МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.09 АРХИТЕКТУРНАЯ ФИЗИКА

Направление подготовки 07.03.01 Архитектура

Направленность Архитектурное проектирование

Форма обучения очная

Квалификация бакалавр Рабочая программа дисциплины «Архитектурная физика» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 07.03.01 Архитектура (профиль) "Архитектурное проектирование"

Программу составил: Быковский П.И., доцент

подпись

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем

протокол № 14 «20» апреля 2023 г.

Заведующий кафедрой (разработчика) Богатов Н.М.

фамилия, инициалы

moduus.

Утверждена на заседании учебно-методической комиссии факультета

Физико-технический факультет протокол № 10«20» апреля 2023 г.

Председатель УМК факультета

Богатов Н.М.

фамилия, инициалы

подпись

Рецензенты:

Шапошникова Т.Л., зав.кафедрой физики ФГБОУ ВО КубГТУ

Григорьян Л.Р., Генеральный директор ООО НПФ «Мезон»

1. Цели и задачи изучения дисциплины

1.1 Цель и задачи дисциплины

Цель освоения дисциплины: изучение разделов физики, являющихся основой для создания в помещениях микроклимата, удовлетворяющего требованиям комфорта.

Задачи:

- изучение основных закономерностей архитектурной светологии, акустики, строительной теплофизики;
- получение представления о фундаментальных и прикладных исследованиях в области физики, касающихся архитектуры и строительной отрасли.

1.2 Место дисциплины в структуре общей образовательной программы высшего образования.

Дисциплина Б1.В.09 "Архитектурная физика" относится к вариативной части естественнонаучного цикла.

При освоении данной дисциплины необходимы знания предшествующих дисциплин:

- Математика (разделы математики),
- Основы информатики.

На данную дисциплину опираются следующие дисциплины:

- Строительная механика,
- Архитектурная экология,
- Колористика в проектировании городской среды,
- Экологическое и энергоэффективное архитектурное проектирование.
- Инженерные системы и оборудование в архитектуре,
- Проектирование инженерного оборудования в архитектуре,
- Физика среды в архитектуре.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программ

Изучение *Архитектурной физики* направлено на формирование у обучающихся следующих общепрофессиональных (ПК) компетенций:

№	Инд екс	Содержание компетенции	В результате изучени	ия учебной дисципли должны	ны обучающиеся
31_	ком ции	(или её части)	знать	уметь	владеть
2	ПК-1	Способен участвовать в разработке и оформлении градостроите льного раздела проектной документации	ПК-1.2 - требования законодательства и нормативных документов по градостроительному проектированию; - социальные, градостроительные, историко-культурные, объемнопланировочные, композиционнохудожетвенные, экономические (в том числе учитывающие особенности лиц с ОВЗ и маломобильных групп граждан); - состав и правила подсчета технико-экономических показателей, учитываемых при проведении техникоэкономически х расчетов проектных решений; - методы и приемы автоматизированного проектирования, основные программные комплексы проектирования, создания чертежей	ПК-1.1 - участвовать в обосновании выбора градостроительных решений; - участвовать в разработке и оформлении проектной документации по градостроительному проектированию (в том числе учитывающие особенности лиц с ОВЗ и маломобильных групп граждан); - проводить расчет технико-экономических показателей; - использовать средства автоматизации градостроительного проектирования и компьютерного моделирования.	- методами техникоэкономиче ской оценки проектных решений; - методами оценки и выбора строительных материалов и технологий опытом работы и использования в ходе написания реферативной работы законодательных и нормативноправовых актов, а также научнотехнической информации, Internet ресурсов, баз данных и каталогов, электронных журналов, поисковых ресурсов и др. в области строительного производства и градостроительного о регулирования.

ПК-2	Способен	ПК-2.2	ПК-2.1 -	- методами
IIK-2	участвовать в	требования	участвовать в	техникоэкономич
	*	*	обосновании	
	разработке и	нормативных		еской оценки
	оформлении	документов по	выбора	проектных
	архитектурнодизайнер	архитектурнодизайн	архитектурнодизай	решений; -
	ского раздела	ерскому	нерских средовых	методами оценки
	проектной	проектированию; -	объектов (в том	и выбора
	документации	социальные,	числе	строительных
		градостроительные,	учитывающие	материалов и
		историкокультурны	особенности лиц с	технологий
		e,	ОВЗ и	опытом работы и
		объемнопланировоч	маломобильных	использования в
		ные,	групп граждан); -	ходе написания
		функциональнотехн	участвовать в	реферативной
		ологические,	разработке и	работы
		конструктивные,	оформлении	законодательных
		композиционнохудо	проектной	и нормативно-
		жественные,	документации; -	правовых актов, а
		эргономические	проводить расчет	также
		требования к	технико-	научнотехническо
		различным	экономических	й информации,
		средовым объектам;	показателей; -	Internetpecypcoв,
		- состав и правила	использовать	баз данных и
		подсчета технико-	средства	каталогов,
		экономических	автоматизации	электронных
		показателей,	архитектурного	журналов,
		учитываемых при	проектирования и	поисковых
		проведении	компьютерного	ресурсов и др. в
		техникоэкономичес	моделирования.	области
		ких расчетов		строительного
		проектных		производства и
		решений; - методы		градостроительно
		и приемы		го регулирования.
		автоматизированног		
		о проектирования,		
		основные		
		программные		
		комплексы		
		проектирования,		
		создания чертежей		
		и моделей		
2 CTDVI	ктура и содержание ди		⊥ เงทษกล ด ับรบหก	<u>l</u>

- 2. Структура и содержание дисциплины Архитектурная физика.
- 2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач.ед. (144 часа), их распределение по семестрам и видам работ представлено в таблице:

Вид учебной работы	6	Всего
	семестр	часов
Контактная работа (всего):	38,2	38,2
В том числе:		
Аудиторные занятия (всего):	36	36
Занятия лекционного типа	18	18
Лабораторные занятия	-	-

18 2 0,2 33,8	2 0,2 33,8
2 0,2	2 0,2
0,2	0,2
0,2	0,2
	-
33,8	33,8
-	-
10	10
15	15
13	13
-	-
8,8	8,8
-	-
72	72
38,2	38,2
2	2
	15 - 8,8 - 72 38,2

2.2 Структура дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины и по семестрам:

Разделы дисциплины, изучаемые в 6 семестре:

		Количество часов				
№ раз д	Наименование разделов	Всего	Аудиторная работа			Самостоя- тельная работа
ела			Л	П3	ЛР	
1	2	3	4	5	6	7
	1. Архитектурная светология: 1.1. Законы теплового излучения игеометрической оптики.	14	4	4	-	6
1.	1.2. Основные понятия фотометрии: световой поток, освещённость, сила света, яркость и светимость, световаяотдача.	31,8	10	6	-	15,8
	1.3. Расчёты инсоляции, естественного иискусственного освещения помещений.	24	4	8	-	12
	Итого по дисциплине:		18	18	-	33,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименование		Форма
No		Содержание	текущего
	раздела	раздела	контроля
1	2	3	4
		Введение. Свет, зрение, архитектура. Законы	Тестиро-
1	Архитектурная	теплового излучения и геометрической оптики.	вание.
1	светология:	Основные понятия фотометрии: сила света,	
		световой поток, освещённость, яркость, светимость,	
		световая отдача. Закон Ламберта. Закон	Защита
		светотехнического подобия.	расчётных
		Естественное освещение. Системы	(домаш-х)
		естественного освещения помещений.	работ.
		Количественные и качественные характеристики	
		освещения.	
		Основы нормирования и светотехнического	Блиц
		расчёта естественного освещения помещений.	опрос.
		Инсоляция, её положительное и отрицательное	<u>F</u>
		воздействие на среду и человека. Нормирование и	
		проектирование инсоляции застройки.	
		Искусственное освещение. Источники	
		искусственного освещения. Нормирование и	
		светотехнический расчёт искусственного	
		освещения. Выбор источников света и	
		осветительных приборов.	
		Звук и слух. Основные понятия и физические	Тестиро-
2	Архитектурная	характеристики звука: интенсивность и уровень	вание.
	акустика.	интенсивности, громкость и уровень громкости.	Защита расчётных
		Кривые равной громкости.	(домаш-х)
		Закономерности распространения воздушного и	работ.
		структурного звука и шума.	
		Нормирование шума и расчёт звукоизоляции	блицопрос.
		ограждений. Акустика закрытых залов.	
		Реверберация. Методы расчёта времени	
		реверберации.	2
	Construction	Особенности теплообмена человека с	Защита
3	Строительная	окружающей средой. Основные понятия	расчётных домашних
	теплотехника.	теплотехники: тепловой поток, градиент	работ.
		температуры, теплопроводность, сопротивление	Блиц
		теплопередаче.	опрос.
		Теплофизический расчёт ограждающих	
		конструкций зданий.	

2.3.2 Занятия семинарского типа (расчётный практикум).

	2.3.2 Занятия семинарского типа (расчетный практикум).				
	Наименование		Форма		
No	раздела	Темы семинарских занятий	текущего		
	раздела		контроля		
1	2	3	4		
	Архитектурная	Определение коэффициента естественного	Защита		
	светология.	освещения (КЕО) помещения.	домашних		
1		Построение инсографиков и определение времени	работ.		
		инсоляции помещения.			
		Расчёт освещённости рабочего стола с учётом	Тестирование.		
		однократного отражения от стен и потолка.			
		Проектирование внутреннего освещения аудитории			
		(жилого помещения) с помощью программы DIALux.			
	Архитектурная	Расчёт времени реверберации в аудитории (в жилой	Защита		
2	акустика	комнате).	домашних		
		Определение индекса изоляции воздушного шума	работ.		
		акустически однородными конструкциями. Работа с	Блицопрос.		
		расчётной программой "Теплотехнический	влицопрос.		
		калькулятор".			
		Определение приведенного уровня ударного шума			
		под перекрытием.			
	Строительная	Определение необходимой толщины слоя	Защита		
	теплотехника.	утеплителя в ограждающей конструкции для зимних	домашних		
3		условий данной местности.	работ.		
		Работа с расчётной программой "Теплотехнический	Блицопрос.		
		калькулятор".			

- 2.3.3 Лабораторные занятия (не предусмотрены).
- 2.3.4 Примерная тематика курсовых работ (не предусмотрены)
- 2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

No	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Архитектурная	1. Архитектурная физика: учебник для вузов / под ред. Н.В.
1.	светология.	Оболенского М.: Архитектура-С, 2014 441 с.
		2. Блази В. Справочник проектировщика. Строительная физика
		[Текст]: пер. с нем / В. Блази; под ред. А.К. Соловьева 2-е изд.,
		доп М. : Техносфера, 2005 536 с.
		3. DIALux 3.0 (4.9) – Программы светотехнических расчётов.
	Архитектур 1. Архитектурная физика: учебник для вузов / под ред. Н.В.	
2.	ная акустика.	Оболенского М.: Архитектура-С, 2014 441 с.

		2. Звукоизоляция внутренних ограждающих конструкций		
		гражданских зданий. (Методические указания к курсовому и		
		дипломному проектированию). КубГТУ, Краснодар, 2005 г.		
		1. Богословский В. Н. <i>Строительная теплофизика</i> :		
3.	Строительная	(теплофизические основы отопления, вентиляции и		
	теплотехника.	кондиционирования воздуха): учебное пособие / В. Н.		
		Богословский. 3-е изд. СПб.: АВОК Северо-Запад, 2006. 400 с.		
		2. Теплотехнический калькулятор. – Программа расчёта		
		теплоизоляции ограждающих конструкций.		
		3. HERZ CO., HERZ OZC. – Программы теплотехнических		
		расчётов.		

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Для освоения студентами учебной дисциплины «Архитектурная физика», получения знаний и формирования профессиональной компетенции используются следующие образовательные технологии: интерактивная доска для подготовки и проведения лекционных и семинарских занятий; в соответствии с требованиями ФГОС ВО предусматривается участие в тематических дискуссиях.

Лекции являются одной из основных форм обучения студентов.

Во время лекций студентам предоставляется возможность ознакомиться с основными научно-теоретическими положениями, получить необходимое направление и рекомендации для самостоятельной работы с учебником, монографическими работами, учебными пособиями.

При реализации учебной работы по освоению дисциплины «Архитектурная физика» используются современные образовательные технологии:

- интерактивные формы обучения;
- исследовательские методы в обучении;
- проблемное обучение.

Интерактивные технологии, используемые при изучении дисциплины:

Семестры	Вид	Используемые интерактивные образовательные	Кол-
	занятия:	1 1	тво
	Л, ПР	технологии	час.
7,8	Л	Лекция с элементами педагогической эвристики,	6
		лекция-консультация.	

ПР	Беседы, разбор ситуаций, работа в малых группах в	6
	процессе защиты расчётных работ	
	Итого:	12

Самостоятельная работа по дисциплине включает:

- самоподготовку к учебным занятиям по конспектам, учебной литературе, интернет ресурсам;
- выполнение домашних заданий (решение типовых задач и выполнение творческих заданий).

Эффективность учебной деятельности бакалавров оценивается по балльнорейтинговой системе.

В учебном процессе используются активные и интерактивные формы проведения занятий: презентация, дискуссия, разбор конкретных ситуаций, творческие задания, работа в малых группах.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценка качества освоения программы включает текущий контроль по результатам выполнения домашних заданий, расчётных и контрольных работ.

Теоретический материал каждого раздела дважды закрепляется практическими расчётами: *первые расчёты* параметров делаются на примере *учебной аудитории*, *вторые* – на примере *своих комнат*.

В конце каждого раздела проводится так называемый "блиц опрос", когда студенты тут же, после номера заданного вопроса, пишут ответы (формулы и (или) определения, решают "короткие" задачи).

На лекциях и лабораторных занятиях используется презентация графических схем расчетов искусственного и естественного освещения, акустики и микроклиматических параметров.

4.1 Фонд оценочных средств для проведения текущего контроля

При проведении текущего контроля по освоению дисциплины, а также при контроле самостоятельной работы обучающегося по разделам дисциплины используется фонд тестовых заданий, заданий к домашним работам, вопросы и задачи для контрольных работ и блиц опросов.

Примеры тестов:

Tecm 1

Вопрос	Варианты ответов	
Какое изображение даёт	Всегда действительное; всегда	
рассеивающая линза?	мнимое; в зависимости от условий.	
Каким уравнением связаны коэффициенты	$\alpha + \rho = \tau;$ $\alpha + \rho + \tau = 1;$ $\alpha - \rho = \tau$	
поглощения (α), отражения (ρ) и пропускания (τ)?		
Какой высоты должно быть плоское зеркало (h),	h = H; $h = 2H;$ $h = H/2.$	
чтобы видеть себя в полный рост (Н)?		

Tecm 2

Вопрос	Ва	Варианты ответов			
	1	2	3		
Световой поток измеряется в	Люксах,	люменах,	канделах		
Из закона смещения Вина следует:	λ_{max} -0 1,	D-λ 1,	$\frac{1-\lambda}{\max}$ 0.		
Из закона Ламберта следует, что	$M=\pi \cdot L$,	$L=\pi\cdot M$,	L·M=π.		
За Треверб. интенсивность звука слабеет в,	10 раз,	60 раз,	миллион раз;		

а уровень интенсивности снижается на	10 дБ, 60 дБ,	миллион дБ.
Индекс приведённого уровня ударного шума должен	Равен -, мены	ие -, больше
быть	нормативного инде	екса.
Тепловой поток (Q), теплопроводность (L) и	$Q = L \cdot \text{grad } T$,	
градиент температуры (grad T) связаны следующей	$Q = L/g_1$	rad T,
формулой:		$\operatorname{grad} T = Q \cdot L.$

прим	ер оланка олиц опроса: Тема — <i>Архитектурная акустика (блиц опрос №2)</i>
1.	4 курс, ФАД, группа Студент Что такое воздушный шум и структурный?
2.	Что характеризуют уровни равной громкости? Приведите пример (2-3 линии).
3.	Что характеризует индекс приведённого уровня ударного шума (L _{nw})?
4.	Что характеризует индекс изоляции воздушного шума (R _w)?
5.	Основные понятия акустики: (Название, размерность, формула):
6.	Определить максимальную и минимальную интенсивности звука в концертном зале, если измеряемый уровень интенсивности меняется от 50 до 100 дБ.

4.2 Фонд оценочных средств для проведения промежуточной аттестации. (промежуточная аттестация – *зачёт в конце 6-го семестра*).

При проведении промежуточной аттестации по разделам дисциплины используется фонд тестовых заданий, вопросы и задачи для контрольных работ и блиц опросов.

Пример тестового задания:

Πημικου δησιμα δημικουμοσα:

(Геометрическая оптика, построение изображений в линзах)

Дана собирающая линза с фокусным расстоянием F. Каким будет изображение предмета, если расстояние от предмета до линзы (а) меняется, как указано в таблице? (Символы, характеризующие изображение: коэффициент увеличения - \mathbf{k} , изображение прямое - \uparrow , или перевёрнутое - \downarrow , изображение действительное - $\mathbf{\mathcal{I}}$, или мнимое - \mathbf{M} .) Заполнить копию таблицы, т.е. поставить + там, где надо.

№ позиции	Расстояние "а"	k=1	k>1	k<1	1	\downarrow	Д	M
1	0 < a < F							
2	F < a < 2F							
3	a > 2F							
4	a = 2F							

	Тема – Архитектурная светология (блиц опрос №1)
	3 курс, ФАД, группа Студент
•	Законы теплового излучения. Формулы, формулировки и графики.
	Закон Ламберта.
	Закон светотехнического подобия.
·· 	Закон еветотелнического подобия.
1.	Что такое коэффициент естественного освещения (КЕО)?
7	Как связаны яркость и светимость ламбертовых источников света?
) .	Основные понятия фотометрии. (Название, размерность, формула):

^{7.} Определить максимальную и минимальную освещённость на своём рабочем столе, считая настольную лампу точечным источником света. Мощность лампы 60 Вт. Световая отдача 20 лм/Вт. Необходимые расстояния оцените самостоятельно. Сделать рисунок, поясняющий решение.

Вопросы для самоподготовки к зачёту (часть 1-я):

- 1. Основные понятия фотометрии: сила света, световой поток, освещённость, яркость, светимость, световая отдача.
- 2. Закон Ламберта.
- 3. Закон светотехнического подобия.
- 4. Системы естественного освещения помещений.
- 5. Количественные и качественные характеристики освещения.
- 6. Основы нормирования и светотехнического расчёта естественного освещения помешений.
- 7. Инсоляция, её положительное и отрицательное воздействие на среду и человека.
- 8. Нормирование и проектирование инсоляции застройки.

4.2.1 Критерии оценки при промежуточной аттестации:

Критериями устного ответа будут выступать следующие качества знаний:

- -полнота количество знаний об изучаемом объекте, входящих в программу;
- -глубина совокупность осознанных знаний об объекте;
- -конкретность умение раскрыть конкретные проявления обобщённых знаний (доказать на примерах основные положения);
- -системность представление знаний об объекте в системе, с выделением структурных её элементов, расположенных в логической последовательности;
- -развёрнутость способность развернуть знания в ряд последовательных шагов;
- -осознанность понимание связей между знаниями, умение выделить существенные и несущественные связи, познание способов и принципов получения знаний.

Критериями письменного ответа и практического отчёта будут выступать следующие качества знаний:

- -полнота количество знаний об изучаемом объекте, входящих в программу;
- -глубина совокупность осознанных знаний об объекте;
- -конкретность умение раскрыть конкретные проявления обобщённых знаний (показать на примерах основные способы качественной оценки и методы расчёта основных параметров комфорта в проектируемых жилых помещениях).

Ответ студента по вопросу дисциплины «Архитектурная физика» оценивается по двухбалльной системе (зачтено/не зачтено):

«Зачтено» ставится, если:

- дан ответ достаточной степени полноты на поставленный вопрос;
- логика и последовательность изложения не имеют нарушений или присутствуют незначительные нарушения;
- изложение теоретического материала и употребление терминов было безошибочным или допущены несущественные неточности или ошибки;
- показаны умения и навыки практического применения способов измерения и методов расчёта основных параметров освещения, акустики и теплотехники.

«**Не зачтено**» ставится, если ответы на поставленные вопросы не были даны, а также если:

- логика и последовательность изложения имеют существенные нарушения;
- допущены существенные ошибки в теоретическом материале. в ответе отсутствуют выводы;
- сформированность умений и навыков не показана.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

- 5.1 Основная литература:
- 1. Архитектурная физика: учебник для вузов / под ред. Н.В. Оболенского. Изд. стер. М.: Архитектура-С, 2007. 441 с.
- 2. Толстенева А. А. Архитектурная физика: учеб. пособие для академического бакалавриата / А. А. Толстенева, Л. И. Кутепова, А. А. Абрамов. М.: Издательство Юрайт, 2018. 175 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-06714-9. https://biblio-online.ru/book/arhitekturnaya-fizika-412301

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

- 5.2 Дополнительная литература:
- 1. Блази В. Справочник проектировщика. Строительная физика [Текст] : пер. с нем / В. Блази; под ред. А.К. Соловьева. 2-е изд., доп. М.: Техносфера, 2005. -536 с.
- 2. Звукоизоляция внутренних ограждающих конструкций гражданских зданий. (*Методические указания к курсовому и дипломному проектированию*). КубГТУ, Краснодар, 2005 г.
- 3. Теплотехнический расчёт ограждающих конструкций зданий. (*Методические указания к курсовой работе*). Ростовский архитектурный институт. Ростов-на Дону, 2004 г.
 - 5.3. Периодические издания:
 - 1. Журнал «Энергосбережение», М.: ООО ИИП «АВОК-ПРЕСС».

6. Интернет-ресурсы:

- 1. DIALux 3.0 (4.9) Программы светотехнических расчётов.
- 2. HERZ CO., HERZ OZC. Программа теплотехнических расчётов.
- 3. Теплотехнический калькулятор. Программа теплотехнических расчётов.

7. Методические указания для обучающихся по усвоению дисциплины (модуля).

Промежуточный и итоговый контроль полученных знаний осуществляется в виде зачета. Подготовка к нему — это обобщение и укрепление знаний, их систематизация, устранение возникших в процессе учебы пробелов в овладении учебной дисциплиной. Готовясь к зачету, студенты уточняют и дополняют многое из того, что на лекциях или при текущей самоподготовке не было в полном объеме усвоено. Кроме того, подготовка к зачету укрепляет навыки самостоятельной работы, вырабатывает умение оперативно отыскивать нужный нормативный материал, необходимую книгу, расширяя кругозор и умение пользоваться библиотекой и ее фондами.

Но подготовка к зачету не должна ограничиваться слушанием лекций и чтением конспектов. Студент, готовящийся по конспекту, вынужден заучивать краткие записи и формулировки, в связи с чем на зачетах он, как правило, дает односложные ответы, не располагая достаточными данными для обоснования и развития ответа. Успех экзаменующегося зависит от повседневной работы в течение всего семестра на лекциях, практических занятиях, консультациях, в библиотеке.

Зачет проводится в соответствии с учебной программой по данному предмету. Программа – обязательный руководящий документ, по которому можно определить объем требований, предъявляемых на зачетах, а также систему изучаемого учебного материала. Студенты вправе пользоваться программой и в процессе самих зачетов. Поэтому в ходе изучения предмета, подготовки к зачету нужно тщательно ознакомиться с программой курса. Это позволит целенаправленно изучить материал, самостоятельно проверить полученные знания. При подготовке к зачету следует побывать на групповых и индивидуальных консультациях, которые, являясь необходимым дополнением лекций, помогают глубже усвоить наиболее сложные положения изучаемого курса, устранить пробелы в знаниях. Рекомендации преподавателя содействуют правильной организации самостоятельной работы, ознакомлению с новой литературой и нормативными источниками.

Зачеты ставят перед студентами задачу самостоятельно распорядиться полученными знаниями, облечь их в надлежащую форму, подготовить логически стройный и научно обоснованный ответ.

Критерии оценки знаний — это требования (признаки), на которые следует ориентироваться при оценке знаний. Критериями могут выступать качественные характеристики знания. К объективным качествам (отражающим содержание обучения и не зависящим от субъекта) относятся полнота, глубина, оперативность, конкретность, обобщённость, систематичность, системность, развёрнутость, свёрнутость; к субъективным (составляющим характеристику личности) — осознанность, гибкость и прочность. Выделенные качества знаний взаимообусловлены, каждое содержит в себе в свёрнутом виде другие качества. Важными качествами знаний выступают полнота, глубина, осознанность. Признаками сформированности умений являются гибкость (способность рационально действовать в различных ситуациях), стойкость (сохранение точности и темпа, несмотря на внешние помехи) и прочность (сохранение умения при его продолжительном неиспользовании; максимальная приближённость в выполнении к реальным условиям и задачам).

В процессе контроля знаний Архитектурной физики необходимо учитывать степень усвоения теоретического материала по устным ответам студентов, а также умения и навыки практического применения способов измерения и методов расчёта основных параметров освещения, акустики и теплотехники по отчётам и защите домашних работ.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Материально-техническое обеспечение дисциплины

Для проведения занятий по дисциплине Архитектурная физика имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

- специализированная лекционная аудитория, оснащённая мультимедийным проектором, экраном, интерактивной доской, а также приборами и оборудованием для постановки учебных демонстрационных экспериментов;
- специализированные компьютерные классы с подключенным к ним периферийным устройством и оборудованием;
- учебно-экскурсионные объекты университета (астрофизическая обсерватория, лаборатория нанотехнологий и спецлаборатории естественных факультетов) оснащены современным оборудованием;
- в лаборатории архитектурной физики (кафедры архитектуры) имеются люксметры и шумомеры, необходимые для выполнения соответствующих контрольно- измерительных работ.