# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики



«26» мая 2023 г.

# РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ **Б1.О.29 «МЕТОДЫ ОПТИМИЗАЦИИ»**

| Направление подготовки <u>09.03.03 Пр</u> | икладная информатика    |
|-------------------------------------------|-------------------------|
| Направленность (профиль) Прикладная       | информатика в экономике |
| Программа подготовки                      | академическая           |
| Форма обучения                            | очная                   |
| Квалификация (степень) выпускника         | бакалавр                |

Рабочая программа дисциплины «Методы оптимизации» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 09.03.03 Прикладная информатика по профилю Прикладная информатика в экономике.

Программу составила:

Н.М. Сеидова, канд. физ.-мат. наук, доц. КПМ

Мееды

8/him

Рабочая программа дисциплины «Методы оптимизации» утверждена на заседании кафедры прикладной математики протокол № 10 от 18.05.2023 г.

И.о. заведующего кафедрой (разработчика)

А.В. Письменский, к.ф.-м.н.

Рабочая программа дисциплины «Методы оптимизации» обсуждена на заседании кафедр(ы):

- прикладной математики, протокол № 10 от 18.05.2023 г.

И.о. заведующего кафедрой (разработчика)

А.В. Письменский, к.ф.-м.н.

-p/hi-

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 5 от 19.05.2023 г.

Председатель УМК факультета компьютерных технологий и прикладной математики УМК факультета Коваленко А.В, д.т.н., доцент



#### Рецензенты:

Шапошникова Татьяна Леонидовна.

Доктор педагогических наук, кандидат физико-математических наук, профессор. Почетный работник высшего профессионального образования РФ. Директор института фундаментальных наук (ИФН) ФГБОУ ВО «КубГТУ».

Марков Виталий Николаевич.

Доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

### 1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

- **1.1. Целью** освоения учебной дисциплины «Методы оптимизации» является формирование у студентов знаний по основам теории оптимизации и знаний об основных подходах к практическому решению оптимизационных задач, что позволит применять методы анализа прикладной области на концептуальном, логическом, математическом и алгоритмическом уровнях, а также применять системный подход и математические методы в формализации решения прикладных задач.
- **1.2.** Задачи дисциплины. В ходе изучения дисциплины ставятся задачи научить студентов:
  - знать содержание программы курса, формулировки задач, методы их исследования;
  - выбирать подходящие методы для решения экстремальных задач;
  - уметь применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач;
  - изучать самостоятельно научную и учебно-методическую литературу по профилю из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач.

### 1.3. Место учебной дисциплины в структуре образовательной программы

Дисциплина «Методы оптимизации» относится к относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана.

Данная дисциплина («Методы оптимизации») тесно связана с дисциплинами: «Математический анализ», «Векторная алгебра», «Методы математической физики». Знания, полученные при освоении дисциплины «Методы оптимизации», используются при изучении дисциплины «Теория риска и моделирование рисковых ситуаций», «Теория оптимального портфеля». В совокупности изучение этой дисциплины готовит обучаемых как к различным видам практической экономической деятельности, так и к научно-теоретической и исследовательской деятельности.

### 1.4. Компетенции студента, формируемые в результате освоения учебной дисциплины

Компетенции обучающегося, формируемые в результате освоения курса «Методы оптимизации»:

Код и наименование индикатора\* Результаты обучения по дисциплине УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений ИУК-2.5 (06.001 D/03.06 Зн.2) Оптимальные решения, классификацию задач оптимизации; библиотеки программных модулей, шаблоны, теоретические положения, лежащие в основе построклассы объектов, используемые при разработения методов решения; ке программного обеспечения, исходя из имеосновные методы решения типовых оптимизационющихся ресурсов и ограничений ных задач ИУК-2.8 (40.011 А/02.5 Зн.1) Цели и задачи проводимых исследований и разработок, способы определения круга задач в рамках поставленной цели и выбирать оптимальные способы их

| Код и наименование индикатора*                | Результаты обучения по дисциплине                  |
|-----------------------------------------------|----------------------------------------------------|
| решения                                       |                                                    |
| ИУК-2.12                                      | Уметь                                              |
| (У2) Выдвигать инновационные идеи и не-       | • выбрать метод для решения конкретной задачи оп-  |
| стандартные подходы к их реализации в целях   | тимизации;                                         |
| реализации деятельности                       | • использовать типовые алгоритмы для решения задач |
| ИУК-2.14                                      | • оценить качество работы алгоритма при решении    |
| (06.001 D/03.06 У.1) Выбирать и использовать  | задачи                                             |
| оптимальные существующие типовые реше-        |                                                    |
| ния и шаблоны проектирования программного     |                                                    |
| обеспечения                                   |                                                    |
| ИУК-2.28                                      | Владеть                                            |
| (40.011 А/02.5 Др.2) Деятельность, направлен- | • способностью определять круг задач в рамках кон  |
| ная на решение задач аналитического характе-  | кретных задачи оптимизации и выбирать оптималь-ныс |
| ра, предполагающих выбор и многообразие       | способы их ре-шения, исходя из дей-ствующих право- |
| актуальных способов решения задач и выбор     | вых норм, имеющихся ре-сурсов и ограничений        |
| оптимальных способов их решения               |                                                    |
| *                                             | чные и общеинженерные знания, методы математиче    |
|                                               | кого и экспериментального исследования в профессио |
| нальной деятельности                          | •                                                  |
| ИОПК-1.1                                      | Знать                                              |
| (06.016 А/30.6 Зн.3) Способен применять есте- | • иметь представление о месте и роли изучаемой дис |
| ственно-научные и общеинженерные знания,      | циплины среди других наук;                         |
| методы математического анализа и моделиро-    | • знать содержание программы курса, формулировки   |
| вания, теоретического и экспериментального    | задач, методы их исследования                      |
| исследования в профессиональной деятельно-    |                                                    |
| СТИ                                           |                                                    |
| ИОПК-1.3                                      | Уметь                                              |
| (06.001 D/03.06 У.1) Использовать существу-   | • применять на практике конкретные вычислительные  |
| ющие типовые решения и шаблоны проекти-       | методы к анализу и решению оптимизационных задач   |
| рования программного обеспечения, приме-      |                                                    |
| нять естественно-научные и общеинженерные     |                                                    |
| знания, методы математического анализа и      |                                                    |
| моделирования, теоретического и эксперимен-   |                                                    |
| тального исследования в профессиональной      |                                                    |
| деятельности                                  | D                                                  |
| ИОПК-1.5                                      | Владеть                                            |
| (06.001 D/03.06 Тд.1) Разработка на основе    | • способностью определять круг задач в рам         |
| знаний, полученных в области математическо-   | ках конкретных задачи оптимизации и выбирать опти  |
| го анализа и моделирования, теоретического и  | маль-ные способы их ре-шения, исходя из дей        |
| экспериментального исследования, изменение    | ствующих правовых норм, имеющихся ре-сурсов и      |
| и согласование архитектуры программного       | ограничений                                        |
| обеспечения с системным аналитиком и архи-    |                                                    |
| тектором программного обеспечения             |                                                    |
| ИОПК-1.8                                      |                                                    |
| (40.011 А/02.5 Др.2) Деятельность, направлен- |                                                    |
| ная на решение аналитических задач, предпо-   |                                                    |
| лагающих выбор и многообразие актуальных      |                                                    |
| способов решения задач, с использованием      |                                                    |
| естественно-научные и общеинженерных зна-     |                                                    |
| ний, методов математического анализа и мо-    |                                                    |
| делирования, теоретического и эксперимен-     |                                                    |
| 1                                             |                                                    |

Результаты обучения по дисциплине «Методы оптимизации» достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

деятельности

тального исследования в профессиональной

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

### 2. Структура и содержание дисциплины

### 2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение

по видам работ представлено в таблице.

| по видам расот представл | Вид работы                           | Трудоемкость,  |
|--------------------------|--------------------------------------|----------------|
|                          | I                                    | часов          |
|                          |                                      | 6 семестр      |
| Контактная работа, в т   | 68,5                                 |                |
| Аудиторная работа:       |                                      | 64             |
| Лекции (Л)               |                                      | 32             |
| Практические занятия (д  | TT3)                                 |                |
| Лабораторные работы (    | (ЛР)                                 | 32             |
| Иная контактная работ    | a:                                   |                |
| Контроль самостоятельно  | ой работы (КСР)                      | 4              |
| Промежуточная аттестац   | ия (ИКР)                             | 0,5            |
| Самостоятельная работ    | ra (CP):                             | 39,8           |
| Курсовой проект (КП), к  | урсовая работа (КР)                  | -              |
| Самоподготовка (прораб   | 6                                    |                |
| риала и материала учебн  |                                      |                |
| лабораторным и практич   | еским занятиям, коллоквиумам и т.д.) |                |
| Выполнение индивидуал    | ьных заданий (подготовка сообщений,  | 27,8           |
| презентаций)             |                                      |                |
| Реферат                  |                                      | -              |
| Подготовка к текущему н  | сонтролю                             | 6              |
| Контроль:                |                                      |                |
| Подготовка и сдача экзам | 35,7                                 |                |
| Общая трудоемкость       | час.                                 | 144            |
|                          | в том числе контактная работа        | 68,5           |
|                          | зач. ед                              | 4              |
| Вид итогового контроля   | 1                                    | Зачет, экзамен |

### 2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

### Содержание и структура дисциплины (модуля)

Разделы дисциплины, изучаемые в 6 семестре

| №  | Наименование раздела, темы    |    | Аудиторные занятия |   |    | Внеаудитор-<br>ная работа |    |       |
|----|-------------------------------|----|--------------------|---|----|---------------------------|----|-------|
| n/ |                               |    | Bce-               | Л | ЛР | КСР                       | CP | Кон-  |
| n  |                               |    | ГО                 |   |    |                           | CI | троль |
|    | 1 Безусловная одномерная оп-  |    |                    |   |    |                           |    |       |
|    | тимизация                     |    |                    |   |    |                           |    |       |
| 1. | Формулировка математической   | 10 | 6                  | 2 | 4  | 0                         | 2  | 2     |
|    | задачи оптимизации. Классиче- |    |                    |   |    |                           |    |       |

<sup>&</sup>lt;sup>1</sup> При наличии экзамена по дисциплине

| ские методы решения задач од-                                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| номерной оптимизации                                                                                                                                                                                                             |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  | 18                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Безусловная многомерная                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| оптимизация                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Классические методы решения                                                                                                                                                                                                      | 6                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| задач многомерной оптимизации.                                                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                                                                                                                                                                                                | 6                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  | 22                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  | 26                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  |                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| пис                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I/                                                                                                                                                                                                                               | 1.4                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Классификация задач нелинейно-                                                                                                                                                                                                   | 14                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования.                                                                                                                                                                                                             |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| го программирования. Задачи линейного программиро-                                                                                                                                                                               | 14<br>16                                                                                                                  | 6<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| го программирования. Задачи линейного программирования 4 Специальные методы опти-                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации                                                                                                                                          | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы опти-                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования                                                                                         | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейно-                                                                                                           | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования                                                                                         | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования Задачи линейного программиро-                                                           | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования Задачи линейного программирования в условиях неопределенно-                             | 16                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования Задачи линейного программирования в условиях неопределенности.                          | 16<br>12<br>15,5                                                                                                          | 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| го программирования. Задачи линейного программирования 4 Специальные методы оптимизации Задача целочисленного линейного программирования Задачи линейного программирования в условиях неопределенности. Промежуточная аттестация | 16<br>12<br>15,5                                                                                                          | 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  | Численные методы решения задач одномерной оптимизации  2 Безусловная многомерная оптимизация  Классические методы решения | Численные методы решения задач одномерной оптимизации       18         2 Безусловная многомерная оптимизация       6         Классические методы решения задач многомерной оптимизации.       6         Классификация и обзор методов безусловной оптимизации       22         Иисленные методы безусловной оптимизации функции многих переменных. Методы первого порядка.       26         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26         3 Нелинейное программирова-       3 Нелинейное программирова- | Численные методы решения задач одномерной оптимизации       18       10         2 Безусловная многомерная оптимизация       6       2         Задач многомерной оптимизации.       6       2         Классификация и обзор методов безусловной оптимизации       6       2         Иисленные методы безусловной оптимизации функции многих переменных. Методы первого порядка.       22       12         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26       14         3 Нелинейное программирова-       3       10       10 | Численные методы решения задач одномерной оптимизации       18       10       6         2 Безусловная многомерная оптимизация       6       2       2         Классические методы решения задач многомерной оптимизации.       6       2       2         Классификация и обзор методов безусловной оптимизации       6       2       2         Иисленные методы безусловной первого порядка.       22       12       4         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26       14       4         3 Нелинейное программирова-       3       14       4 | Численные методы решения задач одномерной оптимизации       18       10       6       4         2 Безусловная многомерная оптимизация       6       2       2       0         3адач многомерной оптимизации.       6       2       2       0         Классификация и обзор методов безусловной оптимизации       6       2       2       0         безусловной оптимизации       22       12       4       8         оптимизации функции многих переменных. Методы первого порядка.       26       14       4       8         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26       14       4       8         3 Нелинейное программирова-       3       14       4       8       14       4       8 | Численные методы решения задач одномерной оптимизации       18       10       6       4       0         2 Безусловная многомерная оптимизация       6       2       2       0       0         Классические методы решения задач многомерной оптимизации.       6       2       2       0       0         Классификация и обзор методов безусловной оптимизации       6       2       2       0       0         Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.       26       14       4       8       2         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26       14       4       8       2         3 Нелинейное программирова-       3       14       4       8       2 | Численные методы решения задач одномерной оптимизации       18       10       6       4       0       4         2 Безусловная многомерная оптимизация       6       2       2       0       0       2         Классические методы решения задач многомерной оптимизации.       6       2       2       0       0       2         Классификация и обзор методов безусловной оптимизации       6       2       2       0       0       0         безусловной оптимизации функции многих переменных. Методы первого порядка.       22       12       4       8       0       4         Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.       26       14       4       8       2       4         3 Нелинейное программирова-       3       10       4       4       8       2       4 |

Примечание: Л – лекции, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

### 2.3. Содержание разделов дисциплины

### 1 Безусловная одномерная оптимизация

### Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации.

Теорема Мак-Лорена. Классический метод нахождения экстремума функции одного переменного. Унимодальные функции. Свойства унимодальных функций.

### Тема 2. Численные методы решения задач одномерной оптимизации.

Методы нулевого порядка. Метод перебора. Метод дихотомии. Метод золотого сечения. Метод Фибоначчи. Метод Розенброка. Метод деформируемого многоугольника. Метод тяжелого шарика.

#### 2 Безусловная многомерная оптимизация

### Тема 1 Классические методы решения задач многомерной оптимизации.

Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм. Леммы о направлениях спуска. Классический метод нахождения экстремума функции нескольких переменных.

### Тема 2 Классификация и обзор методов безусловной оптимизации.

### Tema 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Метод градиентного спуска. Метод наискорейшего спуска. Метод Флетчера-Ривса. Метод Давидона-Флетчера-Пауэлла.

### Тема 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Метод Ньютона. Метод Ньютона-Равсона. Метод Маркварда.

### 3 Нелинейноео программирование

### Тема 1. Классификация задач нелинейного программирования. Теорема Куна-Таккера. Методы поиска условного экстремума.

Метод множителей Лагранжа. Метод штрафных функций. Метод барьерных функций. Метод проекции градиента.

### Тема 2. Задачи линейного программирования.

Симплекс метод. Транспортные задачи.

#### 4 Специальные методы оптимизации

#### Тема 1. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП. Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

### Тема 2. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности. ЗЛП и теория игр.

#### 2.3.1 Занятия лекционного типа

|                     | Наимено-   |                                         | Форма текущего        |
|---------------------|------------|-----------------------------------------|-----------------------|
| $N_{\underline{0}}$ | вание      | Содержание раздела                      | контроля              |
|                     | раздела    |                                         | (по неделям семестра) |
| 1                   | Безуслов-  | Тема 1. Формулировка математической     | 1. Контрольные во-    |
|                     | ная одно-  | задачи оптимизации. Классические методы | просы                 |
|                     | мерная оп- | решения задач одномерной оптимизации    |                       |
|                     | тимизация  | Тема 2. Численные методы решения задач  |                       |

|   |                                                    | одномерной оптимизации                                                                                                                                                                                      |                        |
|---|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2 | Безуслов-<br>ная много-<br>мерная оп-<br>тимизация | Тема 1. Классические методы решения задач многомерной оптимизации.  Тема 2. Классификация и обзор методов безусловной оптимизации  Тема 3. Численные методы безусловной оптимизации функции многих перемен- | 1. Контрольные вопросы |
|   |                                                    | ных. Методы первого порядка. Тема 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.                                                                            |                        |
| 3 | Нелиней-<br>ное про-<br>граммиро-<br>вание         | <ul><li>Тема 1. Классификация задач нелинейного программирования.</li><li>Тема 2. Задачи нелинейного программирования</li></ul>                                                                             | 1. Контрольные вопросы |
| 4 | Специальные методы оптимизации                     | <ul><li>Тема 1. Задача целочисленного линейного программирования</li><li>Тема 2. Задачи линейного программирования в условиях неопределенности.</li></ul>                                                   | 1. Контрольные вопросы |

Практические занятия, защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) – не предусмотрены.

### 2.3.2 Занятия семинарского типа

Семинарские занятия – не предусмотрены

### 2.3.3 Лабораторные занятия

| № п/п | Темы лабораторных занятий                                                                   | Форма текущего контроля(по неде-<br>лям семестра)                                   |
|-------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1     | Численные методы решения задач одномерной оптимизации                                       | 1. Выполнение практических заданий 2. Отчет по результатам индивидуального задания. |
| 2     | Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка. | 1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания.  |
| 3     | Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка. | 1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания.  |
| 4     | Задачи нелинейного программирования                                                         | 1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания.  |
| 5     | Задача целочисленного линейного программирования                                            | 1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания.  |

| 6 | Задачи линейного программирования в | 1 Выполнение практических заданий    |
|---|-------------------------------------|--------------------------------------|
|   | условиях неопределенности.          | 2. Отчет по результатам индивидуаль- |
|   |                                     | ного задания.                        |

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) – не предусмотрены.

### СОДЕРЖАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

### Тема 1. Численные методы решения задач одномерной оптимизации.

Постановка задачи методов нулевого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод перебора, метод дихотомии, метод золотого сечения, метод Фибоначчи, метод Розенброка, метод деформируемого многоугольника, метод тяжелого шарика).

### Tema 2. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Постановка задачи методов первого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод градиентного спуска, метод наискорейшего спуска, метод Флетчера-Ривса, метод Давидона-Флетчера-Пауэлла).

### Tema 3. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Постановка задачи методов второго порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод Ньютона, метод Ньютона-Равсона, метод Маркварда).

### Тема 4. Задачи нелинейного программирования.

Метод множителей Лагранжа. Метод штрафных функций. Метод барьерных функций. Метод проекции градиента.

### Тема 5. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

### Тема 6. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.

### 2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы (КР) – не предусмотрены.

### 2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающегося по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания полученные во время лабораторных занятий.

| Mo  | Вид самостоятельной | Перечень учебно-методического обеспечения дисциплины |
|-----|---------------------|------------------------------------------------------|
| 745 | работы              | по выполнению самостоятельной работы                 |

| 1 | материала учебной и научной литературы,                 | Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a> |
|---|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Подготовка к<br>лабораторным занятиям                   | Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a>                                                                                                                                                                                                                                                 |
| 3 | Подготовка к решению задач и тестов                     | Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a>                                                                                                                                                                                                                                             |
| 4 | Подготовка докладов                                     | Методические указания для подготовки эссе, рефератов, курсовых работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.  Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a>                                                                                                                                                                                                                                  |
| 5 | Подготовка к решению расчетно-графических заданий (РГЗ) | Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.  Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.  Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a>       |
| 6 | Подготовка к текущему<br>контролю                       | Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Режим доступа: <a href="https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya">https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya</a>                                                                                                                                                                                                                                             |

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

– в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

#### 3.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

С точки зрения применяемых методов используются как традиционные информационно-объяснительные лекции, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

*Лекции* представляют собой систематические обзоры теории оптимизации с подачей материала в виде презентаций.

**Пабораторное** занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Оценка самостоятельной работы студентов происходит по средствам оценки индивидуальных ответов и дополнений на занятиях по рассмотренным тематикам.

| Занятия. | проводимые | с использованием   | интерактивных технологий     |
|----------|------------|--------------------|------------------------------|
| J        | проводимые | c memoriboobuminem | mintepartinement reamounding |

|    |                                     | Количество часов                     |                       |
|----|-------------------------------------|--------------------------------------|-----------------------|
| №  | Наименование разделов (тем)         | всего ауд. интерактивн<br>часов часы | интерактивные<br>часы |
| 1. | Безусловная одномерная оптимизация  | 16                                   | 2                     |
| 2. | Безусловная многомерная оптимизация | 22                                   | 6                     |
| 3. | Нелинейное программирование         | 14                                   | 4                     |
| 4. | Специальные методы оптимизации      | 12                                   | 2                     |
|    | Итого по дисциплине:                | 64                                   | 14                    |

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

### 4. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Методы оптимизации».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме индивидуальных самостоятельных заданий и **промежуточной аттестации** в форме вопросов к экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями.
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

| No    | Код и наименование                  | Наименование оценочного сре           |                          | ночного средства |
|-------|-------------------------------------|---------------------------------------|--------------------------|------------------|
| п/п   | индикатора                          | Результаты обучения                   | Текущий кон-             | Промежуточная    |
| 11/11 | индикатора                          |                                       | троль                    | аттестация       |
|       | УК-2 Способен                       |                                       | Раздел 1 и 2             | Вопрос на экза-  |
|       | определять круг                     |                                       | Задание 1, 3 Ин-         | мене             |
|       | задач в рамках по-                  | ИУК-2.5(06.001 D/03.06 3н.2)          | дивидуальная             | 1-12             |
|       | ставленной цели и                   | ИУК-2.8(40.011 А/02.5 Зн.1)           | задача 1, 2              |                  |
|       | выбирать опти-                      | ИУК-2.12(У2)                          |                          |                  |
| 1     | мальные способы их                  | ИУК-2.14(06.001 D/03.06 У.1)          |                          |                  |
|       | решения, исходя из                  | ИУК-2.28(40.011 А/02.5 Др.2)          |                          |                  |
|       | действующих пра-                    | , , , , , , , , , , , , , , , , , , , |                          |                  |
|       | вовых норм, имею-                   |                                       |                          |                  |
|       | щихся ресурсов и                    |                                       |                          |                  |
|       | ограничений                         |                                       | D 2                      | D                |
|       | ОПК-1 Способен                      |                                       | Раздел 3                 | Вопрос на экза-  |
|       |                                     |                                       | Задание 5 Инди-          | мене<br>13-23    |
|       | применять есте-                     |                                       | видуальная зада-<br>ча 3 | 13-23            |
|       | ственно-научные и<br>общеинженерные | ИОПК-1.1(06.016 А/30.6 Зн.3)          | 44 3                     |                  |
|       | знания, методы ма-                  | ИОПК-1.3(06.001 D/03.06 У.1)          |                          |                  |
| 2     | тематического ана-                  | ИОПК-1.5(06.001 D/03.06 Тд.1)         |                          |                  |
| 1 -   | лиза и моделирова-                  | ИОПК-1.8(40.011 А/02.5 Др.2)          |                          |                  |
|       | ния, теоретического                 | Поти по(толотт ть одла др.2)          |                          |                  |
|       | и эксперименталь-                   |                                       |                          |                  |
|       | ного исследования в                 |                                       |                          |                  |
|       | профессиональной                    |                                       |                          |                  |
|       | деятельности                        |                                       |                          |                  |

| 3 | УК-2<br>ОПК-1 | ИУК-2.5(06.001 D/03.06 3н.2)<br>ИУК-2.8(40.011 A/02.5 3н.1)<br>ИУК-2.12(У2)<br>ИУК-2.14(06.001 D/03.06 У.1)<br>ИУК-2.28(40.011 A/02.5 Др.2)<br>ИОПК-1.1(06.016 A/30.6 3н.3)<br>ИОПК-1.3(06.001 D/03.06 У.1)<br>ИОПК-1.5(06.001 D/03.06 Тд.1)<br>ИОПК-1.8(40.011 A/02.5 Др.2) | Раздел 4<br>Задание 6 Индивидуальная задача 3 | Вопрос на экза-<br>мене<br>24-29 |
|---|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|
|---|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

### Перечень индивидуальных самостоятельных заданий для текущего контроля

- **Задание 1.** Доказать свойства унимодальных функций. Используя классический метод, решить задачу (<u>Индивидуальная задача 1</u>) нахождения экстремума функции одного.
- Задание 2. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 1</u>) нахождения минимума функции одного переменного, используя метод дихотомии, метод золотого сечения, метод Фибоначчи.
- **Задание 3.** Используя классический метод, решить задачу (<u>Индивидуальная задача 2</u>) нахождения экстремума функции многих переменных.
- Задание 4. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 2</u>) нахождения минимума функции многих переменных, используя метод наискорейшего спуска, метод Ньютона, метод Ньютона-Равсона и метод Флетчера-Ривса.
- **Задание 5.** Используя метод множителей Лагранжа, решить задачу (<u>Индивидуальная задача</u>) нахождения условного минимума функции многих переменных.
- Задание 6. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 3</u>) нахождения условного минимума функции многих переменных, используя метод штрафных функций.

<u>Индивидуальная задача 1.</u> Найти минимум функции одного переменного f(x) ( $\delta=0,2;\ \varepsilon=0,5$ ) (задание 1, 2).

| 1. $f(x) = x^2 - 2x + 3$ , $[-2; 8]$    | 11. $f(x) = x^2 - 6x + 13$ , [0; 10]     |
|-----------------------------------------|------------------------------------------|
| 2. $f(x) = x^2 - 2x + 5$ , $[-2; 8]$    | 12. $f(x) = 2x^2 - 12x + 19$ , [0;10]    |
| 3. $f(x) = 2x^2 - 2x + 3/2$ , $[-2; 8]$ | 13. $f(x) = x^2 - 4x + 6$ , [0;10]       |
| 4. $f(x) = x^2 + 6x + 13$ , $[-6; 4]$   | 14. $f(x) = x^2 + 2$ , $[-3, 7]$         |
| 5. $f(x) = x^2 - 4x + 7$ , [0;10]       | 15. $f(x) = x^2 + 2x + 4$ , $[-3, 7]$    |
| 6. $f(x) = x^2 + 4x + 5$ , $[-4; 6]$    | 16. $f(x) = 2x^2 + 2x + 5/2$ , $[-3, 7]$ |
| 7. $f(x) = 2x^2 + 2x + 7/2$ , $[-3; 7]$ | 17. $f(x) = 3x^2 - x + 4$ , $[-4; 6]$    |

| 8. $f(x) = x^2 - 6x + 12$ , [1;11]       | 18. $f(x) = x^2 + 4x - 1/4$ , $[-2; 8]$ |
|------------------------------------------|-----------------------------------------|
| 9. $f(x) = x^2 + 4x + 6$ , $[-4; 6]$     | 19. $f(x) = x^2 + 3x - 10$ , $[-2; 8]$  |
| 10. $f(x) = 2x^2 - 2x + 5/2$ , $[-1; 9]$ | 20. $f(x) = x^2 + 6x + 2$ , $[-4; 6]$   |

<u>Индивидуальная задача 2.</u> Найти минимум функции двух переменных  $f(x_1, x_2)$  в  $(x_1^{(0)}, x_2^{(0)})$  (задание 3, 4).

| $f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1,$    | $f(x) = 2x_1^2 + 3x_2^2 - x_1 x_2 + x_1,$    |
|--------------------------------------------|----------------------------------------------|
| $x_0 = (-1,2;1)$                           | $x_0 = (1; 3)$                               |
| $f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1,$    | 12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1$ |
| $x_0 = (3;1)$                              | $x_0 = (2; 1,5)$                             |
| 3. $f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1$  | 13. $f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1$ , |
| $x_0 = (1,1;1,1)$                          | $x_0 = (1; 1)$                               |
| $f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1,$    | $f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (1,5;0,1)$                          | $x_0 = (3;1)$                                |
| $f(x) = 2x_1^2 + x_2^2 - x_1 x_2 + x_1,$   | $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (2; 2)$                             | $x_0 = (1,5;1,1)$                            |
| $f(x) = 3x_1^2 + x_2^2 - x_1x_2 + x_1,$    | $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (1,5;1,5)$                          | $x_0 = (1,1;1,1)$                            |
| $f(x) = 5x_1^2 + x_2^2 - x_1x_2 + x_1,$    | $f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (1,5;1)$                            | $x_0 = (1,5;0,5)$                            |
| $f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1,$ 8. | 18. $f(x) = 2x_1^2 + x_2^2 + x_1x_2 + x_1$ , |
| $x_0 = (2;1)$                              | $x_0 = (2; 2)$                               |
| $f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,$    | $f(x) = 3x_1^2 + x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (1; 2)$                             | $x_0 = (1,5;1,5)$                            |
| $f(x) = 8x_1^2 + x_2^2 - x_1x_2 + x_1,$    | $f(x) = 5x_1^2 + x_2^2 + x_1x_2 + x_1,$      |
| $x_0 = (2; 2)$                             | $x_0 = (1,5;1)$                              |

Индивидуальная задача 3. Найти условный минимум функции многих переменных

$$f(x_1, x_2) \text{ (3adanue 5, 6)}.$$

$$1. \begin{array}{c} f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1, \\ x_1 + x_2 = 1 \end{array} \qquad \begin{array}{c} f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1, \\ x_1 + 2x_2 = 1 \end{array}$$

| 2. $ f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1, $ $2x_1 + x_2 = 1 $  | 12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,  x_1 + x_2 = 1$ |
|-----------------------------------------------------------------|--------------------------------------------------------------|
| 3. $f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,  x_1 + x_2 = 2$       | 13. $f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1,  2x_1 + 3x_2 = 1$ |
| 4. $ f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $ | 14. $f(x) = x_1^2 + 4x_2^2 + x_1 x_2 + x_1,  x_1 + x_2 = 2$  |
| 5. $ f(x) = 2x_1^2 + x_2^2 - x_1x_2 + x_1, $ $x_1 + x_2 = 3 $   | 15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1,  x_1 + 3x_2 = 1$  |
| 6. $ f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1, $ $2x_1 + x_2 = 1 $ | 16. $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1,  x_1 + x_2 = 1$   |
| 7. $f(x) = 5x_1^2 + x_2^2 - x_1 x_2 + x_1,  x_1 + x_2 = 1$      | 17. $f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1, 3x_1 + x_2 = 2$   |
| 8. $ f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $ | 18. $f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_1 + x_2 = 5$  |
| 9. $f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,$ $x_1 + x_2 = 2$      | 19. $f(x) = 3x_1^2 + x_2^2 + x_1 x_2 + x_1,  2x_1 + x_2 = 1$ |
| 10. $f(x) = 8x_1^2 + x_2^2 - x_1 x_2 + x_1,  2x_1 + x_2 = 3$    | 20. $f(x) = 5x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_1 + x_2 = 1$  |

### **Фонд оценочных средств для проведения промежуточной аттестации** ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЁТУ/ЭКЗАМЕНУ

- 1. Одномерный поиск. Теорема Мак-Лорена.
- 2. Унимодальные функции. Свойства унимодальных функций.
- 3. Метод дихотомии.
- 4. Метод Фибоначчи.
- 5. Метод золотого сечения.
- 6. Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм.
- 7. Леммы о направлениях спуска (безусловная оптимизация).
- 8. Градиентный метод.
- 9. Обобщенный метод Ньютона.
- 10. Метод тяжелого шарика.
- 11. Метод сопряженных градиентов.
- 12. Классификация и обзор методов безусловной оптимизации.
- 13. Классификация задач нелинейного программирования. Леммы 1 и 2 о возможных направлениях (условная оптимизация).
- 14. Теорема 1 о необходимом условии условного минимума.
- 15. Теорема Фаркаша. Теорема 2 о необходимом условии условного минимума.
- 16. Правило множителей Лагранжа для задач с ограничениями типа равенства.
- 17. Правило множителей Лагранжа для задач с ограничениями типа неравенства.
- 18. Выпуклые функции.

- 19. Теорема Куна-Таккера.
- 20. Теория двойственности. Теорема двойственности. Двойственные методы.
- 21. Метод проекций.
- 22. Метод внутренних и внешних штрафных функций.
- 23. Метод возможных направлений.
- 24. Постановки транспортной задачи. Методы решения транспортной задачи.
- 25. Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП.
- 26. Метод ветвей и границ решения ЗЦЛП.
- 27. Решение задачи коммивояжера методом ветвей и границ.
- 28. Постановки задачи линейного программирования ЗЛП в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.
- 29. ЗЛП и теория игр.

Критерии оценивания результатов обучения

|                               | 1 1                                                                                                                                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Оценка                        | Критерии оценивания по экзамену                                                                                                                                                                                                                                                            |
| Высокий уровень «5» (отлично) | оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы. |
| Средний уро-                  | оценку «хорошо» заслуживает студент, практически полностью                                                                                                                                                                                                                                 |
| вень «4»                      | освоивший знания, умения, компетенции и теоретический матери-                                                                                                                                                                                                                              |
| (хорошо)                      | ал, учебные задания не оценены максимальным числом баллов, в                                                                                                                                                                                                                               |
|                               | основном сформировал практические навыки.                                                                                                                                                                                                                                                  |
| Пороговый                     | оценку «удовлетворительно» заслуживает студент, частично с про-                                                                                                                                                                                                                            |
| уровень «3»                   | белами освоивший знания, умения, компетенции и теоретический                                                                                                                                                                                                                               |
| (удовлетвори-                 | материал, многие учебные задания либо не выполнил, либо они                                                                                                                                                                                                                                |
| тельно)                       | оценены числом баллов близким к минимальному, некоторые                                                                                                                                                                                                                                    |
|                               | практические навыки не сформированы.                                                                                                                                                                                                                                                       |
| Минимальный                   | оценку «неудовлетворительно» заслуживает студент, не освоивший                                                                                                                                                                                                                             |
| уровень «2»                   | знания, умения, компетенции и теоретический материал, учебные                                                                                                                                                                                                                              |
| (неудовлетво-                 | задания не выполнил, практические навыки не сформированы.                                                                                                                                                                                                                                  |
| рительно)                     |                                                                                                                                                                                                                                                                                            |

#### Критерии оценивания по зачету:

<u>«зачтено»:</u> студент владеет теоретическими знаниями по данной дисциплине, знает основные понятия и методы, допускает незначительные ошибки; студент умеет правильно объяснять материал, иллюстрируя его практическими примерами.

<u>«не зачтено»:</u> материал не усвоен или усвоен частично, студент затрудняется привести примеры по дисциплине, довольно ограниченный объем знаний программного материала.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;

 при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

### **5.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ** УЧЕБНОЙ ДИСЦИПЛИНЫ

### 5.1 Учебная литература

### Основная литература:

- 1. Сеидова, Наталья Михайловна Численные методы решения задач одномерной безусловной оптимизации / Сеидова, Наталья Михайловна, Калайдина, Галина Вениаминовна; Н. М. Сеидова, Г. В. Калайдина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2012. 37 с.
- 2. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев. М.: Логос, 2011. 424 с. (Новая университетская библиотека). ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс]. URL: https://biblioclub.ru/index.php?page=book\_red&id=84995&sr=1.
- 3. Сухарев, А. Г. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. 3-е изд., испр. и доп. М. : Юрайт, 2017. 367 с. https://biblio-online.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

### Дополнительная литература:

1. Островский, Геннадий Маркович. Оптимизация технических систем / Островский, Геннадий Маркович, Зиятдинов, Надир Низамович, Лаптева, Татьяна Владимировна; Г. М. Островский, Н. Н. Зиятдинов, Т. В. Лаптева. - Москва: КНОРУС, 2012. - 422 с.: ил. - Библиогр.: с. 404-411. - ISBN 9785406010945.

- 2. Засядко, Ольга Владимировна. Исследование операций: [практикум] / Засядко, Ольга Владимировна, Усатиков, Сергей Васильевич; О. В. Засядко, С. В. Усатиков; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2014. 194 с.: ил. Библиогр.: с. 15-16.
- 3. Зайцев, Михаил Григорьевич. Методы оптимизации управления и принятия решений: примеры, задачи, кейсы/ Зайцев, Михаил Григорьевич, С. Е. Варюхин; М. Г. Зайцев, С. Е. Варюхин; Рос. акад. народного хоз-ва и гос. службы при Президенте Рос. Федерации. [3-е изд., испр. и доп.]. М.: Дело, 2011. 639 с.: ил. (Учебники Президентской Академии). ISBN 9785774904921.
- 4. Далингер, В. А. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple [Электронный ресурс] : учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. М. : Юрайт, 2018. 161 с. <a href="https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1">https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1</a>.
- 5. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / Ф. П. Васильев, М. М. Потапов, Б. А. Будак, Л. А. Артемьева ; под ред. Ф. П. Васильева. М. : Юрайт, 2018. 375 с. https://biblio-online.ru/book/CAA9AF22-E3BB-454A-BE5C-BB243EAAE72A.

#### 5.2. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

## 5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

### Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) <a href="http://www.elibrary.ru/">http://www.elibrary.ru/</a>
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН <a href="http://archive.neicon.ru">http://archive.neicon.ru</a>
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
  - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
  - 9. Электронная коллекция Оксфордского Российского Фонда

#### https://ebookcentral.proquest.com/lib/kubanstate/home.action

- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath <a href="https://zbmath.org/">https://zbmath.org/</a>
- 15. Nano Database <a href="https://nano.nature.com/">https://nano.nature.com/</a>
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОС-

СИЯ <a href="http://uisrussia.msu.ru">http://uisrussia.msu.ru</a>

### Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

### Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Россий-

ской Федерации https://www.minobrnauki.gov.ru/;

- 5. Федеральный портал "Российское образование" <a href="http://www.edu.ru/">http://www.edu.ru/</a>;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" <a href="http://window.edu.ru/">http://window.edu.ru/</a>;
- 7. Единая коллекция цифровых образовательных ресурсов <a href="http://school-collection.edu.ru/">http://school-collection.edu.ru/</a>.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" <a href="https://pushkininstitute.ru/">https://pushkininstitute.ru/</a>;
  - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
  - 11. Служба тематических толковых словарей <a href="http://www.glossary.ru/">http://www.glossary.ru/</a>;
  - 12. Словари и энциклопедии http://dic.academic.ru/;
  - 13. Образовательный портал "Учеба" <a href="http://www.ucheba.com/">http://www.ucheba.com/</a>;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy\_i\_otvety

### Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения <a href="http://moodle.kubsu.ru">http://moodle.kubsu.ru</a>
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций <a href="http://mschool.kubsu.ru/">http://mschool.kubsu.ru/</a>
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий <a href="http://mschool.kubsu.ru">http://mschool.kubsu.ru</a>;
  - 4. Электронный архив документов КубГУ <a href="http://docspace.kubsu.ru/">http://docspace.kubsu.ru/</a>
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" <a href="http://icdau.kubsu.ru/">http://icdau.kubsu.ru/</a>

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», в том числе современные профессиональные базы данных и информационные справочные системы, необходимые для освоения дисциплины.

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Портал открытых данных Российской Федерерации https://data.gov.ru

- 3. База открытых данных Министерства труда и социальной защиты РФ <a href="https://rosmintrud.ru/opendata">https://rosmintrud.ru/opendata</a>
  - 4. База данных Научной электронный библиотеки eLIBRARY.RU https://elibrary.ru/
- 5. База данных Всероссийского института научной и технической информации (ВИ-НИТИ) РАН http://www2.viniti.ru/
- 6. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных www.rusnano.com
- 7. Базы данных и аналитические публикации «Университетская информационная система РОССИЯ» https://uisrussia.msu.ru/
- 8. Википедия, свободная энциклопедия. [Электронный ресурс]. Wikipedia http://ru.wikipedia.org
  - 9. <a href="http://math.nsc.ru/LBRT/k5/opt.html">http://math.nsc.ru/LBRT/k5/opt.html</a> (Методы оптимизации, учебное пособие)

### 6. Методические указания для обучающихся по освоению дисциплины

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

### 7. Перечень информационных технологий, используемых при осуществлении образовательного процесса

### 7.1 Перечень информационных технологий.

Использование электронных презентаций при проведении лекционных и практических занятий.

#### 7.2 Перечень необходимого программного обеспечения.

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет.

#### 7.3 Перечень необходимых информационных справочных систем

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/
- 2. Электронная библиотека КубГУ

### http://212.192.128.113/MarcWeb/Work.asp?ValueDB=41&DisplayDB=Электронный

- 3. Электронная библиотечная система «Университетская библиотека ONLINE» (http://www.biblioclub.ru)
  - 4. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
  - 5. ЭБС Издательства «Лань» <a href="http://e.lanbook.com/">http://e.lanbook.com/</a> ООО Издательство «Лань»
  - 6. ЭБС «Университетская библиотека онлайн» www.biblioclub.ru ООО «Директ-Медиа»
  - 7. ЭБС «BOOK.ru» <a href="https://www.book.ru">https://www.book.ru</a> OOO «КноРус медиа»

### 8. ЭБС «ZNANIUM.COM» <u>www.znanium.com</u> OOO «ЗНАНИУМ»

| Перечень договоров ЭБС (за период, соответствующий сроку получения образования по ООП) |                                                                                                         |                        |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|--|
| Учебный                                                                                | Наименование документа с указанием реквизитов                                                           | Срок действия доку-    |  |
| год                                                                                    |                                                                                                         | мента                  |  |
| 2018/2019                                                                              | ЭБС Издательства «Лань» <a href="http://e.lanbook.com/">http://e.lanbook.com/</a> ООО Издательство      | С 01.01.18 по 31.12.18 |  |
|                                                                                        | «Лань» Договор № 99 от 30 ноября 2017 г.                                                                |                        |  |
|                                                                                        | ЭБС «Университетская библиотека онлайн» www.biblioclub.ru                                               | С 01.01.18 по 31.12.18 |  |
|                                                                                        | OOO «Директ-Медиа» Договор № 0811/2017/3 от 08 ноября 2017 г.                                           |                        |  |
|                                                                                        | ЭБС «Юрайт» <a href="http://www.biblio-online.ru">http://www.biblio-online.ru</a> ООО Электронное изда- | С 20.01.18 по 19.01.19 |  |
|                                                                                        | тельство «Юрайт» Договор №0811/2017/2 от 08 ноября 2017 г.                                              |                        |  |
|                                                                                        | ЭБС «BOOK.ru» https://www.book.ru ООО «КноРус медиа» Дого-                                              | С 09.01.18 по 31.12.18 |  |
|                                                                                        | вор № 61/223-ФЗ от 09 января 2018 г.                                                                    |                        |  |
|                                                                                        | ЭБС «ZNANIUM.COM» <u>www.znanium.com</u> ООО «ЗНАНИУМ»                                                  | С 01.01.18 по 31.12.18 |  |
|                                                                                        | Договор № 1812/2017 от 18 декабря 2017 г.                                                               |                        |  |

### 8. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

| №  | Вид работ                                    | Материально-техническое обеспечение дисциплины (модуля) и оснащенность                                                                                                                                                                                          |
|----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Лекционные занятия                           | Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска Ауд. 129, 131, 3016, 305, 307                                                                             |
| 2. | Лабораторные занятия                         | Лаборатория, укомплектованная техническими средствами обучения — компьютерами с соответствующим программным обеспечением, маркерная доска. Ауд. 101, 106, 106а                                                                                                  |
| 3. | Групповые (индивиду-<br>альные) консультации | Аудитория, укомплектованная маркерной доской и оснащенная компьютером. Ауд. 129                                                                                                                                                                                 |
| 4. | Текущий контроль, промежуточная аттестация   | Аудитория, укомплектованная маркерной доской и оснащенная компьютером. Ауд. 129                                                                                                                                                                                 |
| 5. | Самостоятельная работа                       | Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационнообразовательную среду университета. 102-А и читальный зал |

Примечание: Конткретизация аудиторий и их оснащение определяется ОПОП.

### Методические указания по выполнению лабораторных работ по дисциплине «Методы оптимизации»

Настоящие методические указания предназначены для выполнения лабораторных и самостоятельных работ по математическому моделированию и направлены на формирование общепрофессиональных и профессиональных компетенций студентов. В методических указаниях изложены ссылки на основные методы одномерной и многомерной оптимизации. Приведены примеры, задания для самостоятельной работы.

В лабораторных работах студенту требуется выполнять задания, выданные преподавателем. До начала выполнения студенту следует проанализировать задание.

При проведении лабораторных работ практикуется применение коллективных и групповых форм работы, а также использование индивидуальных форм с целью повышения ответственности каждого студента за самостоятельное выполнение полного объема работ.

### Лабораторная работа 1—4: Численные методы решения задач одномерной оптимизации.

В ходе выполнения лабораторной работы студент изучает методы нулевого порядка; стратегии поиска минимума; а также разрабатывает алгоритм поиска; оценивает сходимости методов (метод перебора, метод дихотомии, метод золотого сечения, метод Фибоначчи, метод Розенброка, метод деформируемого многоугольника, метод тяжелого шарика) (см. [1]- [2]). Выполняет выданное преподавателем индивидуальное задание 1 и 2.

Задание 1. Доказать свойства унимодальных функций. Используя классический метод, решить задачу нахождения экстремума функции одного (индивидуальная задача 1.).

Задание 2. Написать и отладить программу численного решения задачи нахождения минимума функции одного переменного, используя метод дихотомии, метод золотого сечения, метод Фибоначчи.

<u>Индивидуальная задача 1.</u> Найти минимум функции одного переменного f(x) ( $\delta=0,2;\ \varepsilon=0,5$ ) (задание 1, 2).

| 1. $f(x) = x^2 - 2x + 3$ , $[-2; 8]$     | 11. $f(x) = x^2 - 6x + 13$ , [0;10]      |
|------------------------------------------|------------------------------------------|
| 2. $f(x) = x^2 - 2x + 5$ , $[-2; 8]$     | 12. $f(x) = 2x^2 - 12x + 19$ , [0; 10]   |
| 3. $f(x) = 2x^2 - 2x + 3/2$ , $[-2; 8]$  | 13. $f(x) = x^2 - 4x + 6$ , [0;10]       |
| 4. $f(x) = x^2 + 6x + 13$ , $[-6; 4]$    | 14. $f(x) = x^2 + 2$ , $[-3; 7]$         |
| 5. $f(x) = x^2 - 4x + 7$ , [0;10]        | 15. $f(x) = x^2 + 2x + 4$ , $[-3; 7]$    |
| 6. $f(x) = x^2 + 4x + 5$ , $[-4; 6]$     | 16. $f(x) = 2x^2 + 2x + 5/2$ , $[-3; 7]$ |
| 7. $f(x) = 2x^2 + 2x + 7/2$ , $[-3, 7]$  | 17. $f(x) = 3x^2 - x + 4$ , $[-4; 6]$    |
| 8. $f(x) = x^2 - 6x + 12$ , [1;11]       | 18. $f(x) = x^2 + 4x - 1/4$ , $[-2; 8]$  |
| 9. $f(x) = x^2 + 4x + 6$ , $[-4; 6]$     | 19. $f(x) = x^2 + 3x - 10$ , $[-2; 8]$   |
| 10. $f(x) = 2x^2 - 2x + 5/2$ , $[-1; 9]$ | 20. $f(x) = x^2 + 6x + 2$ , $[-4; 6]$    |

### Лабораторная работа 5–8: Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

В ходе выполнения лабораторной работы студент изучает методы первого порядка; стратегии поиска минимума; а также разрабатывает алгоритм поиска; оценивает сходимости методов (метод градиентного спуска, метод наискорейшего спуска, метод Флетчера-Ривса, метод Давидона-Флетчера-Пауэлла) (см. [2]). Выполняет выданное преподавателем индивидуальное задание 3 и 4.

**Задание 3.** Используя классический метод, решить задачу нахождения экстремума функции многих переменных (индивидуальная задача 2.)

**Задание 4.** Написать и отладить программу численного решения задачи нахождения минимума функции многих переменных, используя метод наискорейшего спуска, метод Ньютона, метод Ньютона-Равсона и метод Флетчера-Ривса.

<u>Индивидуальная задача 2.</u> Найти минимум функции двух переменных  $f(x_1, x_2)$  в  $(x_1^{(0)}, x_2^{(0)})$  (задание 3, 4).

| 1. $f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1,  x_0 = (-1,2;1)$    | 11. $f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1,  x_0 = (1; 3)$      |
|---------------------------------------------------------------|-----------------------------------------------------------------|
| 2. $f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1,  x_0 = (3; 1)$      | 12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,$ $x_0 = (2, 1, 5)$ |
| 3. $f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,  x_0 = (1,1;1,1)$   | 13. $f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1,  x_0 = (1; 1)$       |
| 4. $f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1,  x_0 = (1,5; 0,1)$  | 14. $f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1,  x_0 = (3; 1)$       |
| 5. $f(x) = 2x_1^2 + x_2^2 - x_1 x_2 + x_1,  x_0 = (2; 2)$     | 15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1,  x_0 = (1,5; 1,1)$   |
| 6. $f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1,  x_0 = (1,5; 1,5)$ | 16. $f(x) = x_1^2 + 7x_2^2 + x_1 x_2 + x_1,  x_0 = (1,1;1,1)$   |
| 7. $f(x) = 5x_1^2 + x_2^2 - x_1 x_2 + x_1,  x_0 = (1,5;1)$    | 17. $f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1,  x_0 = (1,5; 0,5)$   |
| 8. $f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1,  x_0 = (2, 1)$      | 18. $f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_0 = (2; 2)$      |
| 9. $f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,  x_0 = (1; 2)$      | 19. $f(x) = 3x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_0 = (1,5; 1,5)$  |
| 10. $f(x) = 8x_1^2 + x_2^2 - x_1x_2 + x_1,  x_0 = (2; 2)$     | 20. $f(x) = 5x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_0 = (1,5;1)$     |

### Лабораторная работа 9-12: Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

В ходе выполнения лабораторной работы студент изучает методы второго порядка; стратегии поиска минимума; а также разрабатывает алгоритм поиска; оценивает сходимости методов (метод Ньютона, метод Ньютона-Равсона, метод Маркварда) (см. [2]). Выполняет выданное преподавателем индивидуальное задание 4.

### Лабораторная работа 13–14: Задачи нелинейного программирования.

В ходе выполнения лабораторной работы студент изучает метод множителей Лагранжа, метод штрафных функций, метод барьерных функций, метод проекции градиента.

**Задание 5.** Используя метод множителей Лагранжа, решить задачу нахождения условного минимума функции многих переменных.

**Задание 6.** Написать и отладить программу численного решения задачи нахождения условного минимума функции многих переменных, используя метод штрафных функций.

<u>Индивидуальная задача 3.</u> Найти условный минимум функции многих переменных  $f(x_1, x_2)$  (задание 5, 6).

| 2 2                                                             |                                                                  |
|-----------------------------------------------------------------|------------------------------------------------------------------|
| 1. $f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1,  x_1 + x_2 = 1$       | 11. $f(x) = 2x_1^2 + 3x_2^2 - x_1 x_2 + x_1,$ $x_1 + 2x_2 = 1$   |
| 2. $ f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1, $ $2x_1 + x_2 = 1 $  | 12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,  x_1 + x_2 = 1$     |
| 3. $f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,  x_1 + x_2 = 2$       | 13. $ f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $ |
| 4. $ f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $ | 14. $f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1,  x_1 + x_2 = 2$       |
| 5. $ f(x) = 2x_1^2 + x_2^2 - x_1 x_2 + x_1, $ $x_1 + x_2 = 3 $  | 15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1,  x_1 + 3x_2 = 1$      |
| 6. $ f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1, $ $2x_1 + x_2 = 1 $ | 16. $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1,  x_1 + x_2 = 1$       |
| 7. $ f(x) = 5x_1^2 + x_2^2 - x_1x_2 + x_1, $ $x_1 + x_2 = 1 $   | 17. $ f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1, $ $3x_1 + x_2 = 2 $  |
| 8. $ f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $ | 18. $f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1,  x_1 + x_2 = 5$      |
| 9. $f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,$ $x_1 + x_2 = 2$      | 19. $f(x) = 3x_1^2 + x_2^2 + x_1 x_2 + x_1,  2x_1 + x_2 = 1$     |

10. 
$$f(x) = 8x_1^2 + x_2^2 - x_1 x_2 + x_1,$$

$$2x_1 + x_2 = 3$$
20. 
$$f(x) = 5x_1^2 + x_2^2 + x_1 x_2 + x_1,$$

$$x_1 + x_2 = 1$$

### Лабораторная работа 15–16:Задача целочисленного линейного программирования.

В ходе выполнения лабораторной работы студент изучает постановку задачи целочисленного линейного программирования (ЗЦЛП), метод ветвей и границ решения ЗЦЛП, решение задачи коммивояжера методом ветвей и границ (см. [2]), стратегии поиска минимума; а также разрабатывает алгоритм поиска; оценивает сходимости методов Выполняет выданное преподавателем задание (см. [2], стр. 388-389, №№1-12).

### Лабораторная работа 17: Задачи линейного программирования в условиях неопределенности.

В ходе выполнения лабораторной работы студент изучает постановку задачи линейного программирования (ЗЛП) в условиях риска и неопределенности, методы решения ЗЛП в условиях риска и неопределенности (см. [3]).

### Порядок выполнения самостоятельной работы

Во время подготовки и выполнения самостоятельной работы студент должен:

- 1) изучить методы математического моделирования;
- 2) в соответствии с вариантом, выданным преподавателем, выполнить задание самостоятельной работы;
- 3) оформить отчет по выполненному заданию самостоятельной работы и защитить его.

### Отчет по самостоятельной работе должен содержать:

- 1) задание;
- 2) отладка (2 итерации) и написание (текст) программы численного решения
- 3) результаты решения задачи указанным выше способом;
- 4) анализ полученных результатов.