МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

«26» мая 2023 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.02.02 ПРИКЛАДНЫЕ ЗАДАЧИ АЛГЕБРЫ И АНАЛИЗА

Направление подготовки

02.04.01 Математика и компьютерные науки

Программа магистратуры

«Математическое и компьютерное моделирование»

Форма обучения

очная

Квалификация

магистр

Рабочая программа дисциплины «Прикладные задачи алгебры и анализа» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.01 Математика и компьютерные науки (уровень высшего образования: магистратура)

Программу составил: доцент, канд. физ. мат. наук, Бунякин А. В.

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов, протокол № 10 от 18.04.2023.

Заведующий кафедрой математических и компьютерных методов Лежнев А. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук, протокол № 3 от 20.04.2023.

Председатель УМК факультета математики и компьютерных наук Шмалько С. П.

ally

Ahun

Рецензенты:

Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю. Г., доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель дисциплины

Рассмотреть принципы, основные методы построения и обоснования, место и роль математических моделей объектов, процессов и явлений, связанных с актуальными областями приложений. Подготовить студентов к учебно-исследовательской и научно-исследовательской работе по алгебраическим и геометрическим вопросам математического моделирования.

1.2 Задачи дисциплины

- дать представление о типовых математических схемах моделирования, идентификации, адекватности и верификации моделей;
- дать представление о геометрических и групповых методах исследования модельных уравнений, научить оценивать разрешимость модельных уравнений и обоснованно осуществлять выбор методов и средств решения, а также интерпретировать полученные результаты;
- научить применять основные принципы работы со структурными элементами математической модели (геометрический, аналитический и алгебраический уровни). развить устойчивый навык работы с такими задачами для дальнейшей профессиональной деятельности как научной, так и педагогической.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Прикладные задачи алгебры и анализа» относится к части, формируемой участниками образовательных отношений, и является дисциплиной, изучаемой по выбору.

Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для решения исследовательских задач. Перечень предшествующих дисциплин, необходимых для изучения данной дисциплины: математический анализ, линейная алгебра, дифференциальная геометрия, функциональный анализ, обыкновенные дифференциальные уравнения с частными производными, уравнения математической физики, теория устойчивости.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций.

Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-1 – Способен демонстрировать фунда	аментальные знания математических и естественных
наук, программирования и информационни	ых технологий
ПК-1.1 – Демонстрирует навыки реше-	Знает основные понятия, задачи, методы и результа-
ния задач классической математики, тео-	ты предшествующих учебных дисциплин
ретической механики, математической	Умеет решать типовые задачи, характерные для
физики	предшествующих учебных дисциплин
	Владеет навыками решения задач из разделов мате-
	матики, базовых для вариационного исчисления
ПК-1.2 – Демонстрирует навыки про-	Знает методологию решения прикладных задач ма-
граммирования подготовленных алго-	тематическими методами
ритмов решения вычислительных задач,	Умеет представлять в математической форме свой-
разработки структуры и программирова-	ства и отношения, представленные в описательной
ния реляционных баз данных, а также	форме

Код и наименование индикатора*	Результаты обучения по дисциплине
экспертных систем	Владеет навыками интерпретации решений вариационных задач
ПК-1.4 — Собирает и анализирует научно- техническую информацию с учетом базовых представлений, полученных в	Знает методы решения классических вариационных задач Умеет применять методы вариационного исчисле-
области фундаментальной математики,	ния к практически возникающим задачам
механики, естественных наук, программирования и информационных технологий	Владеет навыками решения подчинённых задач, возникающих в области вариационного исчисления
ПК-2 – Способность проводить научные конкретной области профессиональной дея	исследования, на основе существующих методов в ительности
ПК-2.1 – Демонстрирует практические навыки в проведении научно-исследовательской работы в профессио-	Специальные разделы алгебры, дифференциальной геометрии, функционального анализа, дифференциальных уравнений
нальной области	Анализировать задачи специализации, выбирать методы их решения, представлять и интерпретировать полученные результаты
	Навыками практического использования алгебраических и геометрических методов в математического моделировании
ПК-2.2 – Составляет план решения, ставит в ходе решения промежуточные цели	Знает основные приёмы составления математических моделей
для достижения основной, критикует предложенный путь решения задачи и	Умеет определять надлежащую степень детализации составляемых математических моделей
прогнозирует возможный результат	Владеет навыками обеспечения адекватности математических моделей
ПК-2.3 – Анализирует поставленные задачи и выбирает эффективные математи-	Знает принципы сопоставления теоретических результатов с фактическими данными
ческие методы при разработке алгоритмов и вычислительных программ для	Умеет решать обратные задачи для определения значений параметров математических моделей
решения современных задач естествознания	Владеет навыками применения компьютерных программ для проведения расчётов, связанных с моделированием

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач. ед. (72 часа), их распределение по видам работ представлено в таблице.

Вид учебной работы		Семестры (часы))
	часов	2			
Контактная работа, в том числе:	26,2	26,2			
Аудиторные занятия (всего):	26	26	-	-	-
Занятия лекционного типа	12	12	-	-	-
Лабораторные занятия	14	14	-	-	-
Занятия семинарского типа	-	-	-	-	-

(семинары, практ						
Иная контактна	Иная контактная работа:					
Контроль самост	оятельной работы (КСР)	-	-	-	-	-
Промежуточная	аттестация (ИКР)	0,2	0,2	-	-	-
Самостоятельна	ая работа, в том числе:	45,8	45,8			
Курсовая работа		-	-	-	-	-
Проработка учеб	ного (теоретического) материала	14	14	-	-	-
Выполнение инд сообщений, през	20	20	-	-	-	
Реферат		8	8	-	-	-
Подготовка к тек	сущему контролю	3,8	3,8	-	-	-
Контроль:						
Подготовка к экзамену		-	-	-	-	-
Общая час.		72	72	-	-	-
трудоемкость	в том числе контактная работа	26,2	26,2			
	зач. ед.	2	2			

2.2 Структура дисциплины Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые во 2 семестре

No			Количество часов			
№			Аудиторная			Внеаудитор-
раз-	Наименование разделов	Всего	работа			ная работа
дела			Л	ПЗ	ЛР	CPC
1.	Моделирование систем		4		6	10
2.	Основные структурные элементы математической модели	24	4		4	20
3.	Введение в групповой анализ дифференциальных уравнений		4		4	15,8
	ИТОГО по разделам дисциплины:		12		14	45,8
	Промежуточная аттестация (ИКР)					
	Общая трудоемкость по дисциплине	72				

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Темы лекций	Форма текущего контроля
1	2	3	4
1.	Моделирование систем	Понятия системы, модели и моделирования. Аксиоматика теории систем. Классификация видов моделирования, место метода математического моделирования в методологической цепочке взаимосвязей конкретной естественной дисциплины и абстрактного математического аппарата. Методология мат. моделирования. Формализация и алгоритмизация, точ-	Реферативный доклад

		ность моделей, их идентификация, адекватность, робастность, верификация, вычислительный эксперимент. Типовые математические схемы моделирования (дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т.д.).	
2.	Основные структурные элементы математической модели	Геометрический (координатные системы и типы геометрических пространств, их базис и размерность), аналитический (типы системы уравнений движения в широком смысле), алгебраический (группы допустимых преобразований пространства модели и их инварианты). Преобразования Галилея, Галилеева группа и уравнения Ньютона. Функции Лагранжа и Гамильтона. Фазовое пространство, группа фазового потока и её инварианты. Циклические координаты, пример движения материальной точки в плоском центральном поле. Методы подобия и размерности: формула размерности, л-теорема, примеры математического маятника и движения жидкости в трубе. Риманова, псевдориманова и псевдоевклидова метрики. Пространство Минковского, преобразования Лоренца и группа Пуанкаре. Постулаты специальной и общей теории относительности. Алгебра Ли векторных полей и функций Гамильтона	Реферативный доклад
3.	Введение в груп- повой анализ дифференциаль- ных уравнений	Автомодельные решения уравнений математической физики и автоволновые процессы. Примеры: нелинейная стадия развития неустойчивости и критические возмущения в моностабильной активной среде. Однопараметрические группы преобразований. Уравнение Ли, инварианты, инфинитезимальный оператор группы, инвариантные уравнения. Группы, допускаемые дифференциальными уравнениями. Группы точечных преобразований, формулы продолжения, определяющие уравнения и примеры их решения (уравнения переноса, газодинамики, теплопроводности), алгебры Ли и многопараметрические группы	Реферативный доклад

2.3.2 Занятия семинарского типа

Занятия семинарского типа - не предусмотрены.

2.3.3 Лабораторные занятия

N	<u>√o</u>	Наименование раздела	Темы лабораторных занятий	Форма текущего контроля
1	1	раздела 2	3	4
	1.	Моделирование	Модели, получаемые из фундаментальных за-	Расчетно-

	систем	конов природы. Вариационные принципы и	графическое
		математические модели. Универсальность ма-	задание
		тематических моделей. Некоторые модели	
		простейших нелинейных объектов	
		Методы подобия и размерности: формула раз-	
		мерности, π-теорема, примеры математическо-	
	Основные струк-	го маятника и движения жидкости в трубе. Ри-	
	турные элементы	манова, псевдориманова и псевдоевклидова	Расчетно-
2.	математической	метрики. Пространство Минковского, преобра-	графическое
	математической модели		задание
	модели	ты специальной и общей теории относительно-	
		сти. Алгебра Ли векторных полей и функций	
		Гамильтона	
		Автомодельные решения уравнений математи-	
		ческой физики и автоволновые процессы.	
		Примеры: нелинейная стадия развития не-	
		устойчивости и критические возмущения в мо-	
		ностабильной активной среде. Однопарамет-	
		рические группы преобразований. Уравнение	Расчетно-
3.	повой анализ	Ли, инварианты, инфинитезимальный оператор	графическое
3.		группы, инвариантные уравнения. Группы, до-	задание
	ных уравнений	пускаемые дифференциальными уравнениями.	заданис
		Группы точечных преобразований, формулы	
		продолжения, определяющие уравнения и	
		примеры их решения (уравнения переноса, га-	
		зодинамики, теплопроводности), алгебры Ли и	
		многопараметрические группы	

2.3.4 Примерная тематика курсовых работ

Курсовые работы - не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа студентов по дисциплине включает следующие виды деятельности:

проработку и анализ лекционного материала;

изучение учебной литературы;

поиск информации в сети Интернет по различным вопросам;

решение задач по темам курса;

работу с вопросами для самопроверки;

подготовку к контрольной работе;

подготовку к зачёту.

Перечень учебно-методического обеспечения дисциплины представлен в таблице.

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
	Подготовка к текущему контролю	Методические указания для подготовки к занятиям лекционного и семинарского типа. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.

2.	Выполнение лабора- торных работ и рас- четно-графических заданий	Методические указания по выполнению самостоятельной работы обучающихся. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. Методические указания по использованию интерактивных методов обучения. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г. Методические указания по подготовке эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г. Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. Методические указания по выполнению расчетнографических заданий. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО
	1	«КубГУ». Протокол № 5 от 05 мая 2022 г.
3.	Подготовка и оформление отчетов по практике	1. Методические указания по подготовке и оформлению отчета по практике. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
4.	Выполнение и защита выпускной квалифи-кационной работы	1. Методические указания по выполнению и защите выпускной квалификационной работы (бакалавриат, магистратура, специалитет). Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла;
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме;
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки

02.04.01 Математика и компьютерные науки реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и

интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития требуемых компетенций обучающихся:

- Практическая работа с элементами исследования.
- Лабораторная работа в компьютерном классе, компьютерная технология обучения.
- Метод проектов.
- Поисковый, эвристический метод.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля и промежуточной аттестации

В ходе текущей аттестации оцениваются промежуточные результаты освоения студентами дисциплины «Прикладные задачи алгебры и анализа». Текущий контроль осуществляется с использованием традиционной технологий оценивания качества знаний студентов и включает оценку самостоятельной (внеаудиторной) и аудиторной работы (в том числе рубежный контроль).

В качестве оценочных средств используются:

- различные виды устного и письменного контроля (выступление на семинаре, реферат, учебно-методический проект);
- индивидуальные и/или групповые домашние задания, творческие работы, проекты и т.д.;
 - отчет по практической работе.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Формой промежуточного контроля является анализ и обсуждение представленных разработок, собеседование и качественная оценка хода выполнения индивидуальных заданий по дисциплине, публичные доклады по выбранным темам.

Перечень вопросов для организации промежуточного контроля:

- 1. Понятия системы, модели и моделирования. Аксиоматика теории систем.
- 2. Классификация видов моделирования, место метода математического моделирования в методологической цепочке взаимосвязей конкретной естественной дисциплины и абстрактного математического аппарата.
- 3. Методология мат. моделирования. Построение концептуальных моделей систем и их формализация. Алгоритмизация моделей систем и их компьютерная реализация.
- 4. Методика разработки и компьютерной реализации моделей. Точность моделей, их идентификация, адекватность, робастность, верификация, вычислительный эксперимент. Получение и интерпретация результатов моделирования систем.
- 5. Типовые математические схемы моделирования. Непрерывнодетерминированные модели (D-схемы).
- 6. Дискретно-детерминированные модели (F- схемы). Дискретно-стохастические модели (P- схемы). Непрерывно-стохастические модели (Q -схемы). Сетевые модели (N-схемы). Комбинированные модели (A- схемы).
- 7. Регрессионные модели (линейная регрессия, нелинейное оценивание, множественная регрессия).
- 8. Основные структурные элементы математической модели: геометрический (координатные системы и типы геометрических пространств, их базис и размерность), аналитический (типы системы уравнений движения в широком смысле), алгебраический (группы допустимых преобразований пространства модели и их инварианты).
- 9. Преобразования Галилея, Галилеева группа и уравнения Ньютона. Функции Лагранжа и Гамильтона. Фазовое пространство, группа фазового потока и её инварианты.

- 10. Циклические координаты, пример движения материальной точки в плоском центральном поле.
- 11. Методы подобия и размерности: формула размерности, π -теорема, примеры математического маятника и движения жидкости в трубе.
- 12. Риманова, псевдориманова и псевдоевклидова метрики. Пространство Минковского, преобразования Лоренца и группа Пуанкаре.
 - 13. Постулаты специальной и общей теории относительности.
 - 14. Алгебра Ли векторных полей и функций Гамильтона.
- 15. Автомодельные решения уравнений математической физики и автоволновые процессы. Примеры: нелинейная стадия развития неустойчивости и критические возмущения в моностабильной активной среде.
 - 16. Однопараметрические группы преобразований. Уравнение Ли, инварианты.
 - 17. Инфинитезимальный оператор группы, инвариантные уравнения.
- 18. Группы, допускаемые дифференциальными уравнениями. Группы точечных преобразований, формулы продолжения.
 - 19. Определяющие уравнения.
- 20. Примеры решения определяющих уравнений (уравнения переноса, газодинамики, теплопроводности).
 - 21. Алгебры Ли и многопараметрические группы.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Треногин, В.А. Обыкновенные дифференциальные уравнения [Электронный ресурс] : учебник / В.А. Треногин. Электрон. дан. Москва : Физматлит, 2009. 312 с. Режим доступа: https://e.lanbook.com/book/2341
- 2. Зайцев, В.Ф. Справочник по обыкновенным дифференциальным уравнениям [Элек-тронный ресурс] : справочник / В.Ф. Зайцев, А.Д. Полянин. Электрон. дан. Москва : Физматлит, 2001. 576 с. Режим доступа: https://e.lanbook.com/book/2368
- 3. Петровский, И.Г. Лекции по теории обыкновенных дифференциальных уравнений [Электронный ресурс] : учебное пособие / И.Г. Петровский ;под ред. Мышкис А.Д.а, Олейник О.А.. Электрон. дан. Москва : Физматлит, 2009. 208 с. Режим доступа: https://e.lanbook.com/book/59554

5.2. Дополнительная литература:

- 1. Аверченков, В.И. Основы математического моделирования технических систем: учебное пособие / В.И. Аверченков, В.П. Федоров, М.Л. Хейфец. 3-е изд., стереотип. Москва: Издательство «Флинта», 2016. 271 с.: схем., ил. Библиогр. в кн. ISBN 978-5-9765-1278-8; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=93344
- 2. Алескеров, Ф.Т. Анализ математических моделей Базель II [Электронный ресурс] / Ф.Т. Алескеров, И.К. Андриевская, Г.И. Пеникас, В.М. Солодков. Москва : Физматлит, 2010. 288 с. Режим доступа: https://e.lanbook.com/book/2099
- 3. Боев, В.Д. Компьютерное моделирование: курс / В.Д. Боев, Р.П. Сыпченко. Москва: Интернет-Университет Информационных Технологий, 2010. 455 с.: ил.,табл., схем.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=233705
- 4. Бродский, Ю.И. Лекции по математическому и имитационному моделированию / Ю.И. Бродский. Москва ; Берлин : Директ-Медиа, 2015. 240 с. : ил., схем., табл. Биб-

- лиогр. в кн. ISBN 978-5-4475-3697-8 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429702
- 5. Кузовлев, В.П. Курс геометрии: элементы топологии, дифференциальная геометрия, основания геометрии [Электронный ресурс]: учебник / В.П. Кузовлев, Н.Г. Подаева. Электрон. дан. Москва: Физматлит, 2012. 208 с. Режим доступа: https://e.lanbook.com/book/59618
- 6. Малышев, Н.Г. О системах и их моделировании / Н.Г. Малышев. Москва : Физматлит, 2017. 200 с. : табл., схем., ил. Библиогр. в кн. ISBN 978-5-9221-1757-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=485263
- 7. Рейзлин, В. И. Математическое моделирование : учебное пособие для магистратуры / В. И. Рейзлин. 2-е изд., перераб. и доп. М. : Издательство Юрайт, 2018. 126 с. (Серия : Университеты России). ISBN 978-5-534-01579-9. Режим доступа : http://www.biblio-online.ru/book/5133D74D-6E4F-40E0-B14B-4F90C0BC10C4
- 8. Свешников, А.Г. Теория функций комплексной переменной: учебник / А.Г. Свешников, А.Н. Тихонов. 6-е изд., стереотип. Москва: Физматлит, 2010. 334 с. (Курс высшей математики и математической физики). ISBN 978-5-9221-0133-2 (Вып. 5), 978-5-9221-0134-9; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=75710

5.3. Периодические издания:

- 1. Журнал «Математическое моделирование»
- 2. Журнал «Журнал вычислительной математики и математической физики»
- 3. Журнал «Вычислительные методы и программирование»
- 4. Журнал «Фундаментальная и прикладная математика»

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Научная электронная библиотека Российского фонда фундаментальных исследований (РФФИ) http://www.elibrary.ru/
- 2. Доступ к базам данных компании EBSCO Publishing, насчитывающим более 7 тыс. названий журналов, более 3,5 тыс. рецензируемых журналов, более 2 тыс. брошюр, 500 книг, 500 журналов и газет на русском языке. http://search.ebscohost.com/
- 3. Базы данных Американского института физики American Institute of Physics (AIP) http://scitation.aip.org
- 4. Электронный доступ к авторефератам http://vak.ed.gov.ru/search/ http://vak.ed.gov.ru/announcements/techn/581/
- 5. Электронная библиотека диссертаций» Российской Государственной Библиотеки (РГБ) http://diss.rsl.ru/
- 6. Бесплатная специализированная поисковая система Scirus для поиска научной информации http://www.scirus.com
- 7. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/window
 - 8. Библиотека электронных учебников http://www.book-ua.org/
- 9. РУБРИКОН информационно-энциклопедический проект компании «Русс портал» http://www.rubricon.com/.

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составление индивидуальных планов самостоятельной работы студента с указанием темы и видов заданий, форм и сроков представления результатов, критерием оценки самостоятельной работы;
- консультации (индивидуальные и групповые), в том числе с применением дистанционной среды обучения;
- промежуточный контроль хода выполнения заданий строится на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования электронного портфеля студента.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

7.1 Перечень необходимого программного обеспечения

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Mathematica Computer Aided Design (MathCAD) 2014 Professional, (MathSoft Inc., USA).
- 4. Maple V Power Edition ver. 10.0, (Maple Waterloo Inc., Canada).
- 5. Пакет Simulink MATLAB.

9. Материально-техническое обеспечение по дисциплине (модулю)

N.C.	Вид работ	Материально-техническое обеспечение дисциплины
№		(модуля) и оснащенность
1	Лекционные занятия	Лекционная аудитория, специально оборудованная муль-
		тимедийными демонстрационными комплексами, учеб-
		ной мебелью
2	Лабораторные занятия	Помещение для проведения лабораторных занятий осна-
		щенное учебной мебелью, персональными компьютерами
		с доступом к сети «Интернет» и обеспечением доступа в
		электронную информационно-образовательную среду ор-
		ганизации
3	Групповые (индиви-	Помещение для проведения групповых (индивидуальных)
	дуальные) консульта-	консультаций, учебной мебелью, оснащенное презента-
	ции	ционной техникой (проектор, экран, ноутбук) и соответ-
		ствующим программным обеспечением
4	Текущий контроль,	Помещение для проведения текущей и промежуточной
	промежуточная атте-	аттестации, оснащенное учебной мебелью, персональны-
	стация	ми компьютерами с доступом к сети "Интернет" и обес-
		печением доступа в электронную информационно-
		образовательную среду организации
5	Самостоятельная ра-	Кабинет для самостоятельной работы, оснащенный ком-
	бота	пьютерной техникой с возможностью подключения к се-
		ти «Интернет», программой экранного увеличения и
		обеспеченный доступом в электронную информационно-
		образовательную среду университета