 - 25. Трансформация геофизических полей.
- 26. Случайное событие, система событий. Определение вероятности, сходимость по вероятности. Основные виды событий.
- 27. Вероятность суммы (объединения) совместных и несовместных событий.
- 28. Вероятность произведения (пересечения) независимых и зависимых событий. Условная вероятность.
 - 29. Формула полной вероятности. Теорема гипотез (формула Байеса).
- 30. Функция и плотность распределения случайной величины (непрерывной и дискретной), их свойства.
 - 31. Основные числовые характеристики случайных величин.
- 32. Система случайных величин. Ковариационная и корреляционная матрицы.
- 33. Методы математической статистики в задачах обработки геофизических данных.
 - 34. Корреляционный анализ при обработке геофизических данных.
 - 35. Регрессионный анализ при обработке геофизических данных.
 - 36. Дисперсионный анализ при обработке геофизических данных.
- 37. Дискриминантный анализ в задачах обработки и интерпретации геофизических данных.
- 38. Факторный анализ в задачах обработки и интерпретации геофизических данных.
- 39. Компонентный анализ в задачах обработки и интерпретации геофизических данных.
- 40. Методы теории случайных процессов и статистических решений в задачах обработки и интерпретации геофизических данных.

Критерии получения студентами зачетов:

— оценка "зачтено" ставится, если студент строит свой ответ в соответствии с планом. В ответе представлены различные подходы к проблеме. Устанавливает содержательные межпредметные связи. Развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа. Выводы правильны. Речь грамотна, используется профессиональная лексика. Демонстрирует знание

специальной литературы в рамках учебного методического комплекса и дополнительных источников информации.

— оценка "не зачтено" ставится, если ответ недостаточно логически выстроен, план ответа соблюдается непоследовательно. Студент обнаруживает слабость в развернутом раскрытии профессиональных положения декларируются, Выдвигаемые но недостаточно аргументируются. Ответ носит преимущественно теоретический характер, примеры отсутствуют.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ, ИНФОРМАЦИОННЫХ РЕСУРСОВ И ТЕХНОЛОГИЙ

5.1. Учебная литература

Основная литература

- 1. Гнеденко Б. В. Курс теории вероятностей: учебник для студентов мат. спец. ун-тов. Изд. 9-е, доп. М.: Изд-во ЛКИ, 2007. 446 с. (35)
- 2. Лебедев К. А. Теория вероятностей и математическая статистика: учебное пособие для студентов, ч. 1 Краснодар: Изд-во КубГУ, 2012. 104 с. (43)
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика: учебное пособие для студентов вузов. 12-е изд., перераб. М.: Высшее образование, 2006. 479 с. (96)
- 4. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы: учебное пособие для студентов физ.-мат. спец. вузов. 5-е изд. М.: БИНОМ. Лаборатория знаний, 2007. 636 с. (60)
- 5. Демидович Б.П., Марон И.А. Основы вычислительной математики: учебное пособие. СПб.: Лань, 2011. 665 с. [Электронный ресурс] Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2025.
- 6. Воскобойников Ю.Е. Регрессионный анализ данных в пакете MathCad + CD: учебное пособие. СПб.: Лань, 2011. 224 с. [Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=666.
- 7. Поршнев С.В. Компьютерное моделирование физических процессов в пакете MatLab + CD: учебное пособие. СПб.: Лань, 2011. 727 с. [Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=650.

*Примечание: в скобках указано количество экземпляров в библиотеке КубГУ.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Дополнительная литература

- 1. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами: учебное пособие для студентов втузов / под ред. Кибзуна А.И. Изд. 3-е, перераб. и доп. М.: Физматлит, 2007. 231 с. (40)
- 2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике : учебное пособие для студентов вузов. 11-е изд., перераб. М.: Высшее образование, 2006. 404 с. (99)

- 3. Лабораторный практикум по курсу "Основы вычислительной математики": учебное пособие по вычислит. математике. 2-е изд., испр. и доп. М.: МЗ Пресс, 2003. 193 с. (50)
- 4. Бахвалов Н. С., Лапин А. В., Чижонков Е.В. Численные методы в задачах и упражнениях. М.: Высшая школа, 2000. 190 с. (46)
- 5. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы: учебное пособие для студентов физ.-мат. спец. вузов. 2-е изд. М.; СПб.: Физматлит, Лаборатория Базовых Знаний, Невский Диалект, 2001. $630 \, \mathrm{c.} \quad (133)$
- 6. Лебедев В.И. Функциональный анализ и вычислительная математика.— М.: Физматлит, 2005. 294 с. [Электронный ресурс] Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=59277.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека Grebennikon.ru https://grebennikon.ru

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «Юрайт» https://urait.ru
- 2. ЭБС «Университетская библиотека онлайн» www.biblioclub.ru
- 3. 3EC «Book.ru» https://www.book.ru
- 4. 3FC «Znanium.com» www.znanium.com
- 5. ЭБС «Лань» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com
- 2. Scopus http://www.scopus.com
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru

- 9. Nature Journals https://www.nature.com/siteindex/index.html
- 10. zbMath https://zbmath.org
- 11. Nano Database https://nano.nature.com
- 12. Springer eBooks https://link.springer.com
- 13. «Лекториум ТВ» http://www.lektorium.tv
- 14. Университетская информационная система Россия http://uisrussia.msu.ru

Информационные справочные системы:

Консультант Плюс – справочная правовая система (доступ по локальной сети с компьютеров библиотеки).

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada
 - 3. КиберЛенинка http://cyberleninka.ru
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru
 - 5. Федеральный портал «Российское образование» http://www.edu.ru
- 6. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru
- 8. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru
- 9. Проект Государственного института русского языка имени А.С. Пушкина «Образование на русском» https://pushkininstitute.ru
- 10. Справочно-информационный портал «Русский язык» http://gramota.ru
 - 11. Служба тематических толковых словарей http://www.glossary.ru
 - 12. Словари и энциклопедии http://dic.academic.ru
 - 13. Образовательный портал «Учеба» http://www.ucheba.com
- 14. Законопроект «Об образовании в Российской Федерации». Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научнометодического журнала «Школьные годы» http://icdau.kubsu.ru

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические знания по основным разделам курса "Вычислительная математика в геофизике" студенты приобретают на лабораторных занятиях, закрепляют и расширяют во время самостоятельной работы.

Для углубления и закрепления теоретических знаний студентам рекомендуется выполнение определенного объема самостоятельной работы. Общий объем часов, выделенных для внеаудиторных занятий, составляет 68,8 часа.

Внеаудиторная работа по дисциплине "Вычислительная математика в геофизике" заключается в следующем:

- проработка учебного (теоретического) материала;
- подготовка к лабораторным занятиям;
- подготовка к текущему контролю.

Для закрепления теоретического материала и выполнения контролируемых самостоятельных работ по дисциплине во внеучебное время студентам предоставляется возможность пользования библиотекой КубГУ, возможностями компьютерных классов.

Итоговый контроль осуществляется в виде зачета.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

		_ :
Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	лицензионные программы общего назначения: Microsoft Windows 7, пакет Microsoft Officce Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point)
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	лицензионные программы общего назначения: Microsoft Windows 7, пакет Microsoft Officce Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point)

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучающихся	Оснащенность помещений для самостоятельной работы обучающихся	Перечень лицензионного программного обеспечения
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы. Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в	лицензионные программы общего назначения: Microsoft Windows 10, пакет Microsoft Office 2016, Abbyy Finereader 9

	электронную информационно- образовательную среду образовательной организации, веб- камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное	
	соединение и беспроводное соединение по технологии Wi-Fi)	
Помещение для самостоятельной работы обучающихся (ауд. A106)	Мебель: учебная мебель. Комплект специализированной мебели: компьютерные столы. Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, вебкамеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	лицензионные программы общего назначения: Microsoft Windows 7, пакет Microsoft Officce Professional