АННОТАЦИЯ дисциплины Б1.О.16.04 «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Объем трудоемкости: 3 зачетные единицы (108 часа, из них – 52 часа аудиторной нагрузки: лекционных 18 ч, практических 34 ч, 55,8 ч самостоятельной работы, 0,2 ч ИКР)

Цель дисциплины: выработать базовые компетенции, необходимые для успешного применения теоретико-вероятностного и математико-статистического инструментария к решению профессиональных задач, а также привить навыки исследования закономерностей, возникающих при массовых испытаниях, методы сбора, систематизации и обработки результатов наблюдений.

Задачи дисциплины:

- освоение студентами основных методов теории вероятностей и математической статистики;
- выработать у студентов понимание закономерностей, которые возникают в процессах, содержащих случайные величины и научить сопоставлять реальным физическим ситуациям их вероятностные математические модели;
- привить навыки использования вероятностно-статистических моделей для изучения реальных ситуаций и предсказания исходов явлений на основе подходящей меры неопределенности;
- овладение методикой построения статистических моделей при решении практических задач и проведения необходимых расчетов в рамках построенных моделей.

Место дисциплины в структуре ООП ВПО

Дисциплина «Теория вероятностей и математическая статистика» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе по очной форме обучения. Вид промежуточной аттестации: зачет.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ооучающихся следующих компетенции:	
Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
математического анализа и моделирования	понаучные и общеинженерные знания, методы в инженерной деятельности, связанной с разработкой, погиями производства и эксплуатации биотехнических
ИОПК-1.1. Применяет знания математики в инженерной практике при моделировании биотехнических систем	Знает постановку основных задач теории вероятностей и математической статистики, основные методы решения задач теории вероятностей и математической статистики. Умеет анализировать содержательную сущность и применять соответствующие методы к решению задач теории вероятностей и математической статистики. Владеет математическими методами теории вероятностей и математической статистики для обработки экспериментальных данных биотехнических систем.

Основные разделы дисциплины:

o enoblible passettibli gilegilittilibit		
No	Наименование раздела (темы)	Содержание раздела (темы)
	теоремы теории вероятностей	Правило суммы и правило умножения. Элементы комбинаторики: перестановки, размещения, сочетания. Виды случайных событий. Пространство элементарных событий. Классическая вероятность и ее свойства. Геометрическая вероятность. Условная вероятность. Независимость событий. Теоремы сложения и умножения вероятностей. Формула полной вероятности и формула Байесса. Примеры вероятностных моделей. Схема Бернулли. Формула Бернулли. Предельные

		теоремы в схеме Бернулли. Локальная и интегральная теоремы Муавра- Лапласа.
2.	Случайные величины	Дискретные случайные величины, законы их распределения (биномиальный, отрицательный биномиальный, гипергеометрическое, Пуассона,) и их характеристики. Непрерывные случайные величины, законы их распределения (равномерное, нормальное, показательное) и их характеристики: Функция распределения и функция плотности распределения случайной величины. Вычисление математических ожиданий и дисперсий дискретных и непрерывных случайных величин. Вычисление моментов более высоких порядков: начальных и центральных. Совместная функция распределения. Ковариация, коэффициент корреляции двумерной случайной величины. Двумерное нормальное распределение. Условные законы распределения. Линейная регрессия.
3.	Закон больших чисел. Предельные теоремы теории вероятностей	Вычисление производящих и характеристических функций. Закон больших чисел. Неравенство Чебышева; теорема Чебышева, Бернулли, Маркова. Центральная предельная теорема.
4.	Основные понятия и задачи математической статистики	Вариационный ряд. Построение сгруппированного статистического ряда. Построение полигонов частот и гистограммы. Генеральная и выборочные числовые характеристики. Моменты эмпирического распределения и связь между ними. Квантили, процентные и критические точки. Моменты распределения Стьюдента, Фишера и хи-квадрат. Методы построения оценок методом моментов, методом максимального правдоподобия, методом наименьших квадратов. Построение доверительных интервалов: точечные доверительные интервалы, асимптотические доверительные интервалы.
5.	Статистическая проверка гипотез	Общая схема проверки статистической гипотезы. Основные понятия и определения. Критерий проверки гипотезы. Критерии согласия Пирсона. Проверка гипотез о числовых значения параметров, о равенстве средних, о равенстве дисперсий двух генеральных совокупностей.
6.	Корреляционный анализ	Выборочная корреляция двух выборок, извлеченных из двух генеральных совокупностей. Проверка гипотезы о значимости выборочного коэффициента корреляции. Частные и коэффициенты корреляции. Анализ множественных связей. Линейная парная регрессия.

Изучение дисциплины заканчивается аттестацией в форме зачета.

Учебная литература:

- 1. Буре, В. М. Теория вероятностей и математическая статистика: учебник / В. М. Буре, Е. М. Парилина. Санкт-Петербург: Лань, 2021. 416 с. ISBN 978-5-8114-1508-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168536
- 2. Дерр, В. Я. Теория вероятностей и математическая статистика: учебное пособие для вузов / В. Я. Дерр. Санкт-Петербург: Лань, 2021. 596 с. ISBN 978-5-8114-6515-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/159475
- 3. Емельянов, Г. В. Задачник по теории вероятностей и математической статистике: учебное пособие для вузов / Г. В. Емельянов, В. П. Скитович. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 332 с. ISBN 978-5-8114-7966-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169813