МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования— первый

проректор

Т.А. Хагуров

noonuci

2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.03.03.01 РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

(код и	наименование дисциплины в соответствии с учебным планом)
Направление подго	товки/специальность
11.03.02 Инс	фокоммуникационные технологии и системы связи
	код и наименование направления подготовки/специальности)
Направленность (п	рофиль) / специализация
	Оптические системы и сети связи
(на	именование направленности (профиля) / специализации)
Форма обучения	очная
	(очная, очно-заочная, заочная)
Квалификация	бакалавр

Рабочая программа дисциплины Б1.В.ДВ.03.03.01 «Радиотехнические цепи и сигналы» с оставлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи»

Программу составил(и):

К.С. Коротков, доктор. физ.-тех. наук, профессор кафедры оптоэлектроники

Рабочая программа дисциплины Б1.В.ДВ.03.03.01 «Радиотехнические цепи и сигналы» утверждена на заседании кафедры оптоэлектроники ФТФ, протокол № 9 от 10 апреля 2023 г.

Заведующий кафедрой оптоэлектроники д-р техн. наук, профессор Н.А. Яковенко

Утверждена на заседании учебно-методической комиссии физикотехнического факультета, протокол № 10 от 20 апреля 2023 г.

Председатель УМК ФТФ

д-р физ.-мат. наук, профессор Н.М. Богатов

подпись

Рецензенты:

Исаев В.А., д-р физ.-мат. наук, профессор кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «КубГУ»

Шевченко А.В., канд. физ.-мат. наук, ведущий специалист ООО «Южная аналитическая компания»

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: Выработка способности моделировать работу оптикоэлектронных приборов на основе физических процессов и явлений, изучение линейной и нелинейной обработки сигналов, дискретной и цифровой их обработки.

Задачи: изучение понятийного аппарата дисциплины, основных теоретических положений и методов, привитие навыков применения теоретических знаний для решения практических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Радиотехнические цепи и сигналы» относится к дисциплинам по выбору части программы, формируемой участниками образовательных отношений.

В результате изучения дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения ряда последующих схемотехнических дисциплин: «Схемотехника телекоммуникационных систем», «Электропитание устройств и систем телекоммуникаций», «Микропроцессорная техника в оптических системах связи», «Цифровая электроника».

Настоящая дисциплина находится на стыке дисциплин, обеспечивающих базовую и специальную подготовку студентов, необходимую для эксплуатации электронных приборов в средствах связи. Изучая эту дисциплину, студенты, кроме теоретических получают и практические навыки экспериментальных измерений параметров и технических характеристик электронных устройств, методов измерений разнообразных параметров электровакуумных и полупроводниковых приборов, их маркировку. Поэтому для её освоения необходимо успешное усвоение сопутствующих дисциплин: «Физика», «Математический анализ», «Дискретная математика», «Теория электрических цепей».

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы достижения компе-	Результаты обучения
	тенций	
ПК-6 Способен мо-	ПК-6.1 Применяет знание физиче-	Знает: Физические процессы и явле-
делировать работу	ских процессов и явлений для со-	ния для создания моделей оптико-
оптико-	здания моделей оптико-	электронных приборов
электронных при-	электронных приборов	Умеет: Применять знание физиче-
боров на основе фи-		ских процессов и явлений для созда-
зических процессов		ния моделей оптико-электронных
и явлений		приборов
		Владеет: Методикой применения
		знаний физических процессов и яв-
		лений для создания моделей оптико-
		электронных приборов

ПК-6.2 Предлагает оптимальные	Знает: оптимальные методы модели-
методы моделирования работы оп-	рования работы оптико-электронных
тико-электронных приборов	приборов
	Умеет: Предложить оптимальные
	методы моделирования работы опти-
	ко-электронных приборов
	Владеет: Методикой выбора опти-
	мальных методов моделирования ра-
	боты оптико-электронных приборов

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

Индекс	Наименование	Семестр 7										
		Контроль		Академических часов			з. е.					
				Всего	Контакт.	Лек	Лаб	Пр	КРП	CP	Контроль	
Б1.В.ДВ.03.01	Радиотехнические цепи и сигналы	Экз		108	50	34	16			22	36	3

ОБОЗНАЧЕНИЯ:

Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

3a - зачет;

Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.

Содержание дисциплины:

No	Наименование видов занятий и тематик, содержание
1	лекционные занятия 17 шт. по 2 часа:
	1.1. Введение
	1.2. Спектральное представление сигналов
	1.3. Частотно-избирательные цепи
	1.4. Схемотехника ЧИЦ
	1.5. Аппроксимация АЧХ ФНЧ
	1.6. Активные фильтры
	1.7. Принцип нелинейного преобразования сигналов
	1.8. Нелинейное преобразование гармонических сигналов
	1.9. Модуляция сигналов
	1.10. Детектирование сигналов 1.11. Приемные устройства модулированных сигналов
	1.11. Приемные устройства модулированных сигналов 1.12. Смесители сигналов
	1.13. Модели дискретных сигналов 1.14. Импульсная модуляция
	1.15. Аналогово-цифровые преобразователи
	1.16. Цифро-аналоговое преобразование сигналов
	1.17. Принципы цифровой фильтрации
	TIP III AIR AIR AIR AIR AIR AIR AIR AIR AIR
2	лабораторные работы 4 шт. по 4 часа:
	2.1. Исследование амплитудно-частотных характеристик аналоговых фильтров
	2.2. Параметрические преобразования сигналов
	2.3. Исследование цифро-аналоговых преобразователей
	2.4. Программируемый активный фильтр
3	Самостоятельная работа студентов:
	3.1. Нелинейное преобразование суммы гармонических сигналов.
	3.2. ЧИЦ при широкополосных входных воздействиях.
	3.3. ЧИЦ при узкополосных входных воздействиях. 3.4. Активные фильтры с многопетлевой отрицательной обратной связью.
	3.5. Активные фильтры с положительной обратной связью и на основе двойного Т-
	образного моста.
	3.6. Модели дискретных сигналов.
	3.7. Спектральная плотность модулированной импульсной последовательности (МИП).
	3.8. Теорема Котельникова. Восстановление непрерывного сигнала по МИП.
	3.9. Синтез линейных ЦФ.
	3.10. Программируемые активные фильтры.
	•

Текущий контроль: опрос по темам лекционных занятий, защита лабораторных работ.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Таблица - Образовательные технологии, используемые при реализации различных видов учебной занятий по дисциплине

№ п/п	Виды учебных занятий	Образовательные технологии
1	Лекции	Классическая (традиционная, информационная) лекция Лекция, составленная на основе результатов научных исследований, в том числе с учётом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей Индивидуальные и групповые консультации по дисциплине
2	Лабораторная работа	Технология выполнения лабораторных заданий в малой группе (в бригаде) Технология обучения в сотрудничестве (командная, групповая работа) Допуск к лабораторной работе
3	Консультации по курсовой работе (курсовому проекту)	Индивидуальные и групповые консультации Информационно-коммуникационные технологии: технология взаимодействия со студентами в синхронном режиме связи — «offline»; технология взаимодействия со студентами в синхронном режиме связи — «online»
4	Самостоятельная работа студентов (внеаудиторная)	Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационно-методическим материалам по дисциплине)
5	Контроль (промежуточная аттестация: зачет или экзамен)	Технология устного опроса Технология письменного контроля, в том числе те- стирование

6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

К промежуточной аттестации студентов по дисциплине могут привлекаться представители работодателей, преподаватели последующих дисциплин, заведующие кафедрами.

Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

Вопросы текущего контроля

- 1. Перечислите основные типы электрических фильтров и дайте их краткую характеристику.
 - 2. Охарактеризуйте основные методы аппроксимации АЧХ аналоговых фильтров.
 - 3. Определите понятие фильтра-прототипа.
- 4. Каким образом осуществляется согласование фильтра с нагрузкой и с источником сигнала?
 - 5. Определите понятие k-звена.
 - 6. Какие эффекты сопровождают фильтрацию АМ-сигналов?
 - 7. Определите понятие т-звена.
- 8. Чем отличается параллельно-производное m-звено от последовательно-производного? Приведите примеры звеньев обоих типов.
 - 9. Чем отличаются частотные характеристики звеньев k- и m-типа?
 - 10. Какие виды многозвенных фильтров применяются при обработке сигналов?
- 11. Объясните работу дифференциального усилителя в режиме параметрического преобразователя
- 12. Какие эффекты сопровождают нелинейное преобразование бигармонического колебания?
 - 13. В чем заключается принцип синхронного детектирования?
 - 14. Почему синхронный детектор мало чувствителен к помехам?
- 15. Объясните принцип действия схемы Костаса. В чем заключаются ее основные достоинства?
 - 16. Определите понятие амплитудной модуляции.
 - 17. Почему при передаче сигналов не используют глубокую модуляцию?
 - 18. Перечислите виды амплитудной модуляции.
 - 19. Чем преобразователь частоты отличается от амплитудного модулятора?
 - 20. Какие каналы приема образуются в преобразователе частоты?
 - 21. Перечислите основные параметры и характеристики ЦАП.
 - 22. Какие двоичные коды используются в ЦАП в качестве входных сигналов?
 - 23. Какие факторы определяют чувствительность преобразования ЦАП?
 - 24. Чем объясняется полученная форма характеристики преобразования?
 - 25. Изобразите обобщенную структурную схему ЦАП.
- 26. Какие виды резистивных матриц используются в ЦАП? Перечислите их основные достоинства и недостатки.
- 27. Какие основные требования предъявляются к токовым ключам ЦАП? Приведите примеры токовых ключей.
 - 28. Чем ограничивается максимальная частота преобразования ЦАП?
 - 29. По какому принципу работают ЦАП1 и ЦАП2?
 - 30. Сравните основные параметры и характеристики исследованных преобразователей.
 - 31. Определите понятие программируемый активный фильтр.
 - 32. По какому принципу работает схема?
 - 33. Проанализируйте принцип работы фильтра на основе переменных состояний.
 - 34. Какую функцию в схеме выполняет ЦАП?
 - 35. Каковы варианты включения ЦАП в схему программируемого активного фильтра?
 - 36. Какие требования предъявляются к операционным усилителям используемым в схеме?
- 37. Перечислите основные параметры ЦАП, влияющие на характеристики программируемого активного фильтра?
 - 38. Объясните полученные частотные характеристики ФНЧ и ПФ.

- 39. Приведите пример теоретического расчета частоты среза ФНЧ.
- 40. Каким образом теоретически определяются добротность и центральная частота полосы пропускания $\Pi\Phi$?

Вопросы к промежуточной аттестации

- 1. Классификация и основные характеристики сигналов. Энергия сигнала.
- 2. Спектральное представление сигналов.
- 3. Вейвлет-анализ сигналов.
- 4. Основные характеристики каналов передачи информации.
- 5. Частотно-избирательные цепи (ЧИЦ). Классификация систем. Характеристики линейной стационарной системы.
 - 6. Модели ЧИЦ.
 - 7. ЧИЦ при широкополосных входных воздействиях.
 - 8. ЧИЦ при узкополосных входных воздействиях.
 - 9. Методы частотной фильтрации.
 - 10. Согласованная и оптимальная фильтрация сигналов.
 - 11. Схемотехника ЧИЦ. Классификация фильтров. Схемотехника звеньев.
 - 12. Согласование фильтров. Звенья m типа.
 - 13. Аппроксимация АЧХ ФНЧ. Фильтры Баттерворта и Чебышева. Многозвенные фильтры.
 - 14. Понятие фильтра-прототипа. Фильтры верхних частот. Полосовые фильтры.
 - 15. Активные фильтры с многопетлевой отрицательной обратной связью.
- 16. Активные фильтры с положительной обратной связью и на основе двойного Тобразного моста.
- 17. Реализация активных фильтров на основе метода переменных состояний. Фазовые фильтры.
 - 18. Гираторы.
 - 19. Пьезоэлектрические фильтры.
 - 20. Принцип нелинейного преобразования сигналов. Аппроксимация ВАХ НЭ.
- 21. Использование приборов для нелинейного преобразования сигналов. Резонансное умножение частоты.
 - 22. Нелинейное преобразование суммы гармонических сигналов.
 - 23. Общие принципы модуляции сигналов. Амплитудная модуляция.
 - 24. Виды амплитудной модуляции. Амплитудные модуляторы.
 - 25. Угловая модуляция. Виды угловой модуляции.
 - 26. Угловые модуляторы.
 - 27. Детектирование АМ-сигналов. Транзисторные детекторы.
 - 28. Детектирование АМ-сигналов. Диодные детекторы.
 - 29. Детектирование сигналов с угловой модуляцией. Фазовое детектирование.
 - 30. Частотное детектирование.
 - 31. Синхронное детектирование сигналов.
- 32. Приемные устройства модулированных сигналов. Основные характеристики приемников.
 - 33. Структурные схемы приемников. Приемники прямого усиления.
 - 34. Гетеродинный приемник.
 - 35. Диодные смесители.
 - 36. Транзисторные смесители.
 - 37. Гетеродинный прием оптических сигналов.
- 38. Модели дискретных сигналов. Спектральная плотность модулированной импульсной последовательности (МИП).

- 39. Теорема Котельникова. Восстановление непрерывного сигнала по МИП.
- 40. Применение импульсной модуляции. Амплитудно-импульсная модуляция.
- 41. Кодово-импульсная модуляция. Фазоимпульсная модуляция.
- 42. Элементы теории разделения сигналов. Принципы уплотнения линий связи.
- 43. Аналогово-цифровое преобразование сигналов. Шумы квантования.
- 44. Цифро-аналоговое преобразование сигналов. Классификация цифро-аналоговых преобразователей (ЦАП).
 - 45. Основные параметры ЦАП. Структурная схема ЦАП.
 - 46. Основные узлы ЦАП.

В филиале используется система с традиционной шкалой оценок — "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", "зачтено", "не зачтено" (далее - пятибалльная система).

Форма промежуточной аттестации по настоящей дисциплине – Экзамен

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 года № И-23):

Оценка	МЭИ 01 14 мая 2012 года № и-23): Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«отлично»/ «зачтено (отлично)»/ «зачтено»	Выставляется обучающемуся, обнаружившему всестороннее, систематическое и глубокое знание материалов изученной дисциплины, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной рабочей программой дисциплины; проявившему творческие способности в понимании, изложении и использовании материалов изученной дисциплины, безупречно ответившему не только на вопросы билета, но и на дополнительные вопросы в рамках рабочей программы дисциплины, правильно выполнившему практическое задание. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущего контроля. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «эталонный».
«хорошо»/ «зачтено (хорошо)»/ «зачтено»	Выставляется обучающемуся, обнаружившему полное знание материала изученной дисциплины, успешно выполняющему предусмотренные задания, усвоившему основную литературу, рекомендованную рабочей программой дисциплины; показавшему систематический характер знаний по дисциплине, ответившему на все вопросы билета, правильно выполнивший практическое задание, но допустивший при этом непринципиальные ошибки. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущего контроля. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «продвинутый».
«удовлетворительно»/ «зачтено (удовлетворительно)»/ «зачтено»	Выставляется обучающемуся, обнаружившему знание материала изученной дисциплины в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющемуся с выполнением заданий, знакомому с основной литературой, рекомендованной рабочей программой дисциплины; допустившему погрешность в ответе на теоретические вопросы и/или при выполнении практических заданий, но обладающему необходимыми знаниями для их устранения под руководством преподавателя, либо неправильно выполнившему практическое задание, но по указанию преподавателя выполнившему другие практические

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
	задания из того же раздела дисциплины
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «поро-
	говый».
«неудовле-	Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-
творитель-	новного материала изученной дисциплины, допустившему принципиальные
но»/ не за-	ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-
чтено	нительные вопросы и неправильно выполнившему практическое задание (непра-
	вильное выполнение только практического задания не является однозначной
	причиной для выставления оценки «неудовлетворительно»). Как правило, оценка
	«неудовлетворительно ставится студентам, которые не могут продолжить обуче-
	ние по образовательной программе без дополнительных занятий по соответству-
	ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом
	результатов текущего контроля.
	Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-
	рованы.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебное и учебно-лабораторное оборудование

Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной.

Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной.

Для проведения занятий лабораторного типа используются специализированные лаборатории: лаборатория 211C

Лаборатория оснащена четырьмя лабораторными стендами.

В основное оборудование лаборатории входят следующая аппаратура, необходимая для проведения лабораторных работ по дисциплине «Радиотехнические цепи и сигналы»:

Лабораторная работа №1. Исследование амплитудно-частотных характеристик аналоговых фильтров

Лабораторная установка включает в себя: два пассивных однозвенных П-образных LC-фильтра нижних частот k-типа; пассивный однозвенный П-образный LC-фильтр нижних частот m-типа; набор нагрузочных резисторов. Выводы элементов подключены к гнездам разъемов, образующих наборное поле на передней панели лабораторного стенда. Сборка схем осуществляется путем соединения гнезд наборного поля проводниками со штыревыми выводами. Сигналы подаются с генератора гармонических сигналов ЛО-30, контроль AЧХ осуществляется по осциллографу C1-72.

Лабораторная работа №2. Параметрические преобразования сигналов

Лабораторная установка включает в себя дифференциальный каскад (ДК) на биполярных транзисторах VT1-VT3 с цепями регулировки тока и балансировки каскада, операционный усилитель, резистивный делитель напряжения типа R-2R для ослабления входного сигнала и набор, состоящий из резисторов, конденсаторов и катушки индуктивности. Входы и выходы элементов подключены к гнездам разъемов, образующих наборное поле на передней панели лабораторного стенда. Сборка схем осуществляется путем соединения гнезд наборного поля проводниками со штыревыми выводами. Сигналы подаются с генератора гармонических сигналов ЛО-30, контроль сигналов осуществляется по осциллографу С1-72. Для измерения тока используется миллиамперметр PB-207.

Лабораторная работа №3. Исследование цифро-аналоговых преобразователей.

Лабораторная установка включает в себя: четырехразрядный реверсивный двоичный счетчик (СТ2), два цифро-аналоговых преобразователя (ЦАП1, ЦАП2), тактовый генератор (ТГ), источник опорного напряжения (ИОН), кодонаборник. Входы и выходы элементов подключены к гнездам разъемов, образующих наборное поле на передней панели лабораторного стенда. Сборка схем осуществляется путем соединения гнезд наборного поля проводниками со штыревыми выводами. Сигналы подаются с генератора гармонических сигналов ЛО-30, контроль сигналов осуществляется по осциллографу С1-72.

Лабораторная работа №4. Программируемый активный фильтр.

Лабораторная установка включает в себя программируемый активный фильтр и кодонаборник. Вход и выходы фильтра подключены к гнездам разъемов, образующих наборное поле на передней панели стенда, что позволяет исследовать работу фильтра в режиме ФНЧ и в режиме ПФ. Сигналы подаются с генератора гармонических сигналов ЛО-30, контроль сигналов осуществляется по осциллографу С1-72.

Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное:

- специализированной мебелью; доской аудиторной; персональным компьютерами с подключением к сети "Интернет". К лабораторным работам следует подготовиться предварительно, ознакомившись с краткой, но специфической теорией, размещенной в соответствующей методичке. Рекомендуется ознакомиться заранее и с методическими рекомендациями по проведению соответствующей лабораторной работы, и в случае необходимости провести предварительные расчёты.

К практическим занятиям необходимо готовится предварительною, до начала занятия. Необходимо ознакомится с краткой теорией в рекомендованном задачнике по соответствующей теме и проработать примеры решений разобранных в задачнике упражнений. Входе подготовки, так же следует вести конспектирование, а возникшие вопросы задать ведущему преподавателю в начале практического занятия или в консультационной форме.

Необходимо изучить список рекомендованной литературы и убедиться в её наличии в личном пользовании или в подразделениях библиотеки в бумажном или электронном виде. Всю основную учебную литературу желательно изучать с составлением конспекта. Чтение литературы, не сопровождаемое конспектированием, мало результативно.

Основная литература

1. Каганов В.И. Радиотехнические цепи и сигналы. Компьютеризированный курс – М.: ФОРУМ: ИНФРА-М, 2015.

Дополнительная литература

- 1. Аверченков О.Е. Схемотехника: аппаратура и программы С. : ДМК пресс, 2012 587 с. : ил
- 2. Гаев Г.П., Герасимов В.Г., Князьков О.М. и др. Электротехника и электроника : в 3-х кн.: учебник для вузов. Кн. 3. Электрические измерения и основы электроники // под ред. В. Г. Герасимова. Изд. 2-е, стер. М. : АРИС, 2010 432 с.
- 3. Солонина и др. Основы цифровой обработки сигналов. Учебное пособие. СПб.: БХВ-Санкт-Петербург, 2005.
 - 4. Щука А.А. Электроника. Учебное пособие. СПб.: БХВ-Санкт-Петербург, 2005
- 5. Волович Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств. М.: Издательский дом «Додэка-XXI», 2005.
- 6. Преобразование сигналов в радиотехнических системах: Методические указания к лабораторным работам по дисциплине «Радиотехнические цепи и системы»»/ Сост.: Г.В. Мартыненко, В.Л.Жбанова. Смоленск: РИО филиала ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2014. 16с..

Электронный ресурс

1. Мирошников, М.М. Теоретические основы оптико-электронных приборов [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Лань, 2010. — 714 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=597

Список авторских методических разработок.

1. Конаков А.Н., Малышкин В.В. Методические указания к лабораторным работам по дисциплине «Радиотехнические цепи и сигналы». –Смоленск, 2021.

	ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ								
Но- мер изме мене не- ния	изме ме- нен- ных	заме ме-	страни но- вых	ц анну нули лиро ро- ванн ых	Всего стра- ниц в доку- менте	Наименование и № документа, вводящего изменения	Подпись, Ф.И.О. внесшего изменения в данный экземпляр	Дата внесения из- менения в данный эк- земпляр	Дата введения из- менения
1	2	3	4	5	6	7	8	9	10