Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

« 26» мая 2

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.24 ПРАКТИКУМ ПО ОРГАНИЧЕСКОЙ ХИМИИ

Направление подготовки

04.03.01 Химия

Профиль подготовки

Физическая химия

Форма обучения

очная

Квалификация

бакалавр

Рабочая программа дисциплины «ПРАКТИКУМ ПО ОРГАНИЧЕСКОЙ ХИМИИ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки по направлению подготовки 04.03.01 Химия

Программу составил(и): В.Д. Стрелков, профессор, д.х.н

On E

Рабочая программа дисциплины «Практикум по органической химии» утверждена на заседании кафедры органической химии и технологий протокол № 7 « 14 » апреля 2023г
Заведующий кафедрой док.хим.наук, профессор Доценко В.В.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 7 «17» апреля 2023г Председатель УМК Φ XиВТ канд. хим. наук Беспалов А.В.

Рецензенты:

Дядюченко Л.В., канд. хим. наук, зав. лаб. регуляторов роста растений ГНУ ВНИИБЗР

Буков Н.Н., д-р хим. наук, профессор каф общей, неорганической химии и информационно-вычислительных технологий в химии КубГУ

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Настоящая программа курса «Практикум по органической химии» составлена в соответствии с ФГОС ВО и современными требованиями, предъявляемыми к специалистам - химикам высокой квалификации всех специальностей.

Изучение общих законов химии, получение представлений об основных классах органических соединений и их многообразных превращениях, играющих важную роль в практической деятельности человека, являются необходимым этапом развития знаний науки о веществе и составляют основные цели дисциплины.

1.2 Задачи дисциплины

Дисциплина «Практикум по органической химии» предназначена для студентов факультета химии и высоких технологий, направление подготовки 04.03.01 Химия (квалификация выпускника - бакалавр). Свойства органических соединений рассматриваются как на основе традиционных электронных представлений, так и в рамках теории молекулярных орбиталей. Систематически изучаются свойства гетероциклических и элементоорганических соединений в связи с их возрастающей ролью в органическом синтезе и смежных областях. Подчеркиваются задачи органического синтеза в связи с возрастающими проблемами охраны природы. Курс включает лабораторный практикум и самостоятельную работу студентов.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Практикум по органической химии» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе. Вид промежуточной аттестации: зачет.

Изучению данной дисциплины должно предшествовать изучение дисциплин «Практикум по неорганической химии» и «Практикум по аналитической химии». Изучение дисциплины «Практикум по органической химии» идёт параллельно с изучением дисциплины «Органическая химия».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
	орм техники безопасности химический эксперимент, включая еществ и материалов, исследование процессов с их участием
ИОПК-2.1. Использует основные методы и правила химического эксперимента, включая	знает основы теории химического эксперимента в органическом синтезе
синтез и изучение свойств веществ	умеет использовать физические методы исследования и методы разделения, концентрирования и очистки органических соединений
	владеет теорией химического эксперимента, принципами органического синтеза и получения органических соединений
ИОПК-2.2. Проводит стандартные операции для определения химического состава веществ	знает принципы органического синтеза и получения органических соединений различных классов
и материалов на их основе	умеет применять методы качественного и количественного химического анализа органических соединений
	владеет навыками проведения стандартных операций по определению химического состава веществ
ИОПК-2.3. Способен проводить химический эксперимент с соблюдением норм техники	знает правила безопасной работы с органическими веществами
безопасности	умеет безопасно работать с химическими веществами
	владеет приемами выполнения эксперимента по заданной либо выбранной методике

Код и наименование индикатора	Результаты обучения по дисциплине	
достижения компетенции		
ИОПК-2.4. Исследует свойства веществ и	знает свойства органических веществ	
материалов с использованием современного	умеет анализировать свойства химических соединений с	
научного оборудования	использованием современных физических методов	
	исследования	
	владеет приемами измерения физических констант	
	органических соединений	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 7 зачетных единиц (252 часа), их

распределение по видам работ представлено в таблице

Виды работ Всего Форма обучения				
	Виды работ	Всего	• •	
		часов		ная
			5	6
			семестр	семестр
			(часы)	(часы)
Контактная рабо	та, в том числе:			
Аудиторные заня	тия (всего):			
занятия лекционно	го типа			
лабораторные заня	тия при	204	102	102
практические занят	РИТ			
семинарские занят	ия			
Иная контактная	работа:			
Контроль самостоя	тельной работы (КСР)			
Промежуточная ат	тестация (ИКР)	0.4	0.2	0.2
Самостоятельная	работа, в том числе:	46.7	5.8	41.8
Оформление лабор	раторных работ	27.6	5.8	21.8
Подготовка к текущему контролю				20
Контроль:				
Общая	час.	252	108	144
трудоемкость	в том числе контактная работа	-	-	-
	зач. ед	7	3	4

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре (очная форма обучения)

	Чанианарачна р аздалар (там)	Количество часов				
No			Аудиторная		Внеаудиторна	
745	Наименование разделов (тем)	Всего		работа		я работа
			Л	П3	ЛР	CPC
1.	Углеводороды	13	-	-	12	1
2.	Ароматическиеуглеводороды	13	-	-	12	1
3.	Галогенпроизводныеуглеводородов	13	12 1		1	
4.	Гидроксильные производные	25	24 1		1	
5.	Простые эфиры	6.8	6 0.8		0.8	
6.	Карбонильные соединения	37	36 1		1	
	ИТОГО по разделам дисциплины	107.8			102	5.8
	Контроль самостоятельной работы (КСР)		-	-	-	-
	Промежуточная аттестация (ИКР)		-	_	-	-
	Подготовка к текущему контролю	-	-	_	-	-
	Общая трудоемкость по дисциплине		-	_	-	-

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 6 семестре (очная форма обучения)

	Наименование разделов (тем)	Количество часов				
No			Аудиторная		Внеаудиторна	
312	Паименование разделов (тем)	Всего	работа			я работа
			Л	П3	ЛР	CPC
7.	Амины и нитросоединения	34	-	-	24	10
8.	Диазосоединения	34	24 10		10	
9.	Окси,-кето,-аминокислоты,углеводы	17		-	12	5
10.	Металлоорганическиесоединения	34	24 10		10	
11.	Гетероциклическиесоединения	24.8	18 6.8		6.8	
	ИТОГО по разделам дисциплины		102 4		41.8	
	Контроль самостоятельной работы (КСР)	-	-	-	-	-
	Промежуточная аттестация (ИКР)		-	-	-	-
	Подготовка к текущему контролю		-	-	-	-
	Общая трудоемкость по дисциплине	144	-	-	_	-

Примечание: Π — лекции, Π 3 — практические занятия / семинары, Π 9 — лабораторные занятия, Π 9 — семинары семинары, Π 9 — лабораторные занятия, Π 9 — семинары семина

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

Не предусмотрены учебным планом.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

	лаобраторные работы)	
№	Тематика занятий/работ	Форма текущего контроля
1.	Правила работы в химической лаборатории органического	ЛР
2.	синтеза. Техника безопасности. Оборудование и посуда для органического синтеза.	ЛР
3.	Качественный анализ органических веществ.	ЛР
4.	Методы выделения и очистки органических веществ. Возгонка и перекристаллизация	ЛР
5.	температуры плавления бензойной кислоты.	ЛР
6.	Перегонка смеси двух жидких веществ, построение кривой разгонки.	ЛР
7.	плотности, расчет молекулярной рефракции.	ЛР
8.	Задача на установление соединения по брутто-формуле.	ЛР
9.	Определение плотности органического вещества.	ЛР
10.	Получение и свойства циклогексена.	К
11.	Получение и свойства метана, этилена, ацетилена.	ЛР
12.	Синтез дибутилового эфира.	ЛР
13.	Коллоквиум «Нуклеофильное замещение у насыщенного атома	ЛР
14.	углерода»	ЛР
15.	Химические свойства спиртов.	ЛР
16.	Свойства альдегидов и кетонов.	ЛР
17.	Качественные реакции карбоновых кислот и их производных.	ЛР
18.	Синтез бутилового эфира уксусной кислоты	ЛР
19.	Амины, аминокислоты, белки.	ЛР
20.	Синтез 2,4-дигидроксибензойной кислоты	ЛР
21.	Химические свойства и качественные реакции окси- и оксо-	ЛР
22.	кислот	ЛР
23.	Углеводы. Химические свойства и качественный	К
24.	функциональный анализ	ЛР
25.	Синтез сульфаниловой кислоты	ЛР
26.	Синтез м-динитробензола	ЛР
27.	Синтез 4-броманилина бромированием ацетанилида	K

28.	Синтез п-втор-бутилтолуола	ЛР
-----	----------------------------	----

Защита лабораторной работы (ЛР), коллоквиум (К)

2.3.3 Примерная тематика курсовых работ

Курсовая работа не предусмотрена учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Оформление лабораторных работ	Синтез органических соединений: учебно-методическое пособие / В. В. Доценко, А. В. Беспалов, Д. Ю. Лукина; Министерство науки и высшего образования Российской Федерации, Кубанский государственный университет Краснодар: Кубанский государственный университет, 2020 171 с.: ил Библиогр.: с. 170 ISBN 978-5-8209-1758-5: 80 р Текст: непосредственный.
4	Подготовка к текущему контролю	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018 89 с. 2. Органическая химия: учебно-методическое пособие / А. В. Беспалов, В. В. Доценко, Д. Ю. Лукина, В. Д. Стрелков; Министерство науки и высшего образования Российской Федерации, Кубанский государственный университет Краснодар: Кубанский государственный университет, 2019 156 с.: ил Авт. указаны на обороте тит. л Библиогр.: с. 155 ISBN 978-5-8209-1709-7: 80 р Текст: непосредственный.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лабораторные занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины — для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Практикум по органической химии».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме вопросов и заданий в рамках коллоквиумов, контрольных вопросов к лабораторным работам, и **промежуточной аттестации** в форме вопросов к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Danier mami a firmania	Наименование оценоч	ного средства
п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
	ИОПК-2.1. Использует основные методы и правила химического эксперимента, включая	знает основы теории химического эксперимента в органическом синтезе	Лабораторная работа; Коллоквиум	Вопрос на зачете
1	синтез и изучение свойств веществ	умеет использовать физические методы исследования и методы разделения, концентрирования и очистки органических соединений	Лабораторная работа	-
		владеет теорией химического эксперимента, принципами органического синтеза и получения органических соединений	Лабораторная работа; Коллоквиум	Вопрос на зачете
	ИОПК-2.2. Проводит стандартные операции для определения химического состава веществ и материалов	знает принципы органического синтеза и получения органических соединений различных классов	Лабораторная работа; Коллоквиум	Вопрос на зачете
2	на их основе	умеет применять методы качественного и количественного химического анализа органических соединений	Лабораторная работа	_
		владеет навыками проведения стандартных операций по определению химического состава	Лабораторная работа	-

		веществ		
		вещеетв		
	ИОПК-2.3. Способен проводить химический эксперимент с соблюдением норм	знает правила безопасной работы с органическими веществами	Лабораторная работа	Вопрос на зачете
3	техники безопасности	умеет безопасно работать с химическими веществами	Лабораторная работа	-
		владеет приемами выполнения эксперимента по заданной либо выбранной методике	Лабораторная работа	-
	ИОПК-2.4. Исследует свойства веществ и	знает свойства органических веществ	Лабораторная работа; Коллоквиум	Вопрос на зачете
4	материалов с использованием современного научного оборудования	умеет анализировать свойства химических соединений с использованием современных физических методов исследования	Лабораторная работа	-
		владеет приемами измерения физических констант органических соединений	Лабораторная работа	-

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Программы коллоквиумов

Коллоквиум «Нуклеофильное замещение в алифатическом ряду»

Защита коллоквиума заключается в удовлетворительном устном или письменном ответе на три вопроса из приведенной программы и правильном решении пяти задач из числа приведенных или аналогичных.

Программа коллоквиума:

Гидролиз алкилгалогенидов как реакция нуклеофильного замещения. Механизм $S_N1\ S_N2$. Кинетические и стереохимические доказательства моно- и бимолекулярного механизма реакции. Факторы, влияющие на скорость и тип нуклеофильного замещения:

- структура субстрата (электронные и пространственные факторы);
- природа и строение реагента-нуклеофила. Заряженные и нейтральные нуклеофилы, их активность, соотношение нуклеофильных и основных свойств;
 - характер уходящей группы нуклеофуга, влияние растворителя;

Реакционная способность алкилгалогенидов. Карбениевые ионы и влияние на их устоцчивость эффектов сопряжения и поля. Конкуренция реакций нуклеофильного замещения и элиминирования. Алкилгалогениды и алкилсульфонаты в качестве алкилирующих реагентов. Реакции замещения атома галогена в алкилгалогенидах: синтез нитрилов, нитросоединений, аминов, меркаптанов, сульфидов, простых и сложных эфиров.

Замещение гидрокси-группы в спиртах. Активация реакций нуклеофильного замещения в результате кислотного катализа. Получение эфиров неорганических кислот, простых эфиров из спиртов и гликолей в кислой среде. Синтез циклических простых эфиров (окись этилена, тетрагидрофуран, 1,4-диоксан). Расщепление простых эфиров под действием йодистоводородной кислоты.

Прямое введение аминогруппы в молекулу органического субстрата с помощью реакций SN. Получение аминов и солей алкиламмония из алкилгалогенидов,

алкилсульфонатов по реакции Гофмана, Габриэля, с использованием гексаметилентетрамина. Алкилирование аммиака и аминов спиртами.

Создание новой углерод-углеродной связи с помощью реакций нуклеофильного замещения. Углеродсодержащие нуклеофилы: цианид, ацетиленид-ионы, металлоорганические соединения. Возможности их использования в органическом синтезе.

Коллоквиум «Ароматические амины и диазосоединения»

Защита коллоквиума заключается в удовлетворительном устном или письменном ответе на два вопроса из приведенной программы и правильном решении трех практических заданий из числа предложенных преподавателем.

- 1. Азо- и диазосоединения. Соли диазония. Анионы солей диазония простые и комплексные. Растворимость в воде. Взрывчатые свойства. Распределение заряда на атомах азота. Ковалентные производныеные.
- 2. Диазотирование первичных ароматических аминов. Уравнение реакции. Соотношение между субстратом и диазотирующим агентом. Побочные реакции при диазотировании, образование триазенов, азосочетание.
 - 3. Агенты диазотирования. Различия в реакционной способности.
- 4. Механизм реакции диазотирования. Нитрозирование втор. и трет. аминов. Реакция алифатических аминов с помощью азотистой кислоты.
- 5.Приемы диазотирования: классический (нитрит + H^+ , с использованием органических нитритов и др. Особенности диазотирования фенилендиаминов. Контроль завершения реакции.
 - 6. Поведение солей диазония в щелочи. Диазогидрат, син- и анти-диазотаты.
- 7. Реакции ароматических диазосоединений, протекающие с выделением азота, катализ соединениями меди. Участие различных по характеру нуклеофилов.
 - 8. Реакции замещения в ароматическом ядре, активированные диазогруппой.
 - 9. Восстановление диазогруппы.
 - 10. Реакция Несмеянова
 - 11. Реакции диазосоединений, протекающие без выделения азота. Азосочетание.
- 12. Влияние заместителей в азо- и диазокомпонентах на протекание реакции азосочетания.
 - 13. Азокрасители. Примеры. Конкретные методы синтеза

Типы практических заданий:

- 1. Написать уравнения диазотирования конкретного соединения.
- 2. Написать уравнения реакций конкретных диазосоединений с реагентом по выбору преподавателя.
- 3. Написать уравнения реакций образования красителей из предложенных диазо- и азосоставляющих.

Примеры контрольных вопросов к лабораторным работам

- 1. Общие правила работы в химической лаборатории.
- 2. Что следует предпринять, если в лаборатории возник очаг возгорания?
- 3. Какими нагревательными приборами разрешается пользоваться при перегонке легковоспламеняющихся жидкостей?
- 4. Правила работы со спиртовками.
- 5. Расскажите о работе в лаборатории с электрическим током.
- 6. Какие правила необходимо соблюдать при работе со щелочными металлами?
- 7. Основные правила работы с токсичными соединениями. Меры безопасности и первая помощь при отравлении.
 - 8. Какие действия следует предпринять при попадании в глаза щелочи (кислоты)?
 - 9. Неотложная помощь при ожогах кислотами.

- 10. Неотложная помощь при ожогах щелочами.
- 11. Основные меры предосторожности при работе с бромом.
- 12. Первая помощь при термических ожогах.
- 13. Первая помощь при химических ожогах.
- 14. Первая помощь при порезах, ушибах и иных травмах.
- 15. Расскажите о работе с приборами, находящимися при пониженном давлении.
- 16. Правила работы с легковоспламеняющимися жидкостями.
- 17. Какие существуют методы очистки и выделения органических соединений?
- 18. Опишите установку для фракционной перегонки. В каких случаях ее используют? Чем она отличается от установки для простой перегонки?
 - 19. Какие вещества можно перегонять с помощью простой и фракционной перегонки?
 - 20. В чем сходство и отличие перегонки при нормальном и пониженном давлении?
 - 21. Какие вещества можно перегонять с водяным паром?
- 22. Как можно очистить органические вещества возгонкой? В чем суть этого способа очистки?
- 23. Какие требования предъявляются к растворителям при кристаллизации и экстракции органических веществ?
 - 24. Что такое фильтрование? Какие бывают фильтры?
 - 25. Какими способами можно проводить фильтрование?
 - 26. Какие из рассмотренных способов применяют для очистки сточных вод?
- 27. Техника безопасности при определении температуры кипения и температуры плавления.
 - 28. Почему нагрев, особенно при приближении к точке плавления, ведут медленно?
- 29. Почему при определении температуры плавления нельзя повторно использовать один и тот же капилляр?
- 30. Почему скорость нагревания влияет на точность определения температуры плавления?
 - 31. Зависит ли температура кипения от атмосферного давления?
 - 32. Почему, определяя температуру кипения, нельзя быстро нагревать жидкость?
 - 33. Как поступить, если установлено, что для анализа взята смесь?
 - 34. Как поступить, если пределы температуры кипения велики?
 - 35. Предложите способы разделения смесей:
 - а) твердых веществ;
 - б) жидких веществ;
 - в) выделение твердых веществ из раствора.
 - 36. На чем основано измерение показателя преломления?
- 37. Перечислите меры техники безопасности, соблюдение которых обязательно при выполнении данной работы.
- 38. С помощью каких химических реакций можно отличить органическое вещество от неорганического?
- 39. Какие экспериментальные данные о веществе необходимы для того, чтобы установить его простейшую формулу, молекулярную формулу?
- 40. Какими методами проводят качественный элементный анализ органических веществ?
 - 41. Укажите условия определения элементного состава органических соединений?
- 42. Изложите ход определения элементов в органических соединениях, содержащих: углерод, водород, хлор, азот, фосфор.
- 43. Обнаружение каких элементов затрудняет присутствие серы в органическом соединении?
 - 44. Что представляет собой количественный элементный анализ?
- 45. При сжигании 2,3 г углеводорода образовалось 4,43 г оксида углерода (IV) и 2,7 г воды. Плотность вещества по водороду равна 23. Найдите молекулярную формулу этого углеводорода.
 - 46. При сжигании некоторой массы вещества, в состав которого входит углерод,

водород и хлор, было получено 0,44 г оксида углерода (IV) и 0,18 г воды. Из хлора, содержащегося в пробе равной массы, после превращений его в ряде реакций в хлориданион было получено 2,86 г хлорида серебра. Определите формулу исходного вещества.

- 47. Какие меры техники безопасности следует соблюдать при получении углеводородов?
 - 48. Сформулируйте правило номенклатуры ИЮПАК образования названий:
 - алканов;
 - алкенов;
 - алкадиенов;
 - алкинов.

Приведите примеры.

- 49. Укажите особенности (тип гибридизации АО углерода, характер связей, валентные углы) строения молекул:
 - а) метана;
 - б) этилена;
 - в) бутадиена -1,3;
 - г) ацетилена.
 - 50. Напишите уравнения реакции получения всеми возможными способами:
 - а) этана;
 - б) пропилена;
 - в) бутадиена 1,3;
 - г) пропина.
- 51. Охарактеризуйте химические свойства алканов (на примере метана, пропана). Приведите уравнения реакций, укажите условия:
 - а) горения;
 - б) сульфирования;
 - в) сульфохлорирования;
 - г) нитрования (по Коновалову).
- 52. Охарактеризуйте химические свойства алкенов (на примере пропилена). Приведите уравнения реакций и укажите условия:
 - а) присоединения $(H_2, Br_2, H_2O_2, HBr, H_2O)$;
 - б) горения;
 - в) хлорирования;
 - г) озонирования;
 - д) полимеризации.
- 53. Охарактеризуйте химические свойства диеновых углеводородов (на примере бутадиена 1,3),

напишите уравнения реакций и укажите условия их проведения:

- а) присоединения (H₂, Br₂, HBr);
- б) горения;
- в) озонирования с последующим гидролизом образующихся продуктов.
- 54. Какие вещества называются каучуками? Приведите примеры.
- 55. Охарактеризуйте химические свойства алкинов (на примере пропина), напишите уравнения реакций
 - и укажите условия их проведения.
 - а) присоединения (H_2 , Br_2 , HBr, H_2O);
 - б) горения;
 - в) замещения (с аммиачным раствором AgNO₃);
 - г) озонирования с последующим гидролизом образующихся продуктов.
- 56. Укажите реакции, при помощи которых возможно обнаружение и разделение смеси алкана, алкена и алкина (содержащего атом водорода при углероде с тройной связью).

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

1. Список вопросов для подготовки к зачету

- 1. Сущность реакций нуклеофильного замещения. Понятие о субстрате и реагенте.
- 2. Различие понятий нуклеофильности и основности. Нуклеофильная сила реагента, α-эффект в нуклеофильном реагенте.
 - 3. Механизмы S_N1 и S_N2 .
- 4. Влияние различных факторов на скорость и механизм нуклеофильного замещения: строение субстрата, нуклеофильность реагента, природа уходящей группы. Природа растворителя и катализатора.
- 5. Экспериментальные критерии механизмов S_N1 и S_N2 : стереохимические и кинетические исследования.
- 6. Нуклеофильное замещение с участием соседней группы (механизм $S_{N}i$). Теория Хьюза-Ингольда. Реакции сольволиза, способы их изучения.
- 7. Перегруппировки, сопровождающие реакции нуклеофильного замещения. Анхимерное содействие. Создание мостиковых «неклассических» катионов.
- 8. Использование краун-эфиров в реакциях нуклеофильного замещения, межфазный катализ.
- 9. Реакции элиминирования, как конкурирующие с реакциями нуклеофильного замещения, механизмы E1 и E2. Транс-элиминирование.
- 10. Правила Зайцева и Гофмана. Е1сВ-механизм элиминирования. Примеры реакций α, β, γ -элиминирования.
- 11. Алкилирование спиртов. Алкилирование спиртами, алкилсульфатами, эфирами сульфокислот, алкилгалогенидами, эпоксидами, галогенгидринами.
- 12. Ацилирование. Ацилирующие агенты: кислоты, галогенангидриды кислот, ангидриды, амиды.
- 13. Сложные эфиры, кетоны. Основные методы их получения, реакционная способность.
- 14. Ацилирование спиртов. Реакция этерификации и ее механизмы. Переэтерификация. Ацилирование аминов.
- 15. Галогенирование. Нуклеофильное замещение на галоген гидроксильной группы в спиртах и кислотах, карбонильного кислорода в альдегидах и кетонах, алкоксильной группы в простых эфирах.
- 16. Реакции обмена галогенов (Финкельштейн). Галоформное расщепление. Нуклеофильные реакции алкилгалогенидов.
- 17. Сравнение подвижности галогена во фтор-, хлор-, бром- и йодалканах, в соединениях типа хлористого винила, хлористого этила, хлористого аллила и хлористого неопентила, а также у первичного и третичного атомов углерода.
- 18. Реакции с амбидентными ионами. Правило Корнблюма. Алкилгалогениды в реакциях обмена: получение простых и сложных эфиров, тиоспиртов, тиоэфиров, сульфониевых солей, азидов, аминов, нитрилов.
- 19. Синтез Вюрца. Взаимодействие с ацетиленидами металлов. Особые свойства фторпроизводных углеводородов, ди- и тригалогенидов (типа RCH(Hlg)2 и RC(Hlg)3).
- 20. Гидролиз. Гидролиз галогеналканов, простых и сложных эфиров. Кислый и щелочной катализ. Классификация механизмов гидролиза сложных эфиров.
- 21. Промышленные методы гидролиза жиров. Гидролиз амидов, нитрилов, изонитрилов, галогенангидридов и ангидридов кислот.
- 22. Ароматический характер аренов. Электрофильные агенты и электрофильные частицы в реакции S_E аренов.

- 23. Роль катализатора в генерации электрофильных частиц. Механизмы S_E реакций. Двухстадийный бимолекулярный механизм. Σ и π -комплексы и их выделение. Лимитирующая стадия.
 - 24. Изотопный эффект. Энергетические диаграммы S_E реакций.
- 25. Механизм нитрования. Нитроний-катион и доказательство его участия в реакции. Нитрование как пример реакций с одноэлектронным переносом.
- 26. Механизм сульфирования. Обратимость этого процесса. Кинетический и термодинамический контроль.
 - 27. Механизм алкилирования, ацилирования, галогенирования, дейтерообмена.
- 28. Ориентация замещения. Влияние природы заместителей в субстрате на реакционную способность. Правила ориентации.
- 29. Классификация заместителей (I и II рода). Активирующие и дезактивирующие о- и п-ориентанты. Дезактивирующие м-ориентанты.
- 30. Согласованная и несогласованная ориентация. Теория ориентации. Электронные эффекты.
- 31. Примеры электронного влияния заместителей I и II рода на бензольное ядро. Резонансные структуры о-комплексов и устойчивость последних.
 - 32. Влияние природы электрофила на селективность реакций. Ипсо-замещение.
- 33. Нитрование. Агенты нитрования. Их характеристика. Нитрующая смесь, роль серной кислоты в нитрующей смеси.
- 34. Нитрование ароматических углеводородов: бензола, его гомологов, нафталина, антрацена. Условия реакций, побочные процессы при нитровании.
- 35. Синтез моно-, ди- и тринитробензола. Нитротолуолы, тротил. Особенности нитрования нафталина, антрацена, антрахинона.
- 36. Нитрование фенолов. Условия реакции. О- и П-нитрофенолы и их разделение. Получение пикриновой кислоты, ее применение. э
- 37. Нитрование ароматических аминов. Введение нитрогруппы в о- и п-положения анилина. Защита аминогруппы. Синтез м-нитроанилина.
 - 38. Особенности нитрования ароматических кислот, альдегидов.
- 39. Галогенирование. Агенты галогенирования. Хлорирование, бромирование и окислительное йодирование бензольного кольца (S_E). Переносчики галогена.
- 40. Условия галогенирования в ядро бензола, его гомологов, нафталина. Антрацена. Особенности взаимодействия нафталина и антрацена с хлором и бромом.
- 41. Галогенирование в боковую цепь гомологов бензола (S_R) . Реакция хлорметилирования.
- 42. Галогенирование ароматических аминов и фенолов. Образование трибромфенола как качественная реакция на фенол.
- 43. Сульфирование. Сульфирующие агенты. Сульфирование бензола, его производных, нафталина.
- 44. Влияние температуры на направление реакции. Сульфирование фенолов. Синтез α- и β-нафталинсульфокислот. Особенности сульфирования ароматических аминов.
- 45. Сульфаниловая и метаниловая кислоты. Сульфирование антрацена и антрахинона.
- 46. Применение катализаторов в реакции сульфирования. Побочные реакции при сульфировании. Выделение сульфокислот и их идентификация.
- 47. С-Ацилирование. Ацилирующие агенты. Ацилирование бензола и его гомологов (реакция Фриделя-Крафтса). Механизм реакции. Реакция ацилирования дифенила и нафталина.
- 48. Ацилирование фенолов. Особенности реакции С-ацилирования фенолов. Перегруппировка Фриса. Формилирование бензола и его гомологов (реакция Гаттермана-

Коха, Вильсмейера-Хаака, формилирование цианидом Zn в HCl, нитрилами в присутствии Zn(CN)₂ и HCl).

- 49. Механизмы реакций. Формилирование фенолов (реакция Вильсмейера, Гаттермана, Раймера-Тимана). Механизм реакций.
- 50. С-Алкилирование. Реакции алкилирования бензола и его гомологов. Алкилирующие агенты и катализаторы алкилирования.
- 51. Механизм реакции Фриделя-Крафтса. Побочные процессы при алкилировании. Особенности реакции С-алкилирования фенолов.

Критерии оценивания результатов обучения

Оценка	Критерии оценивания по зачету
«зачтено» базовый уровень	Студент успешно освоил все разделы изучаемой дисциплины, самостоятельно выполнил и защитил лабораторные работы, сдал все коллоквиумы, сформировал систему знаний и умений в области современной практической органической химии, в которой могут присутствовать ошибки и допущения, не имеющие принципиального характера.
«не зачтено» менее 50%, уровень не сформирован	Студент плохо владеет теоретическим материалом, не способен самостоятельно защитить лабораторные работы и/или сдать коллоквиумы, система знаний в области современной практической органической химии содержит большое число ошибок, либо вовсе не сформирована.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

1. Травень, В. Ф. Органическая химия: учебное пособие: в 3 т. Т. 1 / Травень В. Ф. - 4-е

- изд. М.: Лаборатория знаний, 2015. 401 с. https://e.lanbook.com/book/84108#authors.
- 2. Травень, В. Ф. Органическая химия : учебное пособие : в 3 т. Т. 2 / Травень В. Ф. 4-е изд. М. : Лаборатория знаний, 2015. 550 с. https://e.lanbook.com/book/84109#authors.
- 3. Травень, В. Ф. Органическая химия : учебное пособие : в 3 т. Т. 3 / Травень В. Ф. 4-е изд. М. : Лаборатория знаний, 2015. 391 с. https://e.lanbook.com/book/84110#authors.
- 4. Практикум по органической химии : учебное пособие / В. И. Теренин [и др.]. М. : Лаборатория знаний, 2015. 571 с. https://e.lanbook.com/book/84123#authors.
- 5. Травень, В. Ф. Практикум по органической химии : учебное пособие / В. Ф. Травень, А. Е. Щекотихин. М. : Лаборатория знаний, 2017. 595 с. https://e.lanbook.com/book/94137#authors.

5.2. Периодическая литература

- 1. Успехи химии российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.
- 2. Журнал органической химии российский научный журнал, публикующий статьи по теоретическим проблемам органической химии, механизмам реакций органических соединений, соотношениям между физическими свойствами, реакционной способностью и строением, по новым реакциям и методам получения органических соединений, по основным проблемам развития важнейших направлений органического синтеза.
- 3. Журнал общей химии один из крупнейших российских научных журналов, отражающих основные направления развития химии, публикующий работы, посвящённые актуальным общим вопросам химии и проблемам, возникающим на стыке различных разделов химии, а также на границах химии и смежных с ней наук (металлоорганические соединения, элементоорганическая химия, органические и неорганические комплексы, механохимия, нанохимия и т. д.).

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 9. Springer Journals https://link.springer.com/
 - 10. Nature Journals https://www.nature.com/siteindex/index.html
 - 11. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 12. Springer Materials http://materials.springer.com/
- 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
 - 5. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «Практикум по органической химии» требует от студентов активной работы, выполнения и защиты лабораторных работ, сдачи коллоквиумов и ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для	Лекционные занятия не предусмотрены учебным планом.	
проведения занятий лекционного		-
типа		
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения занятий	Технические средства обучения:	Microsoft Office
семинарского типа, групповых и	экран, проектор, компьютер	
индивидуальных консультаций,		
текущего контроля и		
промежуточной аттестации		
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения лабораторных работ.	Технические средства обучения:	Microsoft Office

Π-6	<u>u</u>		
Лаборатория	органической	переносное мультимедийное	
химии (ауд. 414С)		оборудование (ноутбук,	
		проектор)	
		Оборудование:	
		специализированная	
		лабораторная мебель (столы,	
		стулья, шкафы для реактивов и	
		оборудования, вытяжные	
		шкафы), средства пожарной	
		безопасности и оказания первой	
		медицинской помощи,	
		химическая посуда и	
		оборудование, весы	
		лабораторные электронные A&D	
		ЕК-410і, электроплитки – 10 шт.,	
		сушильный шкаф, мешалки	
		механические – 8 шт., мешалки	
		магнитные IKA HS 7 – 8 шт.,	
		ротационные испарители – 2 шт.,	
		рефрактометр ИРФ-454 Б2М,	
		приборы для определения	
		температуры плавления ПТП – 8	
		шт., химические реактивы.	
Vuenue	тории пла		унабин м планом
Учебные ауди		Курсовая работа не предусмотрена	ученым планом.
	роектирования		
(выполнения курсо	вых работ)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows;
работы обучающихся (читальный	Комплект специализированной	Microsoft Office
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows;
работы обучающихся (ауд.	Комплект специализированной	Microsoft Office
401C)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	

доступ к	сети	интер	онет
(проводное	соедине	ение	И
беспроводное	соедин	ение	ПО
технологии Wi-Fi)			