МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук-

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Г.А.Хагуров

«26» мая 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.01.01 Объектно-ориентированное программирование и компьютерный инжиниринг

Направление подготовки: 01.05.01 Фундаментальные математика и механика

Специализация: Вычислительная механика и компьютерный инжиниринг

Форма обучения:

очная

Квалификация: Математик. Механик. Преподаватель

Рабочая программа дисциплины Б1.В.ДВ.01.01 ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ И КОМПЬЮТЕРНЫЙ ИНЖИНИРИНГ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.05.01 Фундаментальные математика и механика

Программу составил(и): Голуб М. В., зав. кафедрой, д. ф.-м. н.

Рабочая программа дисциплины Б1.В.ДВ.01.01 ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ И КОМПЬЮТЕРНЫЙ ИНЖИНИРИНГ утверждена на заседании кафедры ТЕОРИЯ ФУНКЦИИ протокол № 10 «18» апреля 2023 г. Заведующий кафедрой (разработчика) Голуб М. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 8 «27» апреля 2023 г. Председатель УМК факультета/института Шмалько С. П.

Рецензенты:

Фоменко Сергей Иванович, канд. физ. - мат. наук, старший научный сотрудник лаборатории волновых процессов

Анопко Михаил Викторович, Генеральный директор ООО «УК АЙСТРИМ »

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Цель дисциплины «Объектно-ориентированное программирование и компьютерный инжиниринг» освоение современных технологий объектно-ориентированного программирования для компьютерного моделирования и разработки пользовательских приложений для решения естественно-научных и инженерных задач, развитие профессиональных компетентностей и приобретение практических навыков решения программистских и инженерных задач современными численными методами и приемами программирования.

1.2 Задачи дисциплины.

- знакомство с концепцией объектно-ориентированного программирования, формами ее реализации в высокоуровневых языках программирования;
- формирование профессиональных компетенций для разработки сложных программных комплексов на основе методов объектно-ориентированного программирования;
- развитие навыков компьютерного моделирования в естественных и инженерных науках;
- приобрести навыки решения программистских и инженерных задач современными численными методами и приемами программирования.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Объектно-ориентированное программирование и компьютерный инжиниринг» относится к вариативной части профессионального цикла Блока1 "Дисциплины (модули)" учебного плана (Б1.В.ДВ). Для успешного освоения дисциплины обучающийся должен владеть знаниями, умениями и навыками по программе дисциплин Б1.О.20 «Линейная алгебра», Б1.О.23 «Дифференциальные уравнения», Б1.О.14 «Технология программирования и работа на электронно-вычислительной машине (ЭВМ)», Б1.О.13 «Численные методы».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине			
ПК-4 Способен разрабатывать программное обеспечение для решения прикладных задач в сферопрофессиональной деятельности				
ИПК-4.4. Ориентируется в современных алгоритмах компьютерной математики и имеет практический опыт разработки программных модулей на основе механико-математических моделей	Знает основные приемы программирования на основе объектно-ориентированных технологий для компьютерного моделирования при решении прикладных задач; основные концепции разработки вычислительных программ и приложения для компьютерного моделирования. Умеет реализовать компьютерные алгоритмы иерархией объектов для реализации алгоритмов решения численных задач математической физики и инженерии, проводить анализ производительности программ и анализ результатов расчета. Владеет навыками программирования и разработки эффективных иерархических алгоритмов, анализа структуры вычислительных алгоритмов, связями между задачами и промежуточными методами компьютерного проекта.			

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зачетных единиц (72 часа), их

распределение по видам работ представлено в таблице

Виды	работ	Всего	Форма обучения			
		часов	оч	ная	очно- заочная	заочная
			7	_	_	-
			семестр	семестр	семестр	курс
			(часы)	(часы)	(часы)	(часы)
Контактная работа	,	22,2	22,2			
Аудиторные заняті	ия (всего):	18	18			
занятия лекционного	типа	_	_			
лабораторные заняті	RI	18	18			
Иная контактная р	абота:	4,2	4,2			
Контроль самостоят (КСР)	ельной работы	4	4			
Промежуточная атте	естация (ИКР)	0,2	0,2			
Самостоятельная р	абота, в том	40.0	40.0			
числе:	·	49,8	49,8			
Контрольная работ	а	12	12			
Самостоятельное самоподготовка повторение лекцион материала учебни пособий, подготовки практическим заняни т. д.)	(проработка и чного материала и иков и учебных а к лабораторным и	37,8	37,8			
Подготовка к текуще	ему контролю	_	_			
Контроль:		-	-			
Подготовка к экзаме	ену	_	_			
Общая	час.	72	72			
трудоемкость	в том числе контактная работа	22,2	22,2			
	зач. ед	2	2			

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 7 семестре (*очная форма обучения*)

	Наименование разделов (тем)	Количество часов				
№		Всего	Аудиторная работа		Внеаудит орная работа	
			Л	П3	ЛР	CPC
1.	Концепция объектно-ориентированного программирования $(OO\Pi)$.				4	12
2.	Сравнительный анализ реализации ООП в языках C++, C#, Python и Fortran				8	23
3.	Разработка компьютерных моделей на основе ООП для решения прикладных задач				4	8,4
4.	Анализ эффективности ООП и вычисленный эксперимент				2	6,4
	ИТОГО по разделам дисциплины	67,8			18	49,8
	Контроль самостоятельной работы (КСР)	4				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	_				
	Общая трудоемкость по дисциплине	72				

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

Занятия лекционного типа не предусмотрены учебным планом

2.3.2 Занятия семинарского типа (практические / семинарские занятия/

лабораторные работы)

No	Наименование раздела (темы)	Тематика занятий/разбор	Форма текущего контроля
1.	Концепция объектно- ориентированного программирования (ООП).	Сущность объектно-ориентированного подхода в программировании. Цикл разработки программного обеспечения (ПО), назначение и содержание этапов. Роль анализа в процессе разработки программного обеспечения. Основные понятия объектно-ориентированно анализа. Методологии процедурного, структурного и объектно-ориентированного программирования, принципы ООП, абстракция, инкапсуляция, наследование и полиморфизм. Класс и объект, поля, методы и свойства.	РГ3
2.	Сравнительный анализ реализации ООП в языках C++, C#, Python и Fortran	Технология применения объектно-ориентированных языков, их классификация и архитектура. Перегрузка операций. Преобразование типов. Реализации ООП в С++, С#, Python и Fortran, разработка классов и решения проблем наследования и полиморфизма.	
3.	Разработка компьютерных моделей на основе ООП для решения прикладных задач	Математическое и компьютерное моделирование, алгоритмизация, дизайн компьютерного проекта, анализ кода. Шаблоны функций. Шаблоны классов. Исключения. Стандартная библиотека шаблонов. Стандартная библиотека классов для управления потоками. Методы и средства организации и программирования интерфейса.	
4.	Анализ эффективности ООП и вычисленный эксперимент	Анализ ускорения и эффективности ООП. Вычислительные эксперименты.	РГ3

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и выполнение контрольной работы (КР).

При изучении дисциплины применяется электронное обучение (проектор и ЭВМ), дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Проработка и повторение лекционного материала и материала учебников и учебных пособий	Онлайн-лекции Национального исследовательского технологического университет «МИСиС» «С++ и основы ООП (видеоуроки)» [Электронный ресурс]: сайт. – URL: http://www.youtube.com/playlist?list=PLE9F6A65165CBC023
2	Подготовка к лабораторным	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры теории функций факультета математики и компьютерных наук ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2019 г.
3	Подготовка к коллоквиуму	Методические указания по выполнению лабораторных работ, утвержденные на заседании Совета экономического факультета ФГБОУ ВО «КубГУ», протокол №8 от 29.06.2017 г. Режим доступа: https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya
4	Выполнение расчетно- графических заданий и контрольных работ	Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании Совета экономического факультета ФГБОУ ВО «КубГУ», протокол №8 от 29.06.2017 г. Режим доступа: http://docspace.kubsu.ru/docspace/handle/1/1125

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, разбора конкретных ситуаций) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационноттелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Объектно-ориентированное программирование и компьютерный инжиниринг».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме *текущего ваданий, разноуровневых заданий, отчетов по индивидуальным и расчетно-графическим заданиям* и **промежуточной аттестации** в форме вопросов и заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

A.C	Код и наименование		Наименование оценочного средства		
№ п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация	
1	ПК-4.4. Ориентируется в современных алгоритмах компьютерной математики и имеет практический опыт разработки программных модулей на основе механикоматематических моделей	Знает основные приемы программирования на основе объектно-ориентированных технологий для компьютерного моделирования при решении прикладных задач; основные концепции разработки вычислительных программ и приложения для компьютерного моделирования.	PF3 №1	Вопрос на зачете 1-10	
2	ПК-4.4. Ориентируется в современных алгоритмах компьютерной математики и имеет практический опыт разработки программных модулей на основе механикоматематических моделей	Умеет реализовать компьютерные алгоритмы иерархией объектов для реализации алгоритмов решения численных задач математической физики и инженерии, проводить анализ производительности программ и анализ результатов расчета.	PΓ3 №2	Вопрос на зачете 10-22	
3	ПК-4.4. Ориентируется в современных алгоритмах компьютерной математики и имеет практический опыт разработки программных модулей на основе механикоматематических моделей	Владеет навыками программирования и разработки эффективных иерархических алгоритмов, анализа структуры вычислительных алгоритмов, связями между задачами и промежуточными методами компьютерного проекта.	PΓ'3 №3	Вопрос на зачете 22–33	

знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерный перечень вопросов и заданий

Расчетно-графические задания

Tun 1

Задание 1. Создать класс *Point*, содержащий следующие члены класса:

- 1. Поля: float x, y;
- 2. Конструкторы, позволяющие создать экземпляр класса:
- с нулевыми координатами;
- с заданными координатами.
- 3. Методы, позволяющие:
 - рассчитать расстояние от начала координат до точки;
 - переместить точку на плоскости на вектор (a, b).
- 4. Свойство:
 - позволяющее получить-установить координаты точки (доступное для чтения и записи);
- 5. Индексатор, позволяющий по индексу 0 обращаться к полю х, по индексу 1
 - к полю у, при других значениях индекса выдается сообщение об ошибке.
- 6. Перегрузку:
 - Meтода ToString() для форматного представления на экране: "(x,y)"
 - операции + со скаляром: одновременно добавляет к полям x и y значение скаляра.
 - операции * на скаляр: одновременно умножает поля х и у на значение скаляра.
 - Операции сравнения == и != двух точек.

Продемонстрировать работу класса.

Задание 2. Создать класс Triangle, содержащий следующие члены класса:

- 1. Поля: float a, b, c; (длины сторон)
- 2. Конструктор, позволяющий создать экземпляр класса с заданными длинами сторон.
- 3. Методы, позволяющие:
 - рассчитать периметр треугольника р;
 - рассчитать площадь треугольника.
- 4. Свойство:
- позволяющее получить-установить длины сторон треугольника (доступное для чтения и записи);
- позволяющее установить, существует ли треугольник с данными длинами сторон (доступное только для чтения).
- 5. Индексатор, позволяющий по индексу 0 обращаться к полю a, по индексу $1-\kappa$ полю b, по индексу $2-\kappa$ полю c, при других значениях индекса выдается сообщение об ошибке.
- 6. Перегрузку:
- метода ToString() для форматного представления на экране: "(a,b,c)"
- операции ++ (--): одновременно увеличивает (уменьшает) значение полей a, b и c на 1;
- констант true и false: обращение к экземпляру класса дает значение true, если треугольник с заданными длинами сторон существует, иначе false;
- операции *: одновременно домножает поля a, b и c на скаляр.
- операции равенства == и !=: треугольники считаются равными, если равны их площади.

Продемонстрировать работу класса.

Задание 3. Создать класс Rectangle, содержащий следующие члены класса:

1. Поля: float a, b; (длины сторон)

- 2. Конструктор, позволяющий создать экземпляр класса с заданными длинами сторон.
- 3. Методы, позволяющие:
- вывести длины сторон прямоугольника на экран;
- рассчитать периметр прямоугольника;
- рассчитать площадь прямоугольника.
- *4.* Свойство:
- позволяющее получить-установить длины сторон прямоугольника (доступное для чтения и записи);
- позволяющее установить, является ли данный прямоугольник квадратом (доступное только для чтения).
- 5. Индексатор, позволяющий по индексу 0 обращаться к полю a, по индексу $1-\kappa$ полю b, при других значениях индекса выдается сообщение об ошибке.
- *6.* Перегрузку:
- Mетода ToString() для форматного представления на экране: "[a,b]"
- операции ++ (--): одновременно увеличивает (уменьшает) значение полей а и b на 1;
- констант true и false: обращение к экземпляру класса дает значение true, если прямоугольник с заданными длинами сторон является квадратом, иначе false;
- операции *: одновременно домножает поля а и b на скаляр.
- операции равенства == и !=: прямоугольники считаются равными, если равны их площади.

Продемонстрировать работу класса.

Задание 4.

Создать класс Point, содержащий следующие члены класса:

- *1.* Поля: float x, y;
- 2. Конструктор, позволяющий создать экземпляр класса:
- с заданными координатами.
- *3.* Методы:
- Статический метод, позволяющий рассчитать расстояние от двух точек;
- 4. Свойство:
- позволяющее получить-установить координаты точки (доступное для чтения и записи);
- 5. Перегрузку:
- 6. Метода ToString() для форматного представления на экране: "(x,y)"

Создать класс Triangle, содержащий следующие члены класса:

- 1. Поля: Point A, B, C; (точки треугольника)
- 2. Конструкторы, позволяющие создать экземпляр класса с заданными точками.
- с параметрами типа Point;
- с 6 параметрами типа float, одна пара соответствует точке;
- 3. Методы, позволяющие:
- рассчитать площадь треугольника.
- 4. Индексатор, позволяющий по индексу 0 обращаться к полю A, по индексу $1-\kappa$ полю B, по индексу $2-\kappa$ полю C, при других значениях индекса выдается сообщение об ошибке.
- 5. Перегрузку: Метода ToString() для форматного представления на экране: "{A;B;C}"

Продемонстрировать работу классов.

Задание 5.

Создать класс Point, содержащий следующие члены класса:

- 1. Поля: float x, y;
- 2. Конструктор, позволяющий создать экземпляр класса:
- с заданными координатами.

- 3. Метолы:
- Статический метод, позволяющий рассчитать расстояние от двух точек;
- Свойство:
- позволяющее получить-установить координаты точки (доступное для чтения и записи);
- Перегрузку:
- Метода ToString() для форматного представления на экране: '(x,y)'

Создать класс Rectangle, содержащий следующие члены класса:

- Поля: Point A, B; (левая верхняя и правая нижняя точки)
- Конструкторы, позволяющие создать экземпляр класса с заданными точками.
- с параметрами типа Point;
- c 4 параметрами типа float, одна пара соответствует точке;
- Методы, позволяющие:
- рассчитать периметр прямоугольника.
- рассчитать площадь прямоугольника.
- Индексатор, позволяющий по индексу 0 обращаться к полю А, по индексу 1 к полю В, при других значениях индекса выдается сообщение об ошибке.
- Перегрузку метода ToString() для форматного представления на экране: '[A;B]' Продемонстрировать работу классов.

Задание 6. Создать класс Vector, содержащий следующие члены класса:

- 1. Поля: float[] v;
- Конструкторы, позволяющий создать экземпляр класса:
- с заданным размером и нулевыми координатами.
- с фактически переданным одномерным массивом.
- Методы:
- Скалярного умножения векторов (статический метод);
- Проекции одного вектора на другой;
- Определение угла между векторами (статический метод)
- 4. Свойство:
- длина вектора;
- индексатор, позволяющее получить-установить координату вектора, если индекс меньше длины, иначе выдается сообщение об ошибке;
- Перегрузку:
- Метода ToString для форматного представления на экране: $\{x1, x2, ...\}$
- Операции сложения (+) векторов
- Операции умножения (*) вектора на число
- Операции скалярного умножения (*) векторов
- Операции [^] -- нахождение угла между векторами

Создать класс Vector3 трехмерных векторов, являющийся наследником класса Vector. Написать метод векторного произведения и перегрузить для него операцию &:

$$\vec{a} \& \vec{b} \equiv [\vec{a} \times \vec{b}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}; \vec{i} = \{1,0,0\}; \vec{j} = \{0,1,0\}; \vec{k} = \{0,0,1\}$$

Продемонстрировать работу классов.

Tun 2

Разработать алгоритм и компьютерную вычислительную программу для решения краевой задачи для гармонических колебаний струны методом конечных элементов с кусочно-линейной аппроксимацией; найти точное аналитическое решение, сравнить его с приближенным, исследовать сходимость решения в зависимости от частоты колебаний о:

B 1.
$$u''(x) + k^2u(x) = x^2$$
. $u(0) = 1$. $u'(1) = 0$. $k = \omega/2$

B 1.
$$u''(x) + k^2u(x) = x^2$$
, $u(0) = 1$, $u'(1) = 0$, $k = \omega/2$
B 2. $u''(x) + k^2u(x) = 2x$, $u'(0) = 1$, $u(1) = 0$, $k = \omega/3$

- $u''(x) + k^2u(x) = 2x-1$, u(0) = 2, u'(1) = 0, $k = \omega/3$ В3.
- $u''(x) + k^2 u(x) = \frac{x^2}{2}$, u'(0) = 1, u(1) = 0, $k = \omega/4$ В 4.
- $u''(x) + k^2 u(x) = e^x$, u(0) = 1, u(1) = 0, $k = \omega$ $u''(x) + k^2 u(x) = e^{-x}$, u'(0) = 1, u(1) = 0, $k = \omega/2$ B 5.
- В 6.
- $u''(x) + k^2 u(x) = x(1-x)$, u'(0) = 1, u(1) = 0, $k = \omega/2$ В 7.
- $u''(x) + k^2 u(x) = x(1 x^2)$, u(0) = 1, u'(1) = 0, $k = \omega$ B 8.
- $u''(x) + k^2 u(x) = x^3$, u'(0) = 2, u'(1) = 0, $k = \omega$ B 9.
- $u''(x) + k^2 u(x) = \cos x$, u(0) = 1, u'(1) = 0, $k = \omega$ B 10.

По результатам работы необходимо подготовить итоговый отчет, включающий в себя описания постановки задачи, метода решения, а также и анализа численного анализа и выводы по результатам выполнения работы.

Зачетно-экзаменационные материалы ДЛЯ промежуточной аттестации (экзамен/зачет)

- 1) Понятие объектно-ориентированное программирование (ООП). Отличия ООП от процедурного программирования. Понятие класса и экземпляра. Архитектура Фон-Неймана и параллельные компьютеры.
- 2) Классификация многопроцессорных систем: классификация Флинна; сильно и слабосвязанные процессоры; системы с разделяемой и распределенной памятью, кластеры Принципы объектно-ориентированного программирования: инкапсуляция, полиморфизм, наследование.
- 3) Платформа .NET Framework, ее назначение и структура. Обзор технологий .NET.
- 4) Структура языка С#. Понятие класса и объекта. Класс object. Классификация ти-пов. Переменные и константы.
- 5) Понятие инкапсуляция и механизмы ее реализации в С#.
- 6) Понятие полиморфизм и механизмы его реализации в Python.
- 7) Понятие наследование и механизмы его реализации в С++.
- 8) Проектирование класса в С#: данные, конструкторы, деструкторы и методы. Создание и инициализация экземпляра класса (объекта). Вызов методов класса.
- 9) Проектирование класса: свойства, индексаторы.
- 10) Проектирование класса: перегрузка методов класса и операторов (математических операторов, операторов сравнения и преобразования типов).
- 11) Проектирование класса: делегаты и события.
- 12) Операции языка Fortran. Приоритеты операций. Выражения. Приведение типов в выражениях.
- 13) Операторы языка: следования, ветвления, цикла, безусловного перехода. Вложение операторов.
- 14) Массив как объект. Одномерные, многомерные и «рваные» массивы и их сравнительная характеристика.
- 15) Строка как объект. Изменяемые и неизменяемые строки и их сравнительная харакеристика.
- 16) Анонимные методы, лямбда-выражения, замыкание и каррирование.
- 17) Понятие «коллекция» в С#. Интерфейсные коллекции. Обзор коллекций Stack, Queue, ArrayList.
- 18) Интерфейсы: основные понятия и использование интерфейсов в построении иерархии классов. Стандартные интерфейсы .Net. Интерфейс IComparable.
- 19) Организация консольного ввода-вывода данных. Форматированный вывод.
- 20) Иерархия потоков: байтовые и символьные потоки. Организация файлового ввода вывода данных. Оценка производительности параллельной программы: ускорение, эффективность.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по данному разделу, знает вопросы основного учебно-программного материала, допускает незначительные ошибки; студент умеет обоснованно применять полученные знания в области объектно-ориентированного программирования к задачам прикладного и практического значения; справился с выполнением заданий, предусмотренных программой дисциплины.

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется реализовывать базовые методы при объектно-ориентированного программирования решении прикладных задач, довольно ограниченный объем выполненных заданий, предусмотренных программой дисциплины.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Барков, И. А. Объектно-ориентированное программирование: учебник / И. А. Барков. Санкт-Петербург: Лань, 2019. 700 с. ISBN 978-5-8114-3586-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/119661
- 2. Бабушкина, И. А. Практикум по объектно-ориентированному программированию: учебное пособие / И. А. Бабушкина, С. М. Окулов. 5-е изд. Москва: Лаборатория знаний, 2020. 369 с. ISBN 978-5-00101-780-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/135561
 - 3 Залогова, Л. А. Основы объектно-ориентированного программирования на базе

языка С#: учебное пособие / Л. А. Залогова. — 2-е изд., стер. — Санкт-Петербург: Лань, 2020. — 192 с. — ISBN 978-5-8114-4757-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/126160

5.2. Периодическая литература

- 1. Журнал "Вычислительная механика сплошных сред" http://www2.icmm.ru/journal/
- 2. Базы данных компании «Ист Вью» http://dlib.eastview.com

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect <u>www.sciencedirect.com</u>
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. "Лекториум ТВ" http://www.lektorium.tv/
- 7. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. КиберЛенинка (http://cyberleninka.ru/);
- 2. Курсы ведущих вузов России" http://www.openedu.ru/;
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
 - 4. Онлайн-курсы и сертификаты от ведущих вузов мира https://ru.coursera.org/.
- 5. Российская система прочностного анализа на основе метода спектральных конечных элементов Fidesys http://www.cae-fidesys.com/ru/about/info

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Общие рекомендации по самостоятельной работе обучающихся.

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных

занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение о самостоятельной работе студентов (утверждено приказом № 272 $Kyб\Gamma Y$ от 03 марта 2016 г.).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа		
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Мебель: учебная мебель Технические средства обучения: Компьютеры	Microsoft Windows Microsoft Office Professional Plus Fortran, C++, C# MatLab

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	

	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (ИС 6,	Комплект специализированной	
ИС 7)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	