МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования за первый

проректор

. Г. А. хагуров

«26» мая 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.12.03 Дифференциальные уравнения

Направление подготовки: 11.03.02 Инфокоммуникационные технологии и системы связи

Направленность (профиль): Оптические системы и сети связи

Форма обучения: очная

Квалификация: бакалавр

Рабочая программа дисциплины Б1.О.12.03 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи

Программу составил: Гаврилюк М.Н., канд. физ.-мат. наук, доцент B

Рабочая программа дисциплины Б1.О.12.03 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ обсуждена на заседании кафедры ТЕОРИИ ФУНКЦИЙ протокол № 10 «18» апреля 2023 г. Заведующий кафедрой (разработчика) Голуб М.В.

Утверждена на заседании учебно-методической комиссии факультета Математики и компьютерных наук протокол № 8 «27» апреля 2023 г. Председатель УМК факультета Шмалько С.П.

Рецензенты:

Гусаков Валерий Александрович, канд. физ.-мат. наук, директор ООО «Просвещение -ЮГ»

Засядко Ольга Владимировна, канд. физ.-мат. наук, доцент доцент кафедры информационных образовательных технологий

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целями дисциплины «Дифференциальные уравнения» являются: формирование мышления в категориях бесконечно малых и умения моделировать реальные явления методами теории дифференциальных уравнений.

1.2 Задачи дисциплины

- Формирование основных понятий теории обыкновенных дифференциальных уравнений.
- Формирование знаний о свойствах решений дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных и приводящихся к ним, уравнений в полных дифференциалах; овладение точными методами интегрирования.
- Формирование знаний о линейном дифференциальном уравнении первого порядка. Овладение методами решения Лагранжа и Бернулли.
- Формирование знаний в вопросах существования и единственности решения задачи Коши для дифференциальных уравнений и систем.
- Овладение приближенными и численными методами интегрирования дифференциальных уравнений.
- Формирование знаний о линейном дифференциальном уравнении первого порядка. Овладение методами решения Лагранжа и Бернулли.
- Формирование умений и навыков решения дифференциальных уравнений высших порядков путем понижения порядка уравнения.
- Формирование знаний о структуре общего решения дифференциальных уравнений высших порядков. Овладение методом Лагранжа.
- Формирование умений и навыков построения общего решения линейного однородного дифференциального уравнения *n*-го порядка с постоянными коэффициентами в зависимости от значений характеристических чисел.
- Формирование умений и навыков в поиске частного решения линейных неоднородных дифференциальных уравнений высших порядков по правой части специального вида. Овладение методом неопределенных коэффициентов
- Формирование знаний о свойствах решений однородной линейной системы дифференциальных уравнений с постоянными коэффициентами. Овладение методом Эйлера.
- Формирование знаний о структуре решения неоднородной линейной системы дифференциальных уравнений с постоянными коэффициентами. Овладение методами нахождения частного решения.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Дифференциальные уравнения» относится к базовой части Блока 1 "Дисциплины (модули)" учебного плана.

Для успешного изучения дисциплины достаточно знаний и умений по математическому анализу в объёме знаний первого курса. Изучение данной учебной дисциплины научит студентов привлекать для решения естественнонаучных проблем соответствующий физико-математический аппарат и пригодится для успешного прохождения ГИА.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающих ся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
	аконы и методы естественных наук и математики для
решения задач инженерной деятельности	
ОПК-1.1 Знает фундаментальные законы природы и основные физические математические законы и методы накопления, передачи и обработки информации	Знает основные понятия и теоремы курса дифференциальных уравнений и способы их применения в других областях знаний.
ОПК-1.2 Способен применять физические законы и математически методы для решения задач теоретического и прикладного характера	Умеет решать задачи по дифференциальным уравнениям, а также применять полученные знания при решении задач других дисциплин, а также использовать приобретенные знания в последующих научных исследованиях.
ОПК-1.3 Владеет навыками использования знаний физики и математики при решении практических задач	Владеет навыками практического использования методов решения дифференциальных уравнений при решении различных задач, а также навыками корректной и адекватной постановки задач, используя методы дифференциальных уравнений.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетных единиц (108 часов), их распределение по видам работ представлено в таблице

Вид учебн	ой работы	Всего	Семестры
		часов	(часы)
			2
Контактная работа, в том чис	еле:	49,2	49,2
Аудиторные занятия (всего):		44	44
Занятия лекционного типа		16	16
Лабораторные занятия		-	-
Занятия семинарского типа (сем	инары, практические занятия)	28	28
Иная контактная работа:		5,2	5,2
Контроль самостоятельной рабо	оты (КСР)	5	5
Промежуточная аттестация (ИК	TP)	0,2	0,2
Самостоятельная работа, в то	м числе:	58,8	58,8
Контрольная работа		19	19
Самостоятельное изучение раз	делов, самоподготовка		
(проработка и повторение лекц	ионного материала и		
материала учебников и учебных	: пособий, подготовка к	39,8	39,8
лабораторным и практическим	занятиям, коллоквиумам и		
т. д.)			
Подготовка к текущему контрол	3	3	
Контроль:	-	_	
Подготовка к экзамену		_	_
Общая трудоемкость	час.	108	108
	в том числе контактная	49,2	49,2
	работа		ŕ
	зач. ед	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые во 2 семестре (очная форма)

	Наименование разделов (тем)		Количество часов			
№		Всего	Аудиторная работа		Внеаудит орная работа	
			Л	П3	ЛР	CPC
1.	Основные понятия. Задача Коши		2	5		8
2.	Дифференциальные уравнения первого порядка		4	6		13
3.	Дифференциальные уравнения высших порядков		4	6		16
4.	Системы линейных дифференциальных уравнений		4	6		14
5.	Применение степенных рядов к интегрированию дифференциальных уравнений		2	5		7,8
	ИТОГО по разделам дисциплины	102,8	16	28		58,8
	Контроль самостоятельной работы (КСР)	5				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	_				
	Общая трудоемкость по дисциплине	108				

Примечание: Л - лекции, ПЗ - практические занятия / семинары, ЛР - лабораторные занятия, СРС - самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
2.	Основные понятия. Задача Коши Дифференциальные	Понятие обыкновенного дифференциального уравнения. Общее и частные решения. График решения. Задачи, приводящие к дифференциальным уравнениям Дифференциальные уравнения первого порядка. Задача	Ответы на вопросы. Блиц- опрос. Ответы на
	уравнения первого порядка	Коши. Геометрическая интерпретация дифференциального уравнения. Поле направлений. Метод изоклин. Уравнения первого порядка с разделяющимися переменными. Однородные дифференциальные уравнения и приводящимися к ним. Линейные дифференциальные уравнения первого порядка. Метод Бернулли и Лагранжа. Уравнение Бернулли. Уравнение в полных дифференциалах. Интегрирующий множитель. Понятие метрического пространства. Принцип сжатых отображений. Теорема существования и единственности решения задачи Коши для дифференциального уравнения первого порядка, разрешенного относительно производной. Особые решения дифференциальных уравнений. Огибающая семейства кривых.	вопросы. Блиц- опрос.
3.	Дифференциальные уравнения высших порядков	Дифференциальные уравнения высших порядков, допускающие понижения порядка. а) Уравнения вида $y^{(n)} = f(x)$. б) Уравнения вида $F(x, y^{(k)}, y^{(k+1)},, y^{(n)}) = 0.$	Ответы на вопросы. Блиц- опрос.

		в) Уравнения, не содержащие независимого переменного:	
		$F(y, y\breve{y},, y^{(n)}) = 0.$	
		Линейные однородные дифференциальные уравнения	
		высшего порядка.	
		Линейно зависимые и независимые функции.	
		Определитель Вронского. Фундаментальная система	
		решений. Общее решение линейного однородного	
		дифференциального уравнения.	
		Линейные неоднородные дифференциальные уравнения	
		высшего порядка. Структура общего решения. Метод	
		Лагранжа вариации произвольной постоянной	
		Линейные дифференциальные уравнения <i>n</i> -го порядка с	
		постоянными коэффициентами.	
		Основные понятия.	
		Построение общего решения однородного	
		дифференциального уравнения.	
		Поиск частного решения неоднородного уравнения и правой	
		частью специального вида.	
		Линейные однородные дифференциальные уравнения <i>n</i> -го	
		порядка с постоянными коэффициентами.	
		Построение общего решения уравнения.	
		Линейные неоднородные дифференциальные уравнения n -го	
		порядка с постоянными коэффициентами и правой частью	
		специального вида. Методы нахождения частного решения.	
4.	Системы линейных	Системы дифференциальных уравнений, основные	Ответы на
	дифференциальных	понятия. Фазовое пространство. Задача Коши для	вопросы. Блиц-
	уравнений	нормальной системы дифференциальных уравнений.	опрос.
		Теорема существования и единственности решения задачи	
		Коши.	
		Метод исключения для нормальных систем	
		дифференциальных уравнений (сведение системы уравнений к одному уравнению).	
		Метод Лагранжа вариации произвольных постоянных при	
		нахождении общего решения линейной неоднородной	
		системы уравнений.	
		Линейная однородная система дифференциальных	
1		уравнений с постоянными коэффициентами. Нахождение	
1		решения системы по методу Эйлера.	
1		Линейные неоднородные системы дифференциальных	
		уравнений с постоянными коэффициентами. Поиск	
1		частного решения в случае правых частей специального	
		вида.	
1		Элементы теории устойчивости	
5.	Применение	Применение степенных рядов Тейлора к интегрированию	Ответы на
			1
1	•	дифференциальных уравнений. Сведение дифференциального	вопросы. Блин-
	степенных рядов к интегрированию	дифференциальных уравнений. Сведение дифференциального уравнения к системе алгебраических уравнений	вопросы. Блиц- опрос.
	степенных рядов к		вопросы. Блиц- опрос.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

JIAU	ораторные расот	ы)	
No	Наименование	Тематика практических занятий	Форма текущего
745	раздела	(семинаров)	контроля
1	2	3	4
1.	Основные понятия.	Понятие обыкновенного дифференциального уравнения.	Ответы на вопросы
	Задача Коши	Общее и частные решения. График решения. Задачи,	и решение задач
		приводящие к дифференциальным уравнениям	
2.	Дифференциальные	Дифференциальные уравнения первого порядка. Задача	Ответы на вопросы

уравнения первого порядка	Коши. Геометрическая интерпретация дифференциального уравнения. Поле направлений. Метод изоклин. Уравнения первого порядка с разделяющимися переменными. Однородные дифференциальные уравнения и приводящимися к ним. Линейные дифференциальные уравнения первого порядка. Метод Бернулли и Лагранжа. Уравнение Бернулли. Уравнение в полных дифференциалах. Интегрирующий множитель. Понятие метрического пространства. Принцип сжатых отображений. Теорема существования и единственности решения задачи Коши для дифференциального уравнения первого порядка, разрешенного относительно производной. Особые решения дифференциальных уравнений. Огибающая семейства кривых	и решение задач Контрольная работа.
Дифференциальные уравнения высших порядков	Дифференциальные уравнения высших порядков, допускающие понижения порядка. а) Уравнения вида $y^{(n)} = f(x)$. б) Уравнения вида $F(x, y^{(k)}, y^{(k+1)},, y^{(n)}) = 0$. в) Уравнения, не содержащие независимого переменного: $F(y, y\ddot{y},, y^{(n)}) = 0$. Линейные однородные дифференциальные уравнения высшего порядка. Линейно зависимые и независимые функции. Определитель Вронского. Фундаментальная система решений. Общее решение линейного однородного дифференциального уравнения. Линейные неоднородные дифференциальные уравнения высшего порядка. Структура общего решения. Метод Лагранжа вариации произвольной постоянной.	Ответы на вопросы и решение задач. Контрольная работа.
уравнения второго порядка с постоянными коэффициентами.	. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Построение общего решения в случае: а) различных характеристических чисел; б) кратных характеристических чисел; в) в случае комплексно-сопряженных корней характеристического уравнения. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида: а) $f(x) = e^{\alpha x}$. б) $f(x) = e^{\alpha x} P_m(x)$. г) $f(x) = e^{\alpha x} (a \cos \beta x + b \sin \beta x)$. Поиск частного решения методом неопределенных коэффициентов.	Ответы на вопросы и решение задач
Линейные дифференциальные уравнения п-го порядка с постоянными коэффициентами.	Линейные дифференциальные уравнения <i>n</i> -го порядка с постоянными коэффициентами. Основные понятия. Построение общего решения однородного дифференциального уравнения. Поиск частного решения неоднородного уравнения и правой частью специального вида.	Ответы на вопросы и решение задач

	I	
		Линейные однородные дифференциальные уравнения <i>n</i> -го
		порядка с постоянными коэффициентами.
		Построение общего решения уравнения.
		Линейные неоднородные дифференциальные уравнения <i>n</i> -го
		порядка с постоянными коэффициентами и правой частью
		специального вида. Методы нахождения частного решения.
6.	Системы линейных	Системы дифференциальных уравнений, основные
	дифференциальных	понятия. Фазовое пространство. Задача Коши для
	уравнений	нормальной системы дифференциальных уравнений.
		Теорема существования и единственности решения задачи
		Коши.
		Метод исключения для нормальных систем
		дифференциальных уравнений (сведение системы
		уравнений к одному уравнению).
		Метод Лагранжа вариации произвольных постоянных при
		нахождении общего решения линейной неоднородной
		системы уравнений.
		Линейная однородная система дифференциальных
		уравнений с постоянными коэффициентами. Нахождение
		решения системы по методу Эйлера.
		Линейные неоднородные системы дифференциальных
		уравнений с постоянными коэффициентами. Поиск
		частного решения в случае правых частей специального
		вида.
		Элементы теории устойчивости.
		Stementa respin jeron inbestin

2.3.3 Лабораторные занятия.

Лабораторные занятия - не предусмотрены.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного материала	Степанов В.В. Курс дифференциальных уравнений- М.,ЛКИ, 2016, 512 с. https://e.lanbook.com/book/154#authors
2	Выполнение индивидуальных заданий	Данко П.Е., Попов А.Г., Кожевников Т.Я. Высшая математика в упражнениях и задачах. Ч.2 Учеб. Пособие для втузов. – М.: Высш. шк., 2005. – 304 с. https://e.lanbook.com/book/154#authors
3	Подготовка к текущему контролю	Письменский Д. Т.Конспект лекций по высшей математике. 2 часть. – 2-е изд., испр., – М.: Айрис-пресс, 2003. – 256 с.: https://e.lanbook.com/book/154#authors

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

В процессе обучения студентов используются текущие опросы, контрольные работы, проводятся коллоквиум, лекции, практические занятия, контрольные работы и экзамен. В течение семестра к каждому лабораторному занятию студенты решают задачи, указанные преподавателем. В семестре проводится пять контрольных работ (на лабораторных занятиях). Зачёт сдаётся после сдачи всех контрольных работ.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Аналитическая геометрия и линейная алгебра».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме *текущего ваданий, разноуровневых заданий, отчетов по индивидуальным и проектно-групповым заданиям и промежуточной аттестации в форме вопросов и заданий к зачету.*

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Контрольная работа №1

1. Найти общее решение дифференциального уравнения

$$y'=e^{x-y};$$

2. Найти решение дифференциального уравнения

$$xy' + 2y = 2x^4$$
, $y(1) = 0$.

3. Решить дифференциальное уравнение с однородной правой частью

$$y' = \frac{y^2 - x^2}{2xy};$$

4. Решить дифференциальное уравнение

$$(2e^y - x)y' = 1; y(0) = 0.$$

5. Решить уравнение Бернулли

$$y' + 2xy = 2x^3y^3$$
.

Контрольная работа №2

1. Найти решение дифференциального уравнения, удовлетворяющее указанным условиям.

$$y''+81y=0$$
, $y(0)=2$, $y'(0)=4$.

2. Найти общее решение дифференциального уравнения

$$y''-8y'+17y=0.$$

3. Найти общее решение дифференциального уравнения

$$y'' + 7y' - 8y = 10e^{3x}$$
.

4. Решить систему уравнений

$$\begin{cases} \frac{dy_1}{dx} = y_1 - y_2 + y_3 \\ \frac{dy_2}{dx} = y_1 + y_2 - y_3, \\ \frac{dy_3}{dx} = -y_2 + 2y_3. \end{cases}$$

5. Решить систему уравнений

$$\begin{cases} \frac{dy_1}{dx} = y_1 - y_2 + x \\ \frac{dy_2}{dx} = y_1 + y_2 - 2x \end{cases}$$

Комплект заданий для работы на практических занятиях

1. Найти общее решение дифференциальных уравнений:

a) $(x^2 - y^2)y' = 2xy$;	B) $2xyy' = (y')^2 - 1;$
$6) xy' - y = x^2;$	$\Gamma) xy' + y = 3.$

- 2. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям $y'' + 4y' + 4y = e^{2x}$, y(0) = 1, y'(0) = -1.
- 3. Найти общее решение системы дифференциальных уравнений $\begin{cases} \frac{dx}{dt} = 3x + y \\ \frac{dy}{dt} = 8x + y \end{cases}$
- 4. Записать уравнение кривой, проходящей через точку A(5;2), если известно, что угловой коэффициент касательной в любой ее точке в 3 раз больше углового коэффициента прямой, соединяющей точку A с началом координат.

- 5. Найти общее решение дифференциального уравнения $y'' = \sin x$
- 6. Найти общее решение дифференциального уравнения методом вариации произвольных постоянных $y'' y = \frac{e^x}{e^x 1}$.

Критерии оценивания результатов обучения

Оценка	Критерии оценивания по экзамену
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.
Средний	оценку «хорошо» заслуживает студент, практически полностью
уровень «4»	освоивший знания, умения, компетенции и теоретический
(хорошо)	материал, учебные задания не оценены максимальным числом
	баллов, в основном сформировал практические навыки.
Пороговый	оценку «удовлетворительно» заслуживает студент, частично с
уровень «3»	пробелами освоивший знания, умения, компетенции и
(удовлетворите	теоретический материал, многие учебные задания либо не
льно)	выполнил, либо они оценены числом баллов близким к
	минимальному, некоторые практические навыки не сформированы.
Минимальный	оценку «неудовлетворительно» заслуживает студент, не
уровень «2»	освоивший знания, умения, компетенции и теоретический
(неудовлетвори	материал, учебные задания не выполнил, практические навыки не
тельно)	сформированы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Степанов В.В. Курс дифференциальных уравнений- М., ЛКИ, 2016, 512 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154#authors
- 2. Данко П.Е., Попов А.Г., Кожевников Т.Я. Высшая математика в упражнениях и задачах. Ч.2 Учеб. Пособие для втузов. М.: Высш. шк., 2005. 304 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154#authors
- 3. Письменский Д. Т.Конспект лекций по высшей математике. 2 часть. 2-е изд., испр., М.: Айрис-пресс, 2003. 256 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154#authors

5.2. Периодическая литература

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. "Лекториум ТВ" http://www.lektorium.tv/
- 7. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. КиберЛенинка (http://cyberleninka.ru/);
- 2. Курсы ведущих вузов России" http://www.openedu.ru/;
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
 - 4. Онлайн-курсы и сертификаты от ведущих вузов мира https://ru.coursera.org/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;

- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

– Общие рекомендации по самостоятельной работе обучающихся.

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение о самостоятельной работе студентов (утверждено приказом № 272 Kуб Γ У от 03 марта 2016 г.).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows
проведения занятий лекционного	Технические средства обучения:	Microsoft Office Professional Plus
типа	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	
проведения занятий		
семинарского типа, групповых и		
индивидуальных консультаций,		
текущего контроля и		
промежуточной аттестации		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (ауд)	Комплект специализированной	
	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	

Вариант 2.

1. Найти общее решение дифференциальных уравнений:

a) $xy' = y \ln(y/x);$	B) $x^3y' + x^2y = 1$;
$6) ydx - 2xdy = 2y^4dy;$	$\Gamma) xy' - y = \sqrt{x^2 + y^2} .$

- 2. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям $y'' + 4y' 12y = 8\sin 2x$; y(0) = -1, y'(0) = 1.
- 3. Найти общее решение системы дифференциальных уравнений $\begin{cases} \frac{dx}{dt} = 4x + 6y \\ \frac{dy}{dt} = 4x + 2y \end{cases}$
- 4. Найти уравнение кривой, проходящей через точку A(10, 10) и, обладающей тем свойством, что отрезок, отсекаемый на оси абсцисс касательной, проведенной в любой точке кривой, равен кубу абсциссы точки касания.
- 5. Найти общее решение дифференциального уравнения $y'' = \frac{1}{x}$
- 6. Найти общее решение дифференциального уравнения методом вариации произвольных постоянных $y'' 6y' + 9y = \frac{e^{3x}}{x}$.

4.2 Фонд оценочных средств для проведения промежуточной аттестации. Вопросы для подготовки к экзамену

- 1. Физические и геометрические задачи, приводящие к дифференциальному уравнению.
- 2. Понятие обыкновенного дифференциального уравнения. Общее и частные решения. График решения.
- 3. Дифференциальные уравнения первого порядка. Задача Коши.
- 4. Геометрическая интерпретация дифференциального уравнения.. Поле направлений. Метод изоклин.
- 5. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- 6. Однородные дифференциальные уравнения.
- 7. Уравнения, приводящиеся к однородным уравнениям.
- 8. Линейные дифференциальные уравнения первого порядка Уравнение Бернулли.
- 9. Метод Бернулли и Лагранжа решения линейного дифференциального уравнения первого порядка.
- 10. Уравнение в полных дифференциалах. Интегрирующий множитель.
- 11. Теорема существования и единственности решения задачи Коши для дифференциального уравнения первого порядка, разрешенного относительно производной.
- 12. Понятие метрического пространства. Принцип сжатых отображений.
- 13. Доказательство теоремы существования и единственности решения дифференциального уравнения первого порядка.

- 14. Методы приближенного решения дифференциального уравнения первого порядка.
- 15. Уравнения, не разрешенные относительно производной.
- 16. Особые решения дифференциальных уравнений. Огибающая семейства кривых.
- 17. Дифференциальные уравнения высших порядков, основные понятия. Теорема существования и единственности
- 18. Дифференциальные уравнения высших порядков, допускающие понижения порядка:
 - а) уравнения вида $y^{(n)} = f(x)$;
 - б) уравнения вида $F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$, не содержащие искомой функции;
 - в) уравнения вида $F(y, y \c y, ..., y^{(n)}) = 0$, не содержащие независимого переменного.
- 19. Линейные однородные дифференциальные уравнения высшего порядка. Линейно зависимые и независимые функции. Определитель Вронского. Фундаментальная система решений. Общее решение линейного однородного дифференциального уравнения.
- 20. Линейные неоднородные дифференциальные уравнения высшего порядка. Структура общего решения. Метод Лагранжа вариации произвольной постоянной.
- 21. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Построение общего решения в случае:
 - а) различных характеристических чисел;
 - б) кратных характеристических чисел;
 - в) в случае комплексно-сопряженных корней характеристического уравнения.
- 22. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида:
 - a) $f(x) = e^{\alpha x}$.
 - 6) $f(x) = e^{\alpha x} P_m(x)$.
 - B) $f(x) = e^{\alpha x} (a \cos \beta x + b \sin \beta x)$.

Поиск частного решения методом неопределенных коэффициентов.

- 23. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Построение общего решения уравнения.
- 24. Линейные неоднородные дифференциальные уравнения *n*-го порядка с постоянными коэффициентами и правой частью специального вида. Методы нахождения частного решения.
- 25. Системы дифференциальных уравнений, основные понятия. Фазовое пространство.
- 26. Задача Коши для нормальной системы дифференциальных уравнений. Теорема существования и единственности решения задачи Коши.
- 27. Метод Лагранжа вариации произвольных постоянных при нахождении общего решения линейной неоднородной системы уравнений.
- 28. Линейная однородная система дифференциальных уравнений с постоянными коэффициентами. Нахождение решения системы методом исключения (сведение системы уравнений к одному уравнению).
- 29. Линейные неоднородные системы дифференциальных уравнений с постоянными коэффициентами. Поиск частного решения в случае правых частей специального вида.
- 30. Интегрирование дифференциальных уравнений при помощи степенных рядов

Ответ грамотный, логично изложенный, неточности отсутствуют. Проявлена достаточная научная и образовательнокультурная эрудиция. Задача решена без ошибок.	5
Ответ грамотный, логично изложенный. Допущены некоторые неточности. Задача решена верно.	4
В ответе значительные пробелы в фундаментальных знаниях, допускаются существенные ошибки. Задача решена не полностью.	3
В ответе значительные пробелы в фундаментальных знаниях, допускаются существенные ошибки. Задача не решена.	2

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

6.1 Основная литература:

- 1. Филиппов А.Ф. Введение в теорию дифференциальных уравнений-М.:Ленанд, 2015, 240 с.
- 2. Степанов В.В. Курс дифференциальных уравнений- М.,ЛКИ, 2016, 512 с.
- 3. Эльсгольц Л.Э. Дифференциальные уравнения- М., Букинист, 2009, 320 с.
- 4. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. Учебное пособие.- М., Ленанд, 2015, 170 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечной системе «Лань».

6.2 Дополнительная литература:

- 1.. Степанов В.В. Курс дифференциальных уравнений. М.:КомКнига, 2006. 472 с.
- 2. Письменский Д. Т.Конспект лекций по высшей математике. 2 часть. 2-е изд., испр., М.: Айрис-пресс, 2003. 256 с.: ил.
- 3. Бугров Я.С., Никольский С.М. Дифференциальные уравнения и др. М.: Наука, 1985.
- 4. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. М.: Наука, 1985.-128 с.
- 5. Данко П.Е., Попов А.Г., Кожевников Т.Я. Высшая математика в упражнениях и задачах. Ч.2 Учеб. Пособие для втузов. М.: Высш. шк., 2005. 304 с.

1

5.3. Периодические издания:

Не используются при изучении данного курса.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. ЭБС "Университетская библиотека ONLINE" http://biblioclub.ru/
- 2. Электронная библиотечная система издательства "Лань" http://e.lanbook.com/
- 3. Электронная библиотечная система "Юрайт" http://www.biblio-online.ru/
- 4. Scopus база данных рефератов и цитирования http://www.scopus.com/
- 5. Web of Science (WoS) –

http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=V2yRRW6FP9RssAaul78&preferencesSaved

- 6. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 7. Архив научных журналов http://archive.neicon.ru/
- 8. Электронная Библиотека Диссертаций https://dvs.rsl.ru/
- 9. Национальная электронная библиотека http://нэб.рф/
- 10. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Самостоятельная работа студента является необходимой и крайне важной при изучении любого теоретического или практического учебного курса и должна быть правильно организована. Прежде всего, необходимо, чтобы эта работа была систематической и регулярной. В помощь студенту учебным планом рекомендован график самостоятельной работы. При желании студент может воспользоваться этим графиком. Самостоятельная работ делится между теоретической частью курса и практической, но это деление не носит формального характера, поскольку решение

практических задач предусматривает знание основных теоретических понятий и методов, а теоретические знания в свою очередь не могут усваиваться без практической работы с теоретическими конструкциями.

При подготовке к практическому занятию студенту целесообразно познакомиться сначала с теоретическими понятиями, относящимися к данному разделу, чтобы уяснить для себя смысловую часть работы. Для этого рекомендуется прочитать лекции или учебники, в которых освещаются соответствующие вопросы. Естественно, студенту необязательно использовать лишь литературу, указанную в библиографии, но на начальных стадиях изучения материала это делать желательно. Со временем расширение использования литературных источников можно лишь приветствовать. Перед решением задач студенту целесообразно познакомится сначала с содержание предыдущего занятия, уяснить для себя методы решения задач рассматриваемого типа. При этом у студента естественно возникают затруднения и вопросы, которые он может задать преподавателю на следующем практическом занятии. Любое практическое занятие начинается с разборов вопросов и затруднений по домашнему заданию. Форма практических занятий, особенно занятий лабораторных, предусматривает диалог между студентами и преподавателем. Практика показывает, что студенты охотно прибегают к прямому диалогу с преподавателем и умеют извлечь для себя пользу из соответствующего диалога. Каждая тема заканчивается итоговой контрольной работой с выставлением оценки. Студент должен получить по каждой контрольной работе хотя удовлетворительную оценку, иначе он получает дополнительное задание с обязательным условием отработки неудовлетворительной оценки по соответствующей контрольной работе. Эти отработки принимаются преподавателем, ведущим практические занятия в течение всего семестра. По результатам контрольных работ и их отработкам студенту выставляется итоговая оценка по практике, определённым образом влияющая на его зачётную оценку.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

График самостоятельной работы

№	Виды /формы СР	Форма отчёта	Сроки отчётности
1	Выполнение текущих домашних заданий	Предъявление выполненных домашних заданий по требованию	В течение семестра
2	Выполнение контрольных работ	Сдача контрольных работ	В соответствии с учебным графиком
3	Отработка неудовлетворительных оценок по контрольным работам	Сдача зачёта	Конец декабря

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- Сбор, хранение, систематизация и выдача учебной и научной информации;
- Обработка текстовой, графической и эмпирической информации;
- Подготовка, конструирование и презентация итогов исследовательской и аналитической деятельности;

- Использование электронных презентаций при проведении практических занятий;
- Работа с информационными справочными системами;
- Использование электронной почты преподавателей и обучающихся для рассылки, переписки и обсуждения возникших учебных проблем.

8.2 Перечень необходимого программного обеспечения.

– Офисный пакет приложений Microsoft Office.

8.3 Перечень информационных справочных систем:

– Электронные ресурсы библиотеки КубГУ – https://kubsu.ru/node/1145

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

$N_{\underline{0}}$	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
	Лекционные	Лекционная аудитория, оснащенная презентационной техникой
	занятия	(проектор, экран, компьютер/ноутбук) и соответствующим
		программным обеспечением (ПО).
	Семинарские	Специальное помещение, оснащенное презентационной техникой
	занятия	(проектор, экран, компьютер/ноутбук) и соответствующим
		программным обеспечением (ПО).
	Групповые	Аудитория оснащенная компьютерной техникой с возможностью
	(индивидуаль	подключения к сети «Интернет», программой экранного увеличения и
	ные)	обеспеченная доступом в электронную информационно-
	консультации	образовательную среду университета.
	Текущий	Аудитория оснащенная компьютерной техникой с возможностью
	контроль,	подключения к сети «Интернет», программой экранного увеличения и
	промежуточн	обеспеченная доступом в электронную информационно-
	ая аттестация	образовательную среду университета.
	Самостоятель	Кабинет для самостоятельной работы, оснащенный компьютерной
	ная работа	техникой с возможностью подключения к сети «Интернет»,
	_	программой экранного увеличения и обеспеченный доступом в
		электронную информационно-образовательную среду университета.