МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.18 ФИЗИКА

Направление подготовки - 04.03.01 Химия
Профиль — Химическая экспертиза и экологическая безопасность
Форма обучения — очная
Квалификация — бакалавр

дисциплины Б1.О.18 Рабочая ФИЗИКА программа составлена соответствии c федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 Химия.

Программу составил:

П.И. Быковский, доцент кафедры физики и информационных систем, кандидат физмат наук

Рабочая программа дисциплины Φ изика утверждена на заседании кафедры физики и информационных систем. Протокол № 14 от 20 апреля 2023 г. Заведующий кафедрой Богатов Н.М.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета.

Протокол № 10 от 20 апреля 2023 г.

Председатель УМК ФТФ профессор Богатов Н.М.

Рецензент: Григорьян Л.Р., генеральный директор ООО НПФ "Мезон", кандидат физмат наук.

1. Цели и задачи изучения дисциплины

1.1 Цели освоения дисциплины

Обладая логической стройностью и опираясь на экспериментальные факты, дисциплина «Физика» является идеальной для формирования у студентов профессиональных компетенций.

Основные цели освоения дисциплины "Физика":

- создание универсальной базы для изучения общепрофессиональных дисциплин, фундамента последующего обучения в магистратуре, аспирантуре;
- формирование цельного представления о физических законах окружающего мира в их единстве и взаимосвязи.

1.2. Задачи дисциплины.

- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- формирование навыков системно-аналитической постановки задач физического моделирования процессов и объектов исследования.

1.3. Место дисциплины в структуре основной образовательной программы высшего образования

Б1.О.18 — индекс дисциплины относится к обязательной части Блока-1. Дисциплины (модули) учебного плана направления подготовки 04.03.01 Химия. Курс Физики предназначен для ознакомления студентов с современной физической картиной мира, приобретения навыков экспериментального исследования физических явлений и процессов, изучения теоретических методов анализа физических явлений.

Для успешного освоения курса физики необходимы знания основ дифференциального и интегрального исчисления, векторной алгебры и аналитической геометрии.

В свою очередь, освоение курса физики способствует более глубокому пониманию законов химии, экологии и является базой таких дисциплин, как теоретическая механика, материаловедение.

1.4. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программ

Выпускник академического бакалавриата специальности 04.03.01 "*Химия*" должен обладать следующими *общепрофессиональными компетенциями*, которые формируются в процессе изучения *Физики*: ОПК-4.

Код	И	наименование	индикатора	Результаты обучения по дисциплине			
дости	жени	я компетенции					
ОПК-4. Способен планировать работы химической направленности, обрабатывать и							
интерпретировать полученные результаты с использованием теоретических знаний и							
практических навыков решения математических и физических задач							
ИОП	K-4.1	. Использует базо	вые знания	Знает – как использовать базовые знания в			
в обла	асти	математики и физ	зики при	области математики и физики при			

планировании работ химической	планировании работ химической
направленности	направленности
	Умеет - использовать базовые знания в
	области математики и физики при планиро-
	вании работ химической направленности
	Владеет - способностью использовать
	базовые знания в области математики и
	физики при планировании работ химической
	направленности
ИОПК-4.2. Обрабатывает данные с	<i>Знает</i> – как обрабатывать данные с
использованием стандартных способов	использованием стандартных способов
аппроксимации численных	аппроксимации численных характеристик
характеристик	Умеет - обрабатывать данные с использо-
	ванием стандартных способов аппрокси-
	мации численных характеристик
	Владеет – способностью обработки данных с
	использованием стандартных способов
	аппроксимации численных характеристик
ИОПК-4.3. Интерпретирует результаты	Знает – как интерпретировать результаты
химических наблюдений с	химических наблюдений с использованием
использованием физических законов и	физических законов и представлений
представлений	Умеет - Интерпретирует результаты
	химических наблюдений с использовани-ем
	физических законов и представлений
	Владеет - способностью интерпретировать
	результаты химических наблюдений с
	использованием физических законов и
	представлений

В результате освоения дисциплины Б1.О.18 "Физика" обучающийся

должен знать основные физические явления и законы в области механики, термодинамики, молекулярной физики, электромагнетизма, оптики, атомной и ядерной физики; основные физические величины и константы, их определение и единицы измерения;

уметь применять физико-математические методы для решения прикладных задач химической направленности;

владеть методами физики при решении современных и перспективных задач химической направленности.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины Физика составляет 10 зач. ед. (360 часов), их распределение по видам работ и по семестрам представлено в таблице.

Вид учебной работы	Всего	Семестры			
	часов	(часы)			
		2	3	4	
Контактная работа, в том числе:		52	52	52	
Аудиторные занятия (всего):	156	68	68	68	
Занятия лекционного типа	48	16	16	16	-
Лабораторные занятия	54	18	18	18	-

Занятия семинарского типа практические занятия)	(семинары,	54	18	18	18	-
Иная контактная работа:		(HOD)				
Контроль самостоятельной	6	2	2	2		
Промежуточная аттестация	0,8	0,2	0,3	0,3		
Самостоятельная работа	134,8	17,8	54	63		
в том числе:						
Проработка учебного материала	45	5	20	20	-	
Выполнение индивиду (подготовка сообщений, пре		48	5	20	23	-
Подготовка к текущему кон	тролю	31,8	7,8	14	20	-
Контроль:		62,4	-	35,7	26,7	
Подготовка к экзамену		62,4	-	35,7	26,7	
Общая трудоемкость	час.	360	72	144	144	-
	в том числе контактная работа	162,8	54,2	54,3	54,3	

2.2 Содержание дисциплины:

Дисциплина "Физика" включает в себя следующие разделы:

- 1. Механика.
- 2. Молекулярная физика.
- 3. Электричество и магнетизм.
- 4. Оптика.
- 5. Атомная физика.
- 6. Физика ядра.

Распределение видов учебной работы и их трудоемкости по разделам дисциплины и по семестрам:

Разделы дисциплины, изучаемые во 2 семестре.

No			Количество часов				
раз-	Наименование разделов	Всего	Аудиторная работа Л ПЗ ЛР 34,9 8 9 9 3 34,9 8 9 9 3 69,8 16 18 18 1 2 0,2 - -	CPC			
дела			Л	ПЗ	ЛР		
1	Механика	34,9	8	9	9	8,9	
2	Молекулярная физика	34,9	8	9	9	8,9	
	ИТОГО по разделам дисциплины:	69,8	16	18	18	17,8	
	Контроль самостоятельной работы (КСР)	2					
	Промежуточная аттестация (ИКР)	0,2					
	Подготовка к текущему контролю	-					
	Общая трудоёмкость в семестре:	72					

Разделы дисциплины, изучаемые в 3 семестре.

No			Количество часов					
pa3-	Наименование разделов	Всего	Аудиторная работа			CPC		
дела		Beero	Л	ПЗ	ЛР			
3	Электричество и магнетизм	53	8	9	9	27		
4	Оптика	53	8	9	9	27		
	ИТОГО по разделам дисциплины:	106	16	18	18	54		
	Контроль самостоятельной работы (КСР)	2						
	Промежуточная аттестация (ИКР)	0,3						
	Подготовка к текущему контролю							
	Общая трудоёмкость в семестре:	144						

Разделы дисциплины, изучаемые в 4 семестре.

No		Количество часов					
раз-	Наименование разделов	Всего Аудиторная работа О Л ПЗ ЛР 57,5 8 9 9 57,5 8 9 9 115 16 18 18 (КСР) 2 0,3 0 26,7 0 0	CPC				
дела			Л	П3	ЛР		
5	Атомная физика	57,5	8	9	9	31,5	
6	Физика ядра	57,5	8	9	9	31,5	
	ИТОГО по разделам дисциплины:	115	16	18	18	63	
	Контроль самостоятельной работы (КСР)	2					
	Промежуточная аттестация (ИКР)	0,3					
	Подготовка к текущему контролю	26,7					
	Общая трудоёмкость в семестре:	144					

Примечание: Л — лекции, ПЗ — практические занятия, ЛР — лабораторные работы, ${\rm CPC}$ — самостоятельная работа студента.

2.3. Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№	Наиме-	Содержание раздела	Форма
	вание		текущег
	раздела		контрол
1	2	3	4
	Механи	Основные понятия кинематики:	
1	ка	путь, перемещение, скорости, ускорения. Кинематика	
		вращательного движения. Уравнения поступательного и	
		вращательного движений.	Выпол-
		Системы отсчета. Законы Ньютона. Импульс тела и закон	нение
		сохранения импульса. Закон всемирного тяготения. Свободное	домашн
		падение тел.	их
		Момент импульса материальной точки и механической	заданий,
		системы.	контр-х
		Закон сохранения момента импульса.	и лабор.
		Момент инерции. Теорема Штейнера. Кинетическая энергия	работ,
		вращающегося твердого тела.	тести-
		Закон сохранения полной механической энергии системы.	рование
		Неинерциальные системы отсчёта. Сила Кориолиса.	
		Стационарное течение идеальной жидкости.	
		Уравнение Бернулли.	

	Моноку	Термодинамическое равновесие и температура. Обратимые и	Выполн
2	Молеку	необратимые процессы. Первое начало термодинамики.	ение
	лярная физика	Изопроцессы в идеальных газах. Объединённый газовый закон.	
	физика	Преобразование теплоты в механическую работу. Цикл Карно	контр-х и лабор.
			работ,
		и его коэффициент полезного действия. Энтропия.	
		4-хтактный двигатель внутреннего сгорания. Его круговой	тести-
	2	цикл и тепловой баланс.	рование.
3	Электри	Закон Кулона. Напряжённость и потенциал электрического	
	чество и	поля. Теорема Гаусса и её применение для расчёта	
	магнети	электрических полей.	D
	3M	Напряжённость, как градиент потенциала.	Выпол-
		Поляризация диэлектриков. Диэлектрическая	нение
		проницаемость вещества.	домашн
		Электроёмкость. Конденсаторы.	ИХ
		Энергия заряженного конденсатора.	заданий,
		Постоянный электрический ток.	контр-х
		Закон Ома в интегральной и дифференциальной формах.	и лабор.
		Правила Кирхгофа. Закон Джоуля-Ленца.	работ,
		Закон Био-Савара-Лапласа. Теорема о циркуляции. Движение	тести-
		зарядов в электрических и магнитных полях. Силы Лоренца и	рование
		Ампера.	
		Намагничение магнетиков. Гистерезис. Магнитная	
		проницаемость. Правило Ленца. Электромагнитная индукции	
		и самоиндукция. Энергия магнитного поля.	
		Закон Ома в цепи переменного тока. Сопротивления:	
		активное, реактивное и полное. Векторные диаграммы.	
		Резонанс токов и напряжений. Колебательный контур (L-C).	
		Основы радиосвязи. Блок-схемы радиостанции и	
		радиоприёмника.	
4	Оптика	Законы отражения и преломления. Полное внутреннее	Выполн
		отражение. Построение изображений в зеркалах и линзах.	ение
		Дифракция и интерференция.	контр-х
		Принцип Гюйгенса-Френеля.	и лабор.
		Интерференция в тонких плёнках.	работ,
		Дифракционная решётка как спектральный прибор.	тести-
		Спектральный анализ. Фотоэффект: опыты Столетова;	рование.
		законы фотоэффекта, формула Эйнштейна	
		Понятие о голографическом методе получения и	
		восстановления изображений.	
5	Атомная	Законы теплового излучения: законы Кирхгофа, Стефана-	
	физика	Больцмана и Вина. Гипотеза Планка. Квантовое объяснение	
	•	законов теплового излучения. Корпускулярно-волновой	Выполн
		дуализм света. Волны де Бройля.	ение
		Модель атома Томсона. Опыты Резерфорда по рассеянию	домаш-
		альфа-частиц. Ядерная модель атома. Эмпирические	них
		закономерности в атомных спектрах. Формула Бальмера.	заданий,
		Спектр атома водорода по Бору. Опыты Франка и Герца.	тести-
		Спонтанное и индуцированное излучение. Инверсное	рование.
		заселение уровней активной среды. Основные компоненты	*
		лазера. Условия усиления и генерации света. Особенности	
L	l	1 1	

		лазерного излучения. Основные типы лазеров и их	
		применения.	
6	Физика	Характеристики ядра: заряд, состав, масса. Дефект массы	Тести-
	ядра	ядра. Энергия связи ядер. Радиоактивность. Виды	рование,
		радиоактивного излучения. Законы радиоактивного распада.	рефера-
		Ядерные реакции. Правила смещения. Синтез ядер. Основы	ты
		атомной энергетики. Понятие о дозиметрии и защите.	

2.3.2 Занятия семинарского типа: (не предусмотрены).

2.3.3 Лабораторные занятия.

No		Форма			
	Наименование лабораторных работ	текущего			
семестра		контроля			
1.	- Определение ускорения свободного падения с помощью	Отчеты по			
	математического маятника.	лабораторным			
	- Определение момента инерции твердых тел с помощью	работам			
	крутильных колебаний	// //			
	- Изучение колебаний физического маятника.				
	- Проверка теоремы Штейнера.				
	- Измерение вязкости жидкости.				
	- Определение отношения теплоёмкостей (C_p/C_v) в газах.				
2.	- Изучение резонанса токов и напряжений.	Отчеты по			
	- Измерение электрических сопротивлений.	лабораторным			
	- Измерение эдс источников тока методом компенсации.	работам			
	- Детектирование электрических колебаний. Изучение	// //			
	выпрямителей.				
	- Измерение длины световых волн с помощью				
	дифракционной решётки.	// //			
	- Измерение показателя преломления (и скорости) света в				
	жидкостях.				
3.	- Изучение внешнего фотоэффекта.	Отчеты по			
	- Изучение спектров ртути и неона.	лабораторным			
	- Исследования р-п переходов.	работам			
	- Измерения фокусных расстояний оптических систем.	<u>-</u>			

2.3.4 Примерная тематика курсовых работ (проектов).

(Курсовые работы - не предусмотрены).

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

		-	учебно-методического		дисциплины	ПО
No	Вид СРС	выполнени	ю самостоятельной рабо	ТЫ		
1	2	3				

1	Проработка учебного (теоретического) материала	1. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И. Трофимова. – М.: Академия, 2014. 2. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
2	Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	1. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И. Трофимова. – М.: Академия, 2014. 2. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
3	Подготовка к текущему контролю	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. — Краснодар: Кубанский гос. ун-т, 2018. 89 с. 2. Методические рекомендации по выполнению лабораторных работ. Описания лабораторных работ.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по освоению дисциплины «Физика» используются современные образовательные технологии:

- активные и интерактивные формы обучения;
- исследовательские методы в обучении;
- проблемное обучение.

Самостоятельная работа по дисциплине включает:

- самоподготовку к учебным занятиям по конспектам, учебной литературе, интернет ресурсам;
- выполнение домашних заданий (решение типовых задач и выполнение творческих заданий).

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Текущий контроль: составление и защита технического отчета по выполняемым лабораторным работам практикума; проверка домашних заданий. Ответы на контрольные вопросы, приведенные в описаниях работ и на дополнительные вопросы, касающиеся соответствующих разделов основной дисциплины; блиц — опросы по каждому разделу программы.

Промежуточный контроль: экзамены в конце 2-го и 3-го семестров.

Итоговый контроль: экзамен в конце 4-го семестра.

Структура оценочных средств для текущей и промежуточной аттестации

	Код	Результаты обучения	Наимен	нование
No	и наименование	,	оценочног	о средства
Π/Π	индикатора		Текущий	Промежу-
			контроль	точная
			1	аттестация
1	ИОПК-4.1. Использует базовые знания в области математики и физики при планировании работ химической направленности	Знает - как использовать базовые знания в области математики и физики при планировании работ химической направленности Умеет - использовать базовые знания в области математики и физики при планировании работ химической направленности Владеет способностью использовать базовые знания в области математики и физики при планировании работ химической	Тест 1. Задачи 1-3. Блиц-опрос по теме Механика и молекулярная физика.	Вопросы на экзамене 1-10. Вопросы на экзамене 11-19. Вопросы на экзамене 20-26.
2	ИОПК-4.2.	направленности Знает – как обрабатывать данные	Тест 2.	Вопросы на
	Обрабатывает данные с использование м стандартных способов аппроксимации численных характеристик	с использованием стандартных способов аппроксимации численных характеристик Умеет - обрабатывать данные с использованием стандартных способов аппроксимации численных характеристик Владеет - способностью обработки данных с использованием стан-	Задачи 4,5. Блиц-опрос по теме «Электром агне-тизм». Блиц-опрос по теме	экзамене 1- 16 «Электром агне-тизм». Вопросы на экзамене 1- 20
		дартных способов аппроксимации численных характеристик	«Оптика».	«Оптика».
3	ИОПК-4.3. Интерпретирует результаты химических	Знает — как интерпретировать результаты химических наблюдений с использованием физических законов и представлений	Тест 3.	

наблюдений с	Умеет - Интерпретирует результаты	Задача 6.	Вопросы на
использованием	химических наблюдений с		экзамене 1-
физических	использованием физических	Блиц-опрос	20 по теме
законов и	законов и представлений	Блиц-опрос	
представлений	Владеет - способностью интерпре-	по теме	«Атом-ная
	тировать результаты химических	«Атомная и	и ядерная
	наблюдений с использованием	ядер-ная	физика»
	физических законов и	. •	quisina,
	представлений	физика»	

Эффективность учебной деятельности бакалавров оценивается по балльнорейтинговой системе.

В учебном процессе используются активные и интерактивные формы проведения занятий: презентация, дискуссия, разбор конкретных ситуаций, творческие задания, мозговой штурм, работа в малых группах.

Учебно-познавательные экскурсии – важный элемент образовательного процесса. Прежде всего, это экскурсии в астрофизическую обсерваторию КубГУ, в лабораторию нанотехнологий, в спецлаборатории естественных факультетов.

Экскурсии в лаборатории "бизнес - инкубатора":

- мембранные технологии,
- выращивание монокристаллов для квантовой электроники.

Оценка качества освоения программы включает текущий контроль успеваемости, промежуточную аттестацию обучающихся, итоговые зачёты и экзамены в каждом семестре.

Текущий контроль и промежуточная аттестация ведутся по результатам выполнения лабораторных работ, домашних заданий и контрольных работ.

В конце каждого раздела проводится так называемый "блиц-опрос", когда студенты тут же, после номера заданного вопроса, пишут формулы и (или) определения, решают "короткие" задачи.

4.1 Фонд оценочных средств для проведения текущего контроля.

Примеры тестов:

Tecm 1

№	Вопросы	Вариан	ты ответ	ОВ	
		1	2	3	4
1	Уравнение равноускоренного движения	S=Vt	$S=at^2/2$	V=at/2	h=gt ²
2	Импульс тела (количество движения)	mv,	ma,	mr,	mvr
3	Уравнение неразрывности потока: const =	PV,	mgh,	SV,	hv
4	3 акон Бойля – M ариотта: $Const = \dots$	SV,	TV	VP	Jω
5	Уравнение равноускоренного вращения	φ=ωt	ε=dω/dt	$\varphi = \varepsilon t^2/2$	M=Jε

Tecm 2

№	Вопросы	Вариан	ты ответ	ОВ	
		1	2	3	4
1	ЗаконОма	Q=It,	P=UI,	I=U/R,	j=σ/E
2	Оптическая сила линзы	D=1/F,	R=2F,	k=H/h,	D=2F
3	Электродвижущая сила индукции, Е =	IR,	-LdI/dt,	dQ/dt,	-dΦ/dt
4	Энергия связи ядра, Е =	mgh,	mc^2 ,	Δmc^2 ,	$mv^2/2$

Tecm 3

$N_{\underline{0}}$	Вопросы	Варианты ответов				
		1	2	3		
1	Световой поток измеряется в	люксах	люменах	канделах		
2	Закон смещения Вина это	λ=bT	b= λ/T	λ=b/Т		
3	Из закона Ламберта следует, что	$L=\pi M$	M= π L	$ML = \pi$		
4	α-распад ядра это излучение	электронов	фотонов я	дер гелия		

Примеры задач:

Тема: Системы отсчёта. Движение переносное, относительное и абсолютное.

Задача 1. Найти все скорости и ускорения города, выбранного на глобусе, в указанное время года и время суток. (У каждого студента свой город и разные времена. Легко получаются индивидуальные задания).

Задача 2. Определить силу Кориолиса, действующую на один погонный метрберега выбранной Вами реки (ручья).

Тема: Движение свободно падающих тел.

 $3a\partial a 4a$. Тело бросили под углом α к горизонту со скоростью V. Найти все параметры движения: дальность полёта, высоту подъёма, время полёта, конечную скорость, минимальный радиус кривизны траектории. Сопротивление воздуха не учитывать. Сделать рисунок.

(Задавая различные значения α и V, получим серию вариантов).

Тема: Бытовые электросети.

3adaчa. Определить сечение проводов, подводящих электроэнергию к вашему дому от подстанции, если: потери на проводах не более 5%, предельная плотность тока для алюминия = 20 A/mm^2 (для меди = 30 A/mm^2).

Тема: Правила Кирхгофа.

Задача. Три параллельно соединённых аккумулятора имеют внутренние сопротивления по 1 (2, 3) Ома. Найти токи в ветвях, если ЭДС источников (в вольтах) равны числу букв в Ваших Ф. И. О., соответственно.

Тема: Фотометрия.

Задача. Определить освещённость на своём рабочем столе, считая настольную лампу точечным источником света. Построить изолюксы.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Такой вид контроля, как "блиц-опросы", позволяет оперативно проверить качество усвоения отдельных тем и программы в целом.

Пример бланка для блиц-опроса и контрольной работы:

Тема 1 - Механика. Термодинамика и молекулярная физика.

	Груп	па		C	туден	т(ка)		
, ,			()			5t ² . Построить Приведите	1 1	

4. Определить импульс силы, действующей на пулю, при выстреле из ружья. Масс 10 г, её скорость 500 м/с. 5. Определить плотность кислорода при комнатных условиях. 6. Определить Т горения газа в цилиндре ДВС, считая его идеальной тепловой мас с к.п.д. 40 % и температурой выхлопной трубы		По какой формуле можно найти 1-ю космическую скорость ракеты относителя Солнца?											
6. Определить Т горения газа в цилиндре ДВС, считая его идеальной тепловой ма	-		•			-		-	-	-			
	5. Опре	еделить пл	ютност	ь кисл	орода	при к	сомна	гных у	/слові	иях.			
	_												
	с Кр	к.п.д.	40	%	и в на в	тем	перат	урой	ВЫ	хлопн	ой	труб	Ы
Ответы на каждый вопрос оцениваются в баллах от 0 до 1. По сумме балл	с —— Кри Оте	к.п.д. итерии от веты на ка	40 ценки о аждый 1	% твето і вопрос	и в на в с оцен	тем вопросниваю	перат сы: тся в	урой	ВЫ	хлопн	ой	труб	Ы
Ответы на каждый вопрос оцениваются в баллах от 0 до 1. По сумме балл определяется оценка по шкале соответствий. Шкала соответствий баллов и оценки за ответы на 6 вопросов:	с —— Кри Отв определя	к.п.д. итерии от веты на ка	40 ценки о аждый 1 ика по ш	% твето вопрос	и в на в с оцен	тем вопрос ниваю етстви	перат сы: тся в й.	урой	Bb.	0 до 1	. По	труб	Ы

Вопросы для подготовки к экзамену (2-й семестр):

- 1. Основные понятия кинематики поступательного движения: путь, перемещение, скорости, ускорения.
- 2. Общее уравнение поступательного движения.
- 3. Общее уравнение вращательного движения.
- 4. Сложение скоростей и ускорений при сложном движении.
- 5. Инерциальные системы отсчёта и законы Ньютона.
- 6. Закон всемирного тяготения.
- 7. Свободное падение тел.
- 8. Неинерциальные системы. Сила Кориолиса.
- 9. Импульс тела и закон сохранения импульса.
- 10. Момент инерции материальной точки и твёрдого тела.
- 11. Теорема Штейнера.
- 12. Кинетическая энергия вращающегося тела.
- 13. Момент импульса материальной точки и механической системы.
- 14. Закон сохранения момента импульса.
- 15. Закон сохранения полной механической энергии системы.

- 16. Законы гидростатики и гидродинамики.
- 17. Стационарное течение идеальной жидкости.
- 18. Уравнение неразрывности потока.
- 19. Уравнение Бернулли.
- 20. Первое начало термодинамики.
- 21. Изопроцессы в идеальных газах.
- 22. Объединённый газовый закон.
- 23. Преобразование теплоты в механическую работу.
- 24. Цикл Карно и его коэффициент полезного действия.
- 25. Энтропия.
- 26. 4-хтактный двигатель внутреннего сгорания. Его круговой цикл и тепловой баланс.

Примеры экзаменационных билетов (2-й семестр):

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия

Дисциплина: *Физика* БИЛЕТ № 1

- 1. Угловая скорость, угловое ускорение. Уравнение вращательного движения.
- 2. Уравнения теплового баланса. Примеры.
- 3. Пароход идёт по реке от пункта A до пункта B со скоростью 10 км/час, а обратно со скоростью 16 км/час. Найти среднюю скорость парохода и скорость течения реки.

Министерство науки и высшего образования Российской Федерации

ФГБОУ ВО "Кубанский государственный университет" Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия Дисциплина: Физика БИЛЕТ № 2

- 1. Законы Ньютона.
- 2. Цикл Карно. Теорема Карно. К п д идеальной тепловой машины.
- 3. Тело, брошенное вертикально вверх, упало на землю через 6 секунд. Написать уравнение движения и построить график скорости (от времени).

Заведующий кафедрой физики и информационных систем Н.М. Богатов

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия

> Дисциплина: *Физика* БИЛЕТ № 3

- 1. Закон сохранения полной механической энергии. Примеры.
- 2. Абсолютные скорости и ускорения при сложном вращательном движении. Пример.

3. В одном из сечений горизонтальной трубки вода течёт со скоростью 1 м/с при статическом давлении 12 кПа. Каким будет давление воды на стенки трубки в другом сечении, где скорость течения 3 м/с? Пример бланка для блии-опроса и контрольной работы (3-й семестр): Тема-2 Электростатика и постоянный ток: Группа_____ Студент(ка) _____ 1. Задача: По поверхности шара радиуса 60 см равномерно распределён заряд 50 нКл. Определить напряжённость поля и потенциал в центре шара. 2. Написать формулы всех законов Ома 3. Написать формулы, соответствующие следующим законам и понятиям: - напряжённость и потенциал поля точечного заряда____________ - напряжённость поля бесконечной равномерно заряженной плоскости - закон Кулона: - закон Всемирного тяготения: 4. $3a\partial a + a$: Дан точечный заряд $\mathbf{Q} = 60$ мкКл. Найти полный поток вектора напряжённости Е через сферическую поверхность, если: I – заряд расположен в центре сферической поверхности 2 - заряд расположен вне сферы 3 - заряд расположен внутри сферы, но смещён относительно центра 5. Определите мощность бытового электрочайника, если 1 литр воды в нём закипает за 6 минут. 6. Три аккумулятора с разными э.д.с. $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ и равными внутренними сопротивлениями соединены параллельно. Нарисовать схему и составить необходимые уравнения для определения токов в ветвях.

Вопросы для подготовки к экзамену (3-й семестр):

Электричество и магнетизм:

- 1. Электрические заряды. Закон Кулона.
- 2. Электрическое поле и его характеристики (напряжённость, потенциал), графическое изображение.
- 3. Теорема Остроградского-Гаусса и её применения к расчёту электрических полей.
- 4. Металлы и диэлектрики в электрическом поле.
- 5. Электроёмкость. Конденсаторы. Энергия заряженного конденсатора.
- 6. Законы Ома, Джоуля-Ленца.
- 7. Правила Кирхгофа. Законы электролиза.

- 8. Магнитное поле и его характеристики. Природа магнетизма.
- 9. Закон Био-Савара-Лапласа и его применения к расчёту магнитных полей.
- 10. Движение зарядов в магнитном поле. Сила Лоренца, сила Ампера.
- 11. Электромагнитная индукция и самоиндукция.
- 12. Трансформаторы. Электродвигатели, генераторы переменного тока.
- 13. Закон Ома в цепи переменного тока. Сопротивления: активное, реактивное, полное.
- 14. Векторные диаграммы. Резонансы токов и напряжений.
- 15. Токи Фуко. Скин эффект.
- 16. Диа-, пара- и ферромагнетизм. Магнитные материалы. *Оптика:*
- 1. Шкала электромагнитных волн.
- 2. Физическая природа волн различных диапазонов.
- 3. Законы геометрической оптики.
- 4. Полное внутреннее отражение.
- 5. Построение изображений в зеркалах и линзах.
- 6. Формула тонкой линзы.
- 7. Интерференция света, цвета тонких плёнок.
- 8. Дифракция света, принцип Гюйгенса. Дифракционная решётка.
- 9. Законы теплового излучения.
- 10. Основные понятия фотометрии: световой поток, сила света, освещённость, световая отлача.
- 11. Люминесценция и её различные виды. Закон Стокса.
- 12. Источники света: тепловые, газоразрядные, люминесцентные, светодиодные
- 13. Фотоэффект (внутренний и внешний), уравнение Эйнштейна.
- 14. Корпускулярно-волновой дуализм. Волны де Бройля.
- 15. Электронный микроскоп.
- 16. Оптические квантовые генераторы (лазеры): принцип действия, свойства излучения, классификация, применения.
- 17. Основы спектрального анализа. Спектры излучения и поглощения.
- 18. Призменные и дифракционные спектральные приборы.
- 19. Поляризация света. Виды поляризации.
- 20. Закон Френеля для скоростей света в кристаллах.

Примеры экзаменационных билетов (2-й семестр):

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия

Дисциплина: *Физика* БИЛЕТ № 1

- 1. Законы Ома (в цепях постоянного тока).
- 2. Оптические квантовые генераторы (лазеры): принцип действия, свойства излучения. *Задача*: Определить длину волны де Бройля для электронов, ускоренных напряжением 1кВ.

Заведующий кафедрой физики и информационных системБогап	атов Н.	, 1VI
---	---------	-------

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет" Кафедра физики и информационных систем

Направление подготовки 04.03.01 Химия Дисциплина: Физика БИЛЕТ № 2

- 1. Полное внутреннее отражение.
- 2. Правила Кирхгофа.

Задача: Определить мощность излучения Солнца, считая его абсолютно чёрным телом. Температура поверхности Солнца 6000 К, радиус Солнца 700 Мм.

Заведующий кафедрой физики и информационных систем Богатов Н.М.

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки 04.03.01 Химия Дисциплина: Физика

БИЛЕТ № 3

- 1. Правила построения изображений в вогнутом зеркале.
- 2. Основы атомной энергетики.

Задача: Определить температуру нити лампы накаливания мощностью 100 Вт. Коэффициент серости нити равен 0,4. Диаметр и длину нити оцените самостоятельно.

Вопросы для подготовки к экзамену (3-й семестр):

Атомная и ядерная физика:

- 1. Опыты Резерфорда. Ядерная (планетарная) модель атома.
- 2. Эмпирическая формула Бальмера.
- 3. Постулаты Н. Бора.
- 4. Теория атома водорода по Бору.
- 5. Энергетические уровни. Серии спектральных линий.
- 6. Символы атомов (ядер), их составы и массы.
- 7. Основные свойства ядерных сил.
- 8. Модели атомных ядер.
- 9. Дефект массы ядра.
- 10. Энергия связи атомов и ядер. Энергия ядерных реакций.
- 11. Основы атомной энергетики.
- 12. Достижения и проблемы термоядерного синтеза.
- 13. Радиоактивность. Природа, свойства альфа-, бета- и гамма –лучей.
- 14. Естественная и искусственная радиоактивность.
- 15. Правила смешения. Радиоактивные ряды (семейства).
- 16. Законы радиоактивного распада.
- 17. Нуклиды: изотопы, изобары, изотоны.
- 18. Активность радионуклидов.
- 19. Основы дозиметрии и защиты.
- 20. Блок схема атомного реактора.

Примеры экзаменационных билетов (4-й семестр):

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия Дисциплина: Физика

БИЛЕТ № 1

- 1. Опыты Резерфорда. Ядерная (планетарная) модель атома.
- 2. Активность радионуклидов.

3ada4a: Определить удельную энергию связи нуклонов в изотопе 16 O₈.

2	αροδυκουμού καθοδηρού	физики и информационных систем	Богатов Н.М
7	авеоующий катеорой	<i>аризики и инарормационных систем</i>	bozamor ii M

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 04.03.01 Химия

Дисциплина: *Физика* БИЛЕТ № 2

- 1. Первый постулат Нильса Бора.
- 2. Основы атомной энергетики.

Задача: Определить 2-й потенциал возбуждения электрона в атоме водорода.

Заведующий кафедрой физики и информационных систем_____ Богатов Н.М.

4.2.1 Критерии оценки при промежуточной аттестации:

Критериями устного ответа будут выступать следующие качества знаний:

- -полнота количество знаний об изучаемом объекте, входящих в программу;
- -глубина совокупность осознанных знаний об объекте;

- -конкретность умение раскрыть конкретные проявления обобщённых знаний (доказать на примерах основные положения);
- -системность представление знаний об объекте в системе, с выделением структурных её элементов, расположенных в логической последовательности;
- -развёрнутость способность развернуть знания в ряд последовательных шагов;
- -осознанность понимание связей между знаниями, умение выделить существенные и несущественные связи, познание способов и принципов получения знаний.

Критериями письменного ответа и практического отчёта будут выступать следующие качества знаний:

- полнота количество знаний об изучаемом объекте, входящих в программу;
- глубина совокупность осознанных знаний об объекте;
- конкретность умение раскрыть конкретные проявления обобщённых знаний.

Критерии оценки знаний студентов на экзамене.

Оценки **«отлично»** заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка **«отлично»** выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки **«хорошо»** заслуживает студент обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка **«хорошо»** выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки **«удовлетворительно»** заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка **«удовлетворительно»** выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;

 при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля):

5.1 Основная литература:

- 1. Бордовский, Г. А. Общая физика в 2 т.: учебное пособие для академического бакалавриата / Г. А. Бордовский, Э. В. Бурсиан. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2018. 242 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-05451-4. Режим доступа: www.biblio-online.ru/book/E018BF05-1609-4A2A-93C4-959CE18CE185.
- 2. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И. Трофимова. М.: Академия, 2014.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Дополнительная литература:

- 1. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, З.Г. Павлова. М.: Высшая школа, 2004.
- 2. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. СПб.: Книжный мир: [Профессия], 2006.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля):

1. Электронные учебники и пособия по физике.

www.knigafund.ru/products/17

Учебная литература по физике и ее разделам в электронном виде. Раздел содержит издания по механике, термодинамике, оптике, электродинамике,

2. Электронные учебники. Физика.

www.curator.ru/e-books/physics.html

Электромагнетизм. Оптика. Квантовая физика. Более 80 компьютерных экспериментов, учебное пособие, видеозаписи экспериментов.

3. Электронные ресурсы по физике

metodist.lbz.ru > УМК - БИНОМ

Электронные образовательные ресурсы по **физике** Сегодня наш сайт – это более 2000 файлов: **учебники**, лабораторные и контрольные работы.

4. <u>Физика - Единое окно доступа к образовательным программам.</u> window.edu.ru/**catalog**/resources/uchebnik-**fizika**-dlya-vuzov

5. <u>Электронный учебник физики — PhysBook.</u> www.physbook.ru/

Указанная основная литература имеется в библиотеке КубГУ в достаточном количестве.

7. Методические указания для обучающихся по освоению дисциплины.

Успешное освоение дисциплины предполагает активное, творческое участие студента путём планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, уделяя особое внимание целям и задачам, структуре и содержанию курса.

Работа с конспектом лекций

Просмотрите конспект сразу после лекции; отметьте материал, который вызывает затруднения для понимания. Попытайтесь найти ответы, используя рекомендуемую литературу и интернет ресурсы. Если самостоятельно не удалось разобраться в материале, формулируйте вопросы и обращайтесь к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- Компьютерное тестирование по итогам изучения разделов дисциплины.
- Проверка домашних заданий и консультирование посредством электронной почты.

8.2 Перечень необходимого программного обеспечения.

– Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).

8.3 Перечень информационных справочных систем:

- Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория (201 С и др.), оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук,) и соответствующим программным обеспечением (ПО). специализированные демонстрационные стенды по различным разделам общей физики (ком. 200 С).
2.	Семинарские занятия	Семинарские занятия - (не предусмотрены)

3.	Лабораторные	Лаборатория (ком. 219 С), укомплектованная оборудованием
	занятия	для измерения механических и термодинамических параметров тел и систем:
		 Микрометры, штангенциркули и секундомеры. Психрометры, термометры и гигрометры.
		 Психрометры, термометры и гигрометры. Маятники: математический, физический, крутильный и
		маятник Обербека.
		4. Установки для измерения теплоёмкости, коэффициента
		вязкости и модуля сдвига.
4.	Курсовое	Курсовое проектирование - (не предусмотрено)
	проектирование	
5.	Групповые	Аудитории 234 С, 320 С, 332 С; кабинет 232 С.
	(индивидуальные)	
	консультации	
6.	Текущий	Аудитории 234 С, 332 С; кабинет 232 С.
	контроль,	
	промежуточная	
	аттестация	
7.	Самостоятельная	Кабинет для самостоятельной работы, оснащенный
	работа	компьютерной техникой с возможностью подключения к сети
		«Интернет», программой экранного увеличения и обеспеченный
		доступом в электронную информационно-образовательную
		среду университета.

Учебно-экскурсионные объекты университета (астрофизическая обсерватория, спецлаборатории естественных факультетов и лаборатория нанотехнологий) оснащены современным оборудованием.