МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет химии и высоких технологий

УТВЕРЖДАЮ

Проректор по учебной работе, качеству образования — первый

Mill

проректор

Хагуров Т.А.

подпись

« 26 »

2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Б1.В.ДВ.02.02 «КОЛЕБАТЕЛЬНАЯ СПЕКТРОСКОПИЯ МЕТАЛЛОПОЛИМЕРОВ»**

Направление подготовки- 04.03.01 Химия
Направленность - Неорганическая химия и химия координационных соединений
Форма обучения – очная
Квалификация - бакалавр

Рабочая программа дисциплины «Колебательная спектроскопия металлополимеров» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО 3++) по направлению подготовки 04.03.01 Химия (уровень бакалавриата)

Программу составил

д.х.н., профессор кафедры общей, неорганической химии и информационновычислительных технологий в химии Буков Н.Н.

Рабочая программа утверждена на заседании кафедры общей, неорганической химии и информационно-вычислительных технологий в химии 04.04.2023 г., протокол № 7. Зав. кафедрой к.х.н., доцент Волынкин В.А.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий 17.04.2023 г., протокол № 7. Председатель УМК факультета доцент Беспалов А.В.

Эксперты:

Р.В. Горохов, главный специалист ООО «Современные технологии», кандидат химических наук, доцент

В.А. Исаев, профессор кафедры физики и информационных систем Кубанского государственного университета, доктор физико-математических наук, доцент

1 Цели и задачи изучения дисциплины

Преподавание курса «Колебательная спектроскопия металлополимеров» имеет целью дать студенту понимание принципиальных основ, практических возможностей и ограничений методов колебательной спектроскопии при исследовании химических соединений металлополимеров.

В курсе студентам дается умение интерпретировать и грамотно оценивать экспериментальные данные колебательной спектроскопии, в том числе публикуемые в научной литературе, позволяющие извлекать уникальную и принципиально важную информацию о строении и свойствах металлополимеров.

1.1 Цель дисциплины

Дать студентам химикам-неорганикам широкого профиля минимальный набор сведений в области колебательной спектроскопии, необходимый для решения конкретных задач по идентификации и определению строения металлополимеров. Научить оптимальному выбору методов колебательной спектроскопии для решения поставленных задач, знать основы теории и эксперимента и делать заключения на основании анализа и сопоставления имеющихся спектральных данных.

1.2 Задачи дисциплины

В результате изучения данной дисциплины студенты должны

1) знать:

- основы теории и эксперимента колебательной спектроскопии
- классификацию и характеристику методов колебательной спектроскопии;
- теоретические вопросы колебательной спектроскопии на качественном уровне;
- проблемы получения и регистрации колебательных спектров;
- методы определения энергетических и геометрических параметров химических связей и молекул;
- принципы работы серийных спектральных приборов;
- стратегию применения методов колебательной спектроскопии при идентификации и качественном анализе химических соединений.

2) уметь:

- выбирать оптимальные методы колебательной спектроскопии для исследования конкретных химических соединений и веществ;
- интерпретировать спектральные данные колебательной спектроскопии;
- готовить исследуемые вещества для спектрального анализа в выбранном диапазоне электромагнитных волн;
- идентифицировать химические соединения по данным колебательной спектроскопии;
- применять данные методов колебательной спектроскопии при исследовании химических процессов.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Колебательная спектроскопия металлополимеров» относится к вариативной части Блока 1 учебного плана. Предшествующей дисциплиной является «Физические методы анализа», читаемой в третьем семестре.

Знания, приобретенные при освоении данного курса, будут использованы при решении структурных задач исследовательских химических дисциплин по неорганической химии и химии координационных соединений.

1.4 Перечень планируемых результатов обучения по дисциплине «Колебательная спектроскопия металлополимеров», соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций: ОПК-2, ПК-1 и ПК-2

	Ин-		В результате і	изучения учебной	дисциплины
No	декс	Содержание	обу	учающиеся должн	ы
П.П	компе петен- тен- ции	компетенции (или её части)	знать	уметь	владеть
1.	ПК-2	владением ба-	классифика-	выбирать оп-	методологи-
		зовыми навы-	цию и харак-	тимальные ме-	ей колеба-
		ками использо-	теристику ме-	тоды колеба-	тельной
		вания совре-	тодов колеба-	тельной спек-	спектроско-
		менной аппара-	тельной спек-	троскопии для	пии
		туры при про-	троскопии;	исследования	
		ведении науч-	теоретические	конкретных	
		ных исследова-	вопросы коле-	химических со-	
		ний	бательной	единений и ве-	
			спектроско-	ществ	
			пии на каче-		
			ственном		
			уровне		
2	ПК-3	владением си-	стратегию	применять дан-	методологи-
		стемой фунда-	применения	ные методов	ей исследо-
		ментальных	методов коле-	колебательной	вания хими-
		химических	бательной	спектроскопии	ческих про-
		понятий	спектроско-	при исследова-	цессов и
			пии при иден-	нии химиче-	строения хи-
			тификации и	ских процессов	мических со-
			качественном		единений
			анализе хими-		методами
			ческих соеди-		колебатель-
			нений		ной спектро-
					скопии

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице.

Вид учебной работы		Всего	Cen	лест	гры	
	-	часов	7			
Контактная работа, в том числе			108,2			
Аудиторные занятия (всего)			102			
Занятия лекционного ти	па	34	34			
Лабораторные занятия		68	68			
Занятия семинарского т ские занятия)	типа (семинары, практиче-	-	ı			
Инод монтоминод побе	DTT 0.4	62	6.2			
Иная контактная рабо Контроль самостоятель		6,2	6,2			
Промежуточная аттеста	• /	0,2	0,2			
Самостоятельная рабо	,	71,8	71,8			
Курсовая работа	na, b low mene.	71,0	-			
Проработка учебного м	атериа па	71,8	71,8			
Выполнение индивидуа	•	-	-			
Реферат	wilding out	_	_			
1 5 4 5 5 11						
Контроль		-	-			
Подготовка к экзамену		-	-			
•						
Общая трудоемкость час		180	180			
	в том числе контактная работа	108,2	108,2			
	зач. ед.	5	5			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 4 семестре

No		Количество часов				
pa3			Аудиторная работа			Само-
де-	Наименование разделов	Всего	Л	ПЗ	ЛР	стоя- тельная работа
1.	Введение.	3,8	2	-	-	1,8
2.	Спектроскопия колебательных переходов в молекулах.	90	16	-	28	46
3.	Применение колебательной спектроскопии в химии координационных соединений металлополимеров.	80	16	-	40	24
	Всего:		34	-	68	71,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

No			Форма
pa	Наименование		теку-
3	раздела	Содержание раздела	щего
де	риздели		кон-
ла			троля
1	2	3	4
1	Введение	Физическая теория метода. Возможности,	УО
		области применения и интеграция методов	
		колебательной спектроскопии.	
2	Спектроско-	Квантовомеханический подход к описанию	УО,
	пия колеба-	колебательных спектров Уровни энергии,	ЛР
	тельных пере-	их классификация. Фундаментальные,	
	ходов в моле-	обертонные и составные частоты. Инфра-	
	кулах	красные (ИК) спектры поглощения и спек-	
		тры комбинационного рассеяния (КР).	
		Правила отбора и интенсивность полос ко-	
		лебательных переходов в ИК-спектрах по-	
		глощения и в спектрах КР.	
		Классический подход к решению прямой и	
		обратной колебательных задач. Частоты и	
		формы нормальных колебаний молекул.	

ьные
ине-
е по-
ний.
вле-
мых
грии
(еле-
нор-
: ИК
еба-
и её
KP-
л.
Ка- ЛР, СР
При-
х из-
ами-
гики
KP-
ВО и
еги-

2.3.2 Занятия семинарского типа Занятия семинарского типа - не предусмотрены

2.3.3 Лабораторные занятия

№	Наименование раздела	Наименование лабораторных работ	Форма гекущего контроля
1.	Введение	Техника безопасности при работе в химической лаборатории. Работа с электроизмерительными и оптическими приборами.	УО
2.	Спектроскопия колебательных переходов в моле-кулах	Измерение ИК спектров пленок полимеров. Измерение ИК спектров твердых соединений. Измерение ИК-спектров поглощения жидких соединений.	ЛР

3.	Применение коле-	Работа с Базами данных по ИК спектрам.	ЛР
	бательной спек-	Самостоятельная работа №1.	
	троскопии в хи-	Самостоятельная работа №2.	
	мии металлопо-	Итоговая самостоятельная работа	
	лимеров		

2.3.4 Примерная тематика курсовых работ Проведение курсовых работ по дисциплине — не предусмотрено

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Nº	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
4.	Введение	Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования. Молекулярная спектроскопия. Уч. пособие, КубГУ,
		http://www.kubsu.ru/sites/default/files/department/MOLEKULY RNAYSPEKTROSKOPIY_6.pdf
5.	Спектроско-	1.Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова
	пия колеба-	С.Л. Физические методы исследования: Колебательная
	тельных пе-	спектроскопия. Уч. пособие, КубГУ,
	реходов в мо-	http://www.kubsu.ru/sites/default/files/department/KOLEBATE
	лекулах	LNAYSPEKTROSKOPIY_4.pdf
6.	Применение	Буков Н.Н., Костырина Т.В., Абрамов Д.Е., Фурсина А.Б.
	колебатель-	Физические методы исследования. Часть 2. Колебательная
	ной спектро-	спектроскопия. Уч. пособие, КубГУ,
	скопии в хи-	http://www.kubsu.ru/sites/default/files/department/KOLEBATE
	мии	LNIESPEKTRI_3.pdf

3. Образовательные технологии

Семестр	Вид занятия (Л, ПР, ЛР)	Используемые интерактивные образовательные технологии	Количе- ство часов
4	Л	электронные презентации	6
	ПР	-	
	ЛР	решение проблемных ситуаций в	6
		составе малых групп.	
Итого:			$1\overline{2}$

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль осуществляется в устной и электронной форме в процессе выполнения лабораторных работ. Промежуточный контроль проводится в виде устного опроса и выполнения самостоятельных работ. Итоговый контроль осуществляется приемом зачета в 4 семестре.

Критерии оценки сформированных компетенций определяются уровнем усвоения изучаемого материала

- обучаемый имеет определенное представление об ИК спектральных методах исследования металлополимеров, но не проявляет их должной осмысленности и не справляется с выполнением соответствующих письменных и экспериментальных работ (незачтено);
- обучаемый имеет четкие представления об ИК спектральных методах исследования металлополимеров, понимает их сущность, однако обнаруживает затруднение в их воспроизведении и применении на практике, что приводит к необходимости уточняющих и дополнительных вопросов в процессе проверки (зачтено, удовл);
- обучаемый достаточно полно осмыслил материал об ИК спектральных методах исследования металлополимеров, с пониманием формулирует соответствующие понятия (теоретические положения), хотя при их обосновании и воспроизведении нуждается в некоторых уточнениях, обнаруживает умение применять усвоенные знания на практике, допуская мелкие, несущественные недочеты в письменных работах (зачтено, хор);
- высший уровень владения материалом состоит в глубоком осмыслении ИК спектральных методов исследования металлополимеров на понятийном уровне, в умении свободно и логично воспроизводить и обосновывать содержащиеся в них положения примерами и фактами, а также не допускать ошибок при выполнении письменных и практических работ, проявлять самостоятельность и элементы творчества (зачтено, отл).

4.1 Фонд оценочных средств для проведения текущей аттестации

ТЕМЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 1

по курсу «Колебательная спектроскопия металлополимеров» по теме «Измерение ИК спектров твердых соединений»

Записать в таблетках с KBr и в суспензии с вазелиновым маслом, провести обработку и отнесение полос поглощения ИК спектров твердых солей следующих соединений:

- А) безводных и кристаллогидратов сульфатов натрия и меди;
- Б) моно-, ди- и тризамещенных фосфатов натрия;
- В) кислых, основных и нормальных карбонатов калия и кальция;
- Г) алюмокалиевых и хромокалиевых квасцов;
- Д) нитратов калия, натрия и лития;

ТЕМЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 2

по курсу «Колебательная спектроскопия металлополимеров» по теме «Измерение ИК-спектров поглощения газов и жидких соединений

Записать, провести обработку и отнесение полос поглощения ИК спектров газов и растворов следующих соединений:

- А) пары воды, аммиака, сероводорода, бензола, хлороформа;
- Б) первичных и вторичных аминов;
- В) кислых, основных и нормальных карбонатов калия и кальция;
- Г) алюмокалиевых и хромокалиевых квасцов;
- Д) нитратов калия, натрия и лития;

ТЕМА ИТОГОВОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

по курсу «Колебательная спектроскопия металлополимеров»

Записать спектры, провести отнесение полос поглощения и установить химическую формулу и строение неизвестного соединения.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Вопросы к зачету

- 1. Общая характеристика методов колебательной спектроскопии.
- 2. Полуэмпирические методы в колебательной спектроскопии.
- 3. Прямая и обратная спектральная колебательная задача.
- 4. Законы светопоглощения.
- 5. Вероятности колебательных переходов и правила отбора.
- 6. Интенсивности в колебательных спектрах.
- 7. Химические процессы, влияющие на ширину спектральной линии.
- 8. Обработка результатов спектральных измерений.
- 9. Естественные пределы спектральных измерений.
- 10. Концепция групповых частот в колебательной спектроскопии
- 11. Корреляция силовых постоянных связей.
- 12. Правила отбора в колебательной спектроскопии
- 13. Симметрия молекулярных колебаний
- 14. Методика эксперимента в колебательной спектроскопии.
- 15.Влияние растворителя на колебательные спектры
- 16. Различия в ИК- и КР-спектроскопии.
- 17. Нормальные колебания многоатомных молекул.
- 18. Анализ нормальных колебаний молекул.
- 19. Многоатомные молекулы.
- 20. Металлополимеры с азотсодержащими лигандами.
- 21. Металлополимеры с кислородсодержащими лигандами.
- 22. Металлополимеры с серосодержащими лигандами.
- 23. Металлополимеры с полидентатными лигандами.
- 24. Металлорганические соединения.
- 25. Бионеорганические соединения.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Пентин, Ю.А. Физические методы исследования в химии [Текст] : Учебник для студентов вузов. М. : Изд-во "МИР" Изд-во "АСТ", 2003. 683с. : ил. (Методы в химии). Библиогр. : с. 658-661. ISBN 5030034706. ISBN 5170187602 : 358.00.
- 2. Физические методы исследования: колебательная спектроскопия [Текст]: учебное пособие / Н.Н. Буков, Ф.А. Колоколов, Т.В. Костырина, С.Л. Кузнецова; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2010. 53 с.: ил. Библиогр.: с. 46. 8 р. 45 к.
- 3. Лебухов В.И. Физико-химические методы исследования [Электронный ресурс]: Учебник / В.И. Лебухов, А.И. Окара, Л.П. Павлюченкова; под ред. А.И. Окара. СПб.: Издательство «Лань», 2012. 480 с. : ил. (Учебник для вузов. Специальная литература). ISBN: 978-5-8114-1320-1. Режим доступа: https://e.lanbook.com/book/4543#book name

5.2 Дополнительная литература:

- 1. Васильева, В.И. Спектральные методы анализа. Практическое руководство [Электронный ресурс]: Учебное пособие / В.И. Васильева, О.Ф. Стоянова, И.В. Шкутина. С.И. Карпов; под. Ред. В.Ф. Семенова. СПб.: Издательство «Лань», 2014. 416 с. (Учебники для вузов. Специальная литература). ISBN: 978-5-8114-1638-7. Режим доступа: https://e.lanbook.com/book/50168#book_name
- 2. Пентин, Ю.А. Основы молекулярной спектроскопии [Текст]: учебное пособие для студентов вузов / Ю. А. Пентин, Г. М. Курамшина. М.: Мир: БИНОМ. Лаборатория знаний, 2008. 398 с.: ил. (Методы в химии). Библиогр.: с. 392-393. ISBN 9785947747652. ISBN 9785030038469: 379.50.

5.3. Периодические издания:

Периодические журналы: «Химия и жизнь», «Журнал Общей химии»,

«Журнал Прикладной спектроскопии»,

«Координационная химия»,

«Журнал Структурной химии»,

«Российский химический журнал» и др.

6. Перечень ресурсов информационно-телекоммуникационной сети

«Интернет», необходимых для освоения дисциплины

http://chemistry.ru/

 $\underline{http://www.himhelp.ru/}$

http://www.nglib.ru.

http://www.xumuk.ru/

http://webbook.nist.gov/chemistry/

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_frame_disp.cgi?sdbsno=19659

http://www.biblioclub.ru/

http://kubsu.ru/University/departments/CHEM/inorg/index.php и др.

Интернет сайты ведущих государственных ВУЗов и научных организаций РФ: МГУ, СПбГУ, РХТУ, НГУ, КубГУ, РАН РФ и др.

Зарубежные ведущие научные и учебные цетры: NBS USA, MTI UK, ChLab Japan, NSRDS и др.

Интерактивная база данных книг и журналов SpringerLink.

Химический редактор ChemSktch:http://www.acdlabs.com

7. Методические указания для обучающихся по освоению дисциплины

№	Наименование	Формы самостоятельной работы	Формы
	раздела		отчетности
1	Введение	Актуализация содержания тем	УО
		изучаемой дисциплины	
2	Спектроскопия	Самостоятельное изучение разделов.	УО, ЛР
	колебательных	Подготовка к лабораторным занятиям.	
	переходов в мо-	Работа с учебной литературой, базами	
	лекулах	данных в сети Internet.	
3	Применение	Самостоятельное изучение разделов.	УО, ЛР
	колебательной	Подготовка к лабораторным занятиям.	
	спектроскопии	Работа с учебной литературой, базами	
	в химии метал-	данных в сети Internet.	
	лополимеров		

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

В курсе лабораторных работ используется следующее программное обеспечение: Microsoft Office (Word, Excel), ACD Labs Chemsketch, Компьютерная программа Hyper Chemistry .

8.2 Перечень необходимых информационных справочных систем

- 1. КонсультантПлюс//www.consultant.ru
- 2. Федеральный центр информационно-образовательных ресурсов. URL: http://fcior.edu.ru/.
 - 3. Российский образовательный портал. URL: http://www.school.edu.ru/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Для материально-технического обеспечения дисциплины «Колебательная спектроскопия металлополимеров» используется лабораторное оборудование и учебно-научная аппаратура (интерактивная доска, демонстрационные модели).

При выполнении лабораторных работ для реализации методик используются: инфракрасные Фурье-спектрофотометры, инвентарь изготовления паст и таблеток исследуемых соединений, весы аналитические. При проведении лабораторных работ используются химические реактивы и посуда.

ПЭВМ уровня не ниже Pentium IV с операционной системой Windows XP / Windows 7, Компьютерная программа Hyper Chemistry.

		Материально-техническое обеспечение дис-
	Вид работ	циплины (модуля) и оснащенность
1.	Лекционные	Лекционная аудитория 422С, оснащенная
	занятия	презентационной техникой и соответствующим
		программным обеспечением.
2.	Семинарские	-
	занятия	
3.	Лаборатор-	Аудитория 422С, оснащенная презентацион-
	ные занятия	ной техникой и соответствующим программным
		обеспечением и лаборатории факультета, уком-
		плектованные специализированной мебелью и
		техническими средствами обучения.
4.	Курсовое	-
	проектирование	
5.	Групповые	Аудитория 422С, оснащенная презентацион-
	(индивидуальные)	ной техникой и соответствующим программным
	консультации	обеспечением.
6.	Текущий	Аудитория 422С, оснащенная презентацион-
	контроль, проме-	ной техникой и соответствующим программным
	жуточная аттеста-	обеспечением.
	ция	
7.	Самостоя-	Кабинет для самостоятельной работы, осна-
	тельная работа	щенный компьютерной техникой с возможностью
		подключения к сети «Интернет», программой
		экранного увеличения и обеспеченный доступом в
		электронную информационно-образовательную
		среду университета.