МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной раболе, качеству образования - первый

проректор

Xarvinos T A

подпись

«26» мая 2023 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.41

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Специальность 01.05.01 Фундаментальные математика и механика

Специализация «Фундаментальная математика и её приложения»

«Вычислительная механика и компьютерный

инжиниринг»

Форма обучения очная

Квалификация Математик. Механик. Преподаватель

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования ($\Phi\Gamma$ OC BO) по специальности 01.05.01 Фундаментальные математика и механика.

Программу составил:

Лежнев А. В., доцент, канд. физ.-мат. наук, доцент

Ahun

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов, протокол № 10 от 18.04.2023.

Заведующий кафедрой математических и компьютерных методов Лежнев А. В.

Thur

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук, протокол № 3 от 20.04.2023.

Председатель УМК факультета математики и компьютерных наук Шмалько С. П.

ary

Рецензенты:

Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю. Г., доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «Кубанский государственный университет»

1 ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1 Цель изучения дисциплины

Цель изучения дисциплины «Математическое моделирование»: формирование у студентов способности создавать, исследовать и применять новые математические модели процессов, явлений и систем реального мира.

Предмет изучения дисциплины «Математическое моделирование»: математические модели процессов, явлений и систем реального мира и методы их создания и исследования.

1.2 Задачи дисциплины

Основные задачи изучения дисциплины «Математическое моделирование»:

- теоретическое освоение студентами основных понятий, методов и проблематики математического моделирования;
- обретение навыков создания, исследования и применения новых математических моделей;
 - обретение навыков реализации математических моделей на ЭВМ.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Математическое моделирование» относится к обязательной части блока 1 «Дисциплины (модули)» учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе по очной форме обучения. Вид промежуточной аттестации — зачёт.

Предшествующими дисциплинами, необходимыми для изучения данной дисциплины, являются «Математический анализ», «Дифференциальные уравнения», «Физика», «Линейная алгебра», «Алгебра», «Аналитическая геометрия», «Дифференциальная геометрия и топология», «Теория вероятностей и математическая статистика», «Технология программирования и работа на электронно-вычислительной машине (ЭВМ)», «Дискретная математика».

Последующими дисциплинами, для изучения которых необходима данная дисциплина, являются «Основы и математические модели механики сплошной среды», «Математический практикум», «Математическое моделирование в механике», «Теоретическая механика», «Концепции современного естествознания».

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций.

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
ОПК-1 — Способен находить, формулиров даментальной математики и механики	ать и решать актуальные и значимые проблемы фун-
ОПК-1.1 — Знает актуальные и значимые проблемы фундаментальной математики	Знает основные понятия, методы и проблематику математического моделирования Умеет проводить выбор отношений и эффектов, учитываемых при составлении математических моделей Владеет навыками проверки адекватности математических моделей
ОПК-1.2 — Осуществляет выбор методов	Знает основные этапы построения математических

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
решения задач фундаментальной мате-	моделей
матики	Умеет определять параметры и переменные математических моделей
	Владеет навыками составления количественных соотношений, входящих в математическую модель
ОПК-1.3 — Владеет навыками формализации актуальных задач фундаменталь-	Знает методы составления математических моделей различных процессов, явлений и систем
ной математики и применения подходя-	Умеет составлять и решать обратные задачи для це-
щих методов их решения	лей математического моделирования
	Владеет навыками обеспечения адекватности математических моделей
ОПК-3 – Способен понимать принципы ра	боты современных информационных технологий и
использовать их для решения задач профес	ссиональной деятельности
ОПК-3.1 – Имеет представление о прин-	Знает основные понятия, методы и особенности вы-
ципах работы современных информаци-	числительной математики
онных технологий	Умеет составлять алгоритмы решения задач на основе заданных математических моделей
	Владеет навыками интерпретации результатов моделирования
ОПК-3.2 — Грамотно использует современные информационные технологии	Знает основные принципы реализации математиче- ских моделей на ЭВМ
при решении задач профессиональной деятельности	Умеет исследовать математические модели с помощью ЭВМ
	Владеет навыками реализации математических моделей на ЭВМ

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2 СТРУКУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зачётных единицы (144 часа), их распределение по видам работ представлено в таблице.

Виды работ	Всего, часов	6 семестр, часов
Контактная работа, в том числе:	66,3	66,3
Аудиторные занятия (всего):	52	52
занятия лекционного типа	18	18
лабораторные занятия	34	34
практические занятия	_	_
семинарские занятия	_	_
Иная контактная работа:	14,3	14,3
Контроль самостоятельной работы (КСР)	14	14
Промежуточная аттестация (ИКР)	0,3	0,3
Самостоятельная работа, в том числе:	51,0	51,0

проработка учебного	(теоретического)	20	20
материала		20	20
подготовка к лаборат	горным работам	20	20
подготовка к текуще	му контролю	11,0	11,0
Контроль:		26,7	26,7
Подготовка к зачёту		_	_
	часов	144	144
Общая в том числе трудоемкость контактная работа		66,3	66,3
	зач. ед.	4	4

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоёмкости по разделам дисциплины представлены в таблице.

	Наименование разделов	Количество часов					
№		Всего	Аудиторная работа			Внеауди- торная работа	
			Л	П3	ЛР	CPC	
1	Общие понятия математического моделирования	12	4	_	2	6	
2	Моделирование детерминированных процессов	60	10	_	20	30	
3	Моделирование стохастических процессов	31	4	_	12	15	
	ИТОГО по разделам дисциплины	103	18	_	34	51	
	KCP	14	_	_	_	_	
	ИКР	0,3	_	-	_		
	Контроль	26,7	_	_	_	_	
	Общая трудоемкость по дисциплине	144	18	_	34	51	

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	моделирования	Понятие модели и моделирования. Основные свойства моделей. Классификация методов моделирования. Этапы моделирования. Математические модели (ММ), их особенности и актуальность применения. Классификация ММ. Особенности построения ММ. Погрешности, возникающие при ММ. Классификация переменных ММ. Операторная	УО, ПО

№	Наименование раздела	Содержание раздела	Форма текущего контроля
		рания ММ. Прамод и обратила за нами. Поматил и примору	контроли
		запись ММ. Прямая и обратная задачи. Понятие и примеры	
		феноменологических законов	
2	Моделирование	3. Моделирование дискретных процессов.	УО, ПО
	детерминирован-	4. Моделирование процессов теплообмена.	
	ных процессов	5. Моделирование периодических процессов на	
		примере колебаний маятника.	
3	Моделирование	6. Моделирование случайных величин и случайных	УО, ПО
	стохастических	событий.	
	процессов	7. Имитационное моделирование стохастических	
		процессов	

Перечень занятий лекционного типа и их краткое содержание представлен в таблице. Формами текущего контроля являются устный опрос (УО) и письменный опрос (ПО).

2.3.2 Лабораторные работы

Распределение тематики лабораторных занятий по разделам дисциплины представлено в таблице.

№	Наименование раздела	Тематика лабораторных работ	Форма текущего контроля
1	Общие понятия	1. Составление математических моделей на примере	_
	математического моделирования	задачи о продуктах.	
2	Моделирование	2. Моделирование простейшего процесса	УО, ПО
	детерминирован-	теплообмена тела с окружающей средой.	
	ных процессов	3. Моделирование процесса теплообмена тела с	
		переменным коэффициентом теплопередачи.	
		4. Идентификация коэффициента теплопередачи и	
		адаптация ММ.	
		5. Моделирование процессов колебаний маятника.	
		Построение физической модели.	
		6. Моделирование процессов колебаний маятника с	
		учётом сопротивления окружающей среды.	
		7. Идентификация параметров сопротивления	
		окружающей среды и адаптация ММ.	
		8. Решение задачи об оптимальном управлении	
		самолётом методом динамического программирования.	
3	Моделирование	9. Моделирование случайных величин с заданными	УО, ПО
	стохастических	законами распределения.	
	процессов	10. Решение задач со случайными параметрами.	

2.3.3 Примерная тематика курсовых работ (проектов)

- 1. Моделирование обтекания тел с подвижными частями поверхности в приближении аэроупругости.
 - 2. Численное моделирование пространственно-периодических квантовых систем.
 - 3. Постановка задачи об аккреции в осесимметричном приближении.
 - 4. Особенности динамических систем с хаотическим поведением.
- 5. Исследование динамических систем с непрерывным временем численными методами.

- 6. Фрактальные аттракторы для нескольких типов динамических систем.
- 7. Свойства фрактальных множеств и их связь с детерминированным хаосом.
- 8. Морфологический анализ цифровых изображений.
- 9. Гармоническое сглаживание цифровых изображений.
- 10. Сжатие изображения матричным методом.
- 11. Алгоритмы подбора методов компрессии.
- 12. Модели с открытой обратной связью и оптимизация обучения.
- 13. Численные методы решения задач механики сплошных сред.
- 14. Геометрические и вариационные методы в теории функций и математической физике.
 - 15. Конечно-разностные методы решения краевых задач.
 - 16. Метод конечных элементов в решении краевых задач.
- 17. Визуализация волновых явлений с помощью прикладных математических пакетов.
- 18. Математическое моделирование и численный анализ рассеяния упругих волн на множественных микродефектах.
 - 19. Движение точечных вихрей в ограниченной области.
 - 20. Решение бигармонического уравнения.
- 21. Алгоритм решения квадратных уравнений в конечных полях и его применение в криптографии.
 - 22. Замечательные кривые 3-го порядка. Циссоида Диоклеса.
 - 23. Алгебры Лейбница небольших размерностей.
 - 24. Замечательные кривые 4-го порядка. Конхоида Никомеда.
- 25. Использование укрупненных дидактических единиц на математическом анализе.
 - 26. Гипотеза Коллатца.
 - 27. Алгебры и супералгебры Лейбница.
 - 28. Диффузная теория А. Тьюринга применительно к биосистемам.
 - 29. Моделирование в инструментальной среде AnyLogic.
 - 30. Программирование семантических сетей на языке Пролог.
- 31. Разработка программного обеспечения для численных алгоритмов оптимизании.
 - 32. Разработка приложений для реализации метода анализа иерархий.
- 33. Применение искусственных нейронных сетей для решения задачи прогнозирования.
- 34. Применение искусственных нейронных сетей для решения задачи классификации.
- 35. Приложения в нейрокриптографии рекуррентных конвергентных нейросетей и потенциальных динамических систем.
- 36. Применение нейросетевых технологий для определения эмоциональной окраски текста.
 - 37. Применение нейронных сетей для аппроксимации функций
- 38. Применение многослойной нейронной сети прямого распространения для распознавания предметов одежды.
- 39. Решение задачи регрессии на основе многослойной полносвязной нейронной сети.
 - 40. Математические модели рыболовства.
 - 41. Исследование энергетической модели сердца при вариации параметров.
- 42. Моделирование и оптимизация технологических процессов в газовой промышленности.
- 43. Численный анализ краевых задач моделей добычи тяжёлой нефти и теплофизики кипения.

- 44. Задачи компьютерного зрения в пищевой промышленности.
- 45. Оптимизация технологических процессов пищевой промышленности.
- 46. Некоторые приложения СВ к техническим и военным процессам.
- 47. Вероятностное моделирование некоторых процессов в военной области.
- 48. Стохастическое моделирование боевых действий.
- 49. Моделирование экономических процессов и систем.
- 50. Математическое моделирование экологических процессов.
- 51. Оптимизация сетевых графиков.
- 52. Прогнозирование финансово-экономических показателей деятельности предприятия.
 - 53. Методы оптимизации инвестиционного портфеля.
 - 54. Моделирование и анализ рисков инвестиционных проектов.
 - 55. Прогнозирование ценовых показателей в микроэкономике.
 - 56. Математическая модель динамики финансовых эффектов в микроэкономике.
 - 57. Оценка доходности облигаций на основе модели Васичека.
 - 58. Вероятностные методы прогнозирования ценообразования.
- 59. Математические методы прогнозирования социально-экономических явлений и процессов.
 - 60. Имитационное моделирование и задачи теории массового обслуживания.
 - 61. Применение имитационного моделирования для решения логистических задач.
 - 62. Реализация алгоритмов машинного обучения.
- 63. Математические аспекты реализации криптоалгоритмов типа «невзаимозаменяемый токен».
 - 64. Компьютерное моделирование сложных непрерывно-стохастических систем.
- 65. Моделирование картографических изображений с помощью гауссовского шума.
- 66. Моделирование вычислительного процесса получения изображения пространственных моделей многогранников.
 - 67. Оценка внутренне нелинейных множественных регрессионных моделей.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Самостоятельная работа студентов по дисциплине включает следующие виды деятельности:

- проработку и анализ лекционного материала;
- изучение учебной литературы;
- поиск информации в сети Интернет по различным вопросам;
- решение задач по темам курса;
- работу с вопросами для самопроверки;
- подготовку к контрольной работе;
- подготовку к зачёту.

Перечень учебно-методического обеспечения дисциплины представлен в таблице.

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1.	Подготовка к текуще- му контролю	Методические указания для подготовки к занятиям лекционного и семинарского типа. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
		Методические указания по выполнению самостоятельной

		работы обучающихся. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
		Методические указания по использованию интерактивных методов обучения. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.
		Методические указания по подготовке эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.
2.	Выполнение лабораторных работ и расчетно-графических заданий	1. Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
		2. Методические указания по выполнению расчетнографических заданий. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
3.	Подготовка и оформ- ление отчетов по практике	1. Методические указания по подготовке и оформлению отчета по практике. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла;
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме;
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ПРИМЕНЯЕМЫЕ ПРИ ОСВОЕНИИ ДИСЦИПЛИНЫ

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, лабораторные работы, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, мозгового штурма, разбора конкретных ситуаций, педагогического эксперимента, иных форм) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Для более эффективного восприятия материала часть лекций и лабораторных работ проводится с применением мультимедийного оборудования — комплекса аппаратно-программных средств, позволяющих пользователю работать с графикой, текстом, звуком, видео и др., организованными в виде единой информационной среды.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Перечень вопросов для контроля СРС и подготовки к экзамену.

- 1. Понятие модели и моделирования. Цель и целесообразность моделирования.
- 2. Основные свойства моделей.
- 3. Классификация методов моделирования.
- 4. Этапы моделирования.
- 5. Математические модели (ММ), их особенности и актуальность применения.
- 6. Классификация ММ.
- 7. Особенности построения ММ.
- 8. Погрешности, возникающие при ММ.
- 9. Классификация переменных ММ.
- 10. Операторная запись ММ. Прямая и обратная задачи.
- 11. Понятие и примеры феноменологических законов.
- 12. Составление математических моделей на примере задачи о продуктах.
- 13. Моделирование простейшего процесса теплообмена тела с окружающей средой.
- 14. Моделирование процесса теплообмена тела с переменным коэффициентом теплопередачи.
- 15. Моделирование процесса теплообмена с учётом фазовых переходов.
- 16. Идентификация коэффициента теплопередачи и адаптация ММ.
- 17. Моделирование процессов колебаний маятника. Построение физической модели.
- 18. Моделирование процессов колебаний маятника с учётом сопротивления окружающей среды.
- 19. Идентификация параметров сопротивления окружающей среды и адаптация ММ.
- 20. Решение задачи об оптимальном управлении самолётом методом динамического программирования
- 21. Моделирование случайных величин с заданными законами распределения.
- 22. Вычисление определённых интегралов методом Монте-Карло.
- 23. Решение задач со случайными параметрами.

Примеры типовых заданий для текущего контроля успеваемости.

Задача 1.

Температура тела массой (*1) кг изменяется за (*2) мин от (*3) °C до (*4) °C при температуре окружающей среды (*5) °C. За какой промежуток времени тело массой (*6) кг с такими же значениями теплоёмкости, площади поверхности теплообмена и коэффициента теплопередачи изменит свою температуру от (*7) °C до (*8) °C при температуре окружающей среды (*9) °C?

Вариант, №	(*1)	(*2)	(*3)	(*4)	(*5)	(*6)	(*7)	(*8)	(*9)
1	1,0	10	70	40	20	3,0	55	20	15
2	1,5	12	75	40	25	2,5	50	20	10
3	2,0	15	65	35	15	1,0	60	30	10
4	2,5	10	60	35	20	1,5	75	35	15
5	3,0	15	55	30	25	2,0	80	40	10

Задача 2.

Модель математического маятника учитывает трение по линейному закону. Маятник начинает движение без начальной скорости из положения, соответствующего углу отклонения от положения равновесия, равному α . Через n полных периодов колебаний угол отклонения уменьшился на P %. Вычислить коэффициент сопротивления окружающей среды в модели линейного трения.

Вариант, №	α (градусы)	n	Р
1	30	3	30
2	45	4	40
3	60	4	50
4	45	5	60
5	60	5	70

Критерии оценивания по зачету.

Оценка «Зачтено» выставляется при условии, что студент проявил знания основного минимума изученного материала в объеме, необходимом для последующего обучения. Практическое задание выполнено, возможно, имеются отдельные неточности и ошибки.

Оценка «Не зачтено» выставляется при условии, что обнаружены существенные пробелы в знании основного материала, практическое задание выполнено не в полном объёме, имеются существенные ошибки, окончательных ответов не получено.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5 ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ, ИНФОРМАЦИОННЫХ РЕСУРСОВ И ТЕХНОЛОГИЙ

5.1 Учебная литература

- 1. Голубева, Н.В. Математическое моделирование систем и процессов [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2021. 192 с. Режим доступа: https://e.lanbook.com/book/76825.
- 2. Горлач, Б. А. Математическое моделирование. Построение моделей и численная реализация / Б. А. Горлач, В. Г. Шахов. 5-е изд., стер. Санкт-Петербург: Лань, 2023. 292 с. ISBN 978-5-507-46275-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/305219.

5.2 Периодическая литература

Приведённые журналы имеются в фонде Научной библиотеки КубГУ, https://www.kubsu.ru/ru/node/15554,

- 1. Журнал «Математическое моделирование».
- 2. Журнал «Журнал вычислительной математики и математической физики».
- 3. Журнал «Прикладная математика и механика».
- 4. Журнал «Прикладная механика и техническая физика».
- 5. Журнал «Проблемы прогнозирования».

5.3 Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. \supset GC «BOOK.ru» https://www.book.ru
- 4. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 2. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 3. «Лекториум ТВ» http://www.lektorium.tv/
 - 4. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Ресурсы свободного доступа:

- 1. КиберЛенинка (http://cyberleninka.ru/);
- 2. Федеральный портал «Российское образование» http://www.edu.ru/;

- 3. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/;
- 4. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/ .
- 5. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
 - 6. Служба тематических толковых словарей http://www.glossary.ru/;
 - 7. Словари и энциклопедии http://dic.academic.ru/;
 - 8. Образовательный портал «Учеба» http://www.ucheba.com/;

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При проработке учебного материала рекомендуется:

- повторить и уяснить определения и свойства объектов, операций и отношений, встречающиеся в постановке задач;
- записать в математической форме термины, связанные с рассматриваемой темой и встречающиеся в формулировке теорем и постановке задач;
- провести графическую интерпретацию встречающихся объектов, операций и отношений,
 - для громоздких выражений ввести компактные обозначения.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПО ДИСЦИПЛИНЕ

Распределение видов материально-технического обеспечения по видам занятий представлено в таблице.

Наименование	Оснащенность	Перечень лицензионного
специальных помещений	специальных помещений	программного обеспечения
Учебные аудитории для про-	Мебель: учебная мебель.	средство подготовки презен-
ведения занятий лекционного	Технические средства обуче-	таций MS PowerPoint;
типа	ния: экран, проектор, компью-	математический пакет

(302Н, 303Н, 308Н, 309Н,	тер	MathCAD
505A, 507A)		
Учебные аудитории для про-	Мебель: учебная мебель.	Интернет-браузеры для про-
ведения лабораторных работ,	Технические средства обуче-	смотра сайтов в сети Интер-
групповых и индивидуальных	ния: экран, проектор, компью-	нет;
консультаций	тер с доступом к сети «Интер-	средство подготовки презен-
(301H, 309H, 316H, 320H)	нет» и в электронную инфор-	таций MS PowerPoint;
	мационно-образовательную	математический пакет
	среду организации	MathCAD
Учебные аудитории для про-	Мебель: учебная мебель.	Математический пакет
ведения текущей и промежу-	Технические средства обуче-	MathCAD
точной аттестации	ния: экран, проектор, компью-	
(301Н, 302Н, 303Н, 307Н,	тер	
308Н, 308На, 309Н, 310Н,		
312H, 314H, 316H, 318H,		
320H)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений	Оснащенность помещений	Перечень лицензионного
для самостоятельной работы	для самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоя-	Мебель: учебная мебель	Интернет-браузеры для про-
тельной работы обучающихся	Комплект специализирован-	смотра сайтов в сети Интер-
(читальный зал Научной биб-	ной мебели: компьютерные	нет;
лиотеки)	столы	средство подготовки презен-
	Оборудование: компьютерная	таций MS PowerPoint
	техника с подключением к	
	информационно-	
	коммуникационной сети «Ин-	
	тернет» и доступом в элек-	
	тронную информационно-	
	образовательную среду обра-	
	зовательной организации, веб-	
	камеры, коммуникационное	
	оборудование, обеспечиваю-	
	щее доступ к сети интернет	
	(проводное соединение и бес-	
	проводное соединение по тех-	
	нологии Wi-Fi)	
Помещение для самостоя-	Мебель: учебная мебель.	Интернет-браузеры для про-
тельной работы обучающихся	Подключение к информаци-	смотра сайтов в сети Интер-
(301Н, 302Н, 303Н, 307Н,	онно-коммуникационной сети	нет;
308H, 308Ha, 309H, 310H,	«Интернет» и доступом в	средство подготовки презен-
312H, 314H, 316H, 318H,	электронную информационно-	таций MS PowerPoint
320H)	образовательную среду обра-	
	зовательной организации	