АННОТАШИЯ

рабочей программы учебной дисциплины Б1.В.ДВ.02.01 «Методы выращивания кристаллов»

Объем трудоемкости: 3 зачетные единицы (108 часа, из них -52,2 часов контактной работы: лабораторные 34 часов, 14 часа - KCP, 02 часа - ИКР; 41,8 часов самостоятельной работы).

Цель дисциплины.

Учебная дисциплина «Методы выращивания кристаллов» ставит своей целью сформировать у бакалавров представление об основных понятиях, явлениях, законах и методах специального раздела курса физики, а также привить навыки практических расчетов и экспериментальных исследований. Раздел «Методы выращивания кристаллов» занимает важное место в системе физического образования. Во-первых, он дает представление о физических методах исследования оптических материалов. Во-вторых, этот курс создает необходимую основу для продвижения в область квантовых явлений и в другие специальные разделы физики.

Задачи дисциплины.

- синтез и исследование свойств лазерных сред и реализация некоторых из них на практике;
- -овладение фундаментальными принципами и методами решения научнотехнических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми физику приходится сталкиваться при изучении новых явлений;
 - приобретение навыков экспериментальных исследований;
 - формирование у студентов основ естественнонаучной картины мира.

Место дисциплины в структуре ООП ВО.

«Методы выращивания кристаллов» является обязательной дисциплиной направления 03.03.02 — "физика". В цикле общефизических дисциплин необходимыми предпосылками являются знание основ кристаллографии, кристаллохимии, кристаллофизики, квантовой электроники и физики конденсированного состояния.

В свою очередь, разделы дисциплины «Методы выращивания кристаллов» составляют необходимую основу для успешного изучения электродинамики, физики конденсированного состояния вещества и сплошных сред, а также квантовой механики. В цикле общефизических дисциплин необходимыми предпосылками являются знание основ классической механики, молекулярной физики и специальной теории относительности.

Требования к уровню освоения дисциплины.

Процесс изучения дисциплины направлен на формирование следующих компетенций: ПК-1, ПК-2, ОПК-3.

No	Индекс	Содержание компе-	В результате изучения учебной дисциплины о			
п.п.	компе-	тенции (или её ча-	чающиеся должны			
	тенции	сти)	знать	уметь	владеть	

№	Индекс компе-	Содержание компетенции (или её ча-	В результате изучения учебной дисциплины обучающиеся должны				
П.П.	тенции	сти)	знать	уметь	владеть		
1.	ПК-1	Способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин	современную аппаратуру для синтеза и исследования кристаллов	пользоваться современной техникой для физических исследований	современными методами ис- следований конденсиро- ванного состо- яния		
2.	ПК-2	Способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы.	Принципы работы современных измерительных приборов	применять современные приборы для физических исследований.	методикой применения современных приборов для целей роста кристаллов.		
3.	ОПК-3	Способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	практиче- ское использо- вание совре- менной изме- рительной техники.	работать с измерительными, выполняя требования техники безопасности.	методами определения параметров лазерных ма- териалов.		

Основные разделы дисциплины:

№ раз-	Наименование разделов	Количество часов				
дела	ла		Все- Аудиторная раго бота			Самостоятельная ра- бота студентов (СРС)
			Л	ЛР	КСР	
1	2	3	4	5	6	7
1.	Введение в учение о фазовых равновесиях и рост кристаллов. Фазовые равновесия. Основные типы диаграмм состояния двухкомпонентных систем. Основные методы роста кристаллов и синтеза стекол.	20	3		6	6
2.	Фазовые равновесия в двух- компонентных системах стояния систем без превраще- ний в твердой фазе. Диаграммы состояния систем с кристаллизацией	20	3		6	12

	образующихся соединений. Диаграммы состояния систем с твердыми растворами				
3.	Рост кристаллов и синтез стекол и ситаллов Технологические методы получения кристаллов. Технологические методы получения стекол и ситаллов	20	3	8	6
4.	Рентгеновские исследования кристаллов Рентгенофазовый анализ.	20	3	6	6
5.	Рентгеноструктурный анализ Рентгеноструктурный анализ. Метод полиэдров Вороного-Дирихле	20	3	4	6
6.	Метод Чохральского	8	3	4	5,8
	Всего:		18	34	41, 8

Курсовые работы: не предусмотрены.

Форма проведения аттестации по дисциплине: зачет.

Основная литература:

- 1. Егоров-Тисменко, Юрий Клавдиевич Кристаллография и кристаллохимия [Текст] : учебник для студентов вузов, обучающихся по специальности "Геология" / Ю. К. Егоров-Тисменко ; [под ред. В. С. Урусова] ; Моск. гос. ун-т им. М. В. Ломоносова, Геол. фак. 3-е изд. Москва : Книжный дом "Университет", 2014. 587 с. : ил. Библиогр.: с. 583-587. ISBN 978-5-98227-687-2.
- 2. Басалаев, Ю. М. Кристаллофизика и кристаллохимия [Электронный ресурс] : учебное пособие / Ю. М. Басалаев ; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет». Кемерово: Кемеровский государственный университет, 2014. 403 с. http://biblioclub.ru/index.php?page=book red&id=278304.
- 3. Мюллер, Ульрих Структурная неорганическая химия [Текст] / У. Мюллер ; пер. с англ. А. М. Самойлова, Е. С. Рембезы под ред. А. М Ховива. Долгопрудный : Интеллект, 2010. 351 с. : ил. Библиогр.: с. 331-337. ISBN 9785915590693. ISBN 9780470018644.

Автор РПД: Игнатьев Б.В.