Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Факультет физико-технический

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б.26 КВАНТОВАЯ РАДИОФИЗИКА

Направление подготовки 03.03.03 Радиофизика

Направленность (профиль): Радиофизические методы по областям применения (биофизика)

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника бакалавр

Рабочая программа дисциплины «Квантовая радиофизика» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 03.03.03 Радиофизика.

Программу составил:

А.А. Васильченко, доцент кафедры радиофизики и нанотехнологий ФТФ КубГУ, канд. физ.-мат. наук

подпись

Рабочая программа дисциплины «Электроника СВЧ» утверждена на заседании кафедры радиофизики и нанотехнологий протокол № 6 «20» апреля 2020 г.

Заведующий кафедрой (разработчика) Копытов Г.Ф.

Рабочая программа обсуждена на заседании кафедры радиофизики и нанотехнологий протокол № 6 «20» апреля 2020 г. Заведующий кафедрой (выпускающей) Копытов Г.Ф.

подпись

Утверждена на заседании учебно-методической комиссии физико-технического факультета протокол № 9 «20» апреля 2020 г. Председатель УМК факультета Богатов Н.М.

полпись

Рецензенты:

Гаврилов А.И., доцент кафедры физики КубГТУ, канд. физ.-мат. наук

Тумаев Евгений Николаевич, профессор кафедры теоретической физики и компьютерных технологий КубГУ

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Учебная дисциплина «Квантовая радиофизика» ставит своей целью изучение принципов работы приборов квантовой радиофизики, их устройство, области применения.

1.2 Задачи дисциплины

- формирование систематических знаний по основным разделам квантовой радиофизики, необходимых для выполнения самостоятельных научных исследований и лабораторного практикума в рамках учебного курса;
- ознакомление с основными устройствами квантовой радиофизики и происходящими в них физическими процессами, изучение теоретических и экспериментальных основ квантовой радиофизики.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Квантовая радиофизика» входит в базовую часть профессионального цикла подготовки для направления 03.03.03 «Радиофизика». Изучение еè базируется на следующих дисциплинах: «Высшая математика», «Общая физика», «Радиоэлектроника», «Квантовая механика».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучаю-

щихся профессиональных компетенций (ПК):

,	индекс Индекс				
No	компет	компетенции	± ,	ны	
п.п.	енции	(или еè части)	знать	уметь	владеть
1	ОПК-1	способность к овла-	базовые прин-	рассчитывать	классическими и
		дению базовыми зна-	ципы теории	простейшие	современными
		ниями в области ма-	взаимодейст-	квантовые оп-	методами расче-
		тематики и естест-	вия излучения	тические уст-	та параметров
		венных наук, их ис-	с веществом;	ройства	лазерных сред.
		пользованию в про-			
		фессиональной дея-			
		тельности.			
2	ПК-1	способность пони-	основные типы	пользоваться	методами ис-
	мать принципы рабо-		лазеров и	профессио-	следования про-
		ты и методы эксплуа-	принципы их	нальной	цессов, прохо-
	тации современной		работы	терминологией	дящих в кванто-
	радиоэлектронной и				вых системах,
		оптической аппарату-			помещенных в
		ры и оборудования			резонатор

2. Структура и содержание дисциплины

2.1 Распределение трудоемкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице.

Вид учебной работы	Всего	8-й семестр
	часов	(часы)
Контактная работа, в том числе:		
Аудиторные занятия (всего):	44	44
Занятия лекционного типа	22	22

Лабораторные занят	ия	-	-
Занятия семинарског	22	22	
(семинары, практиче	22	22	
Иная контактная р	абота:		
Контроль самостоято	ельной работы (КСР)	4	4
Промежуточная атте	стация (ИКР)	0,3	0,3
Самостоятельная р	абота, в том числе:		
Проработка учебного	о (теоретического) материала	59,7	59,7
Контроль:			
Подготовка к экзаме	ну	-	-
Общая час.		108	108
трудоемкость в том числе контактная ра-		40.2	40.2
	бота	48,3	48,3
	зач. ед.	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 8 семестре:

	тизделы длециилины, изучисмые в о семестре.					
N₂		Количество часов				
	I I average average and a second		Аудиторная			Самостоятельная
разд	Наименование разделов	Всего		работа	работа	
ела			Л	П3	ЛР	•
1	2	3	4	5	6	7
	Физические основы работы квантовых приборов.	30	6	6	-	18
12.	Открытые оптические резонаторы и световые пучки лазеров	20	4	4	-	12
3.	Типы лазеров и разные методы получения инверсной населенности	25,8	6	6	1	13,8
4.	Введение в теорию стационарной генерации	28	6	6	-	16
	Итого по дисциплине:		22	22	-	59,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

Nº	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Физические основы	Предмет квантовой радиофизики.	Ответы на кон-
	работы квантовых	Примеры проявления квантовых явле-	трольные вопросы
	приборов.	ний. Возникновение квантовой механи-	и задания
		ки. Примеры использования уравнения	
		Шредингера.	
		Принцип квантового усиления. Населѐн-	

ность и инверсная населенность уровн Превращение усилителя в генератор. 2. Открытые оптиче- Виды оптических резонаторов. Двух кальные и многозеркальные резонатор	
2. Открытые оптиче- Виды оптических резонаторов. Двух	
1 1 1 1 1 1 1 1 1	
ские резонаторы и кальные и многозеркальные резонатор	-
световые пучки лазе- Лучевой метод в теории открытых рез	* *
ров наторов. Критерий устойчивости луче	
резонаторе по первому приближен	
Расчет собственных частот и полей	
крытого резонатора методом парабо.	
ческого уравнения. Каустические	ПО-
верхности в резонаторе. Моды выси	
порядков. Устойчивость резонатора.	g-
плоскость.	
3. Типы лазеров и раз- Обзор методов создания инверсии н	
ные методы получе- ленности; возбуждение световым по	
ния инверсной насе- ком (оптическая накачка); возбужден	* *
ленности электронным ударом; возбуждение	
счет неупругих столкновений атом	
возбуждение при диссоциации моле	-
(при столкновении молекул); инжект	ция
носителей зарядов через n-р переход.	
Твердотельные ОКГ.	
Газовые ОКГ.	
Полупроводниковые ОКГ.	
ОКГ на жидких активных веществах	и
ОКГ на красителях.	
4. Введение в теорию Естественное уширение спектралы	
стационарной гене- линии атома. Однородное и неоднор	
рации ное уширение спектральных линий	ан- и задания
самбля атом	
Прохождение излучения в среде. За	
Бугера. Коэффициенты Эйнштейна.	
версия населенности. Насыщение уси	
ния. Кинетические уравнения для тр	ex-
уровневой схемы. Расчет насыще	
усиления. Насыщенный коэффици	
усиления для однородно и неодноро	днф
уширенной линии перехода.	

2.3.2 Занятия семинарского типа

N₂	Наименование	Тематика практических занятий	Форма текущего
1 12	раздела	(семинаров)	контроля
1	2	3	4
1.	Физические осно-	Решение задач по темам: Излучение и	Контрольная работа
	вы работы кван-	поглощение электромагнитных волн ве-	Проверка домашне-
	товых приборов.	ществом. Спонтанное и вынужденное из-	го задания
		лучение.	
2.	Открытые оптиче-	Решение задач по теме: Расчет собствен-	Контрольная работа
	ские резонаторы и	ных частот и полей открытого резонатора	Проверка домашне-
	световые пучки	методом параболического уравнения.	го задания

	лазеров		
3.	Типы лазеров и	Решение задач по теме: Методы создания	Контрольная работа
	разные методы	инверсии населенности	Проверка домашне-
	получения ин-		го задания
	версной населен-		
	ности		
4.	Введение в тео-	Решение задач по темам: Инверсия насе-	Контрольная работа
	рию стационарной	ленности. Насыщение усиления. Кинети-	Проверка домашне-
	генерации	ческие уравнения для трехуровневой	го задания
		схемы.	

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Nº	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	учебного	Методические указания по изучению теоретического материала, утвержденные кафедрой радиофизики и нанотехнологий, протокол № 7 от 20.03.2017.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Для проведения меньшей части лекционных занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а так же формировании профессиональных компетенций. Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов.

По дисциплине проводятся двухчасовые лекционно-практические занятия. При этом в каждом модуле проводятся практические занятия, посвященные решению типовых задач по расчету основных характеристик и параметров анализируемых электромагнитных полей.

При проведении практических занятий используется интерактивная форма: визуализация сложных пространственно-временных электромагнитных явлений с использованием компьютерных симуляторов В процессе практических занятий проводится обсуждение и разбор решений прикладных задач.

Такой инновационный подход позволил внедрить в процесс преподавания учебной дисциплины «Квантовая радиофизика» новые средства, формы и активные прогрессивные

методы обучения. Используемые технологии способствуют реализации студентами своего личностного, познавательного и творческого потенциала и выполнению учебных и учебно-исследовательских работ по личным траекториям.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

текущий контроль: проверка домашних заданий по семинарским занятиям. Ответы на контрольные вопросы и на дополнительные вопросы, касающиеся соответствующих разделов основной дисциплины.

Промежуточный контроль: зачет

4.1 Фонд оценочных средств для проведения текущей аттестации.

4.1.1 Примеры контрольных вопросов по разделам учебной программы.

Контрольные вопросы предназначены:

- для устного опроса на лекционных занятиях;
- для внутрисеместровой аттестации;
- в качестве дополнительных теоретических вопросов на семинарах

Раздел 1. Физические основы работы квантовых приборов.

Работы Шредингера, Планка и Дирака по созданию квантовой теории.

Вероятности поглощения и вынужденного излучения. Коэффициенты Эйнштейна.

Раздел 2. Открытые оптические резонаторы и световые пучки лазеров.

Оптимальная связь на выходе лазера.

Режим модуляции добротности

Пичковый режим твердотельных лазеров.

Монохроматичность.

Когерентность. Степень пространственной и временной когерентности.

Направленность излучения лазера.

Раздел 3. Типы лазеров и разные методы получения инверсной населенности.

Приведите сравнительные характеристики газовых лазеров на нейтральных атомах, молекулярных и ионных лазеров.

Твердотельные лазеры не рубине и неодиме.

Полупроводниковые и химические лазеры.

Раздел 4. Введение в теорию стационарной генерации.

Неоднородное уширение. Допплеровское уширение в газовых лазерах.

Коэффициент поглощения. Накачка активной среды.

Трехуровневая система в резонансном поле излучения.

Четырехуровневая система в резонансном поле излучения.

Образцы контрольных задач

- 1. Используя второй закон Ньютона, и выражение для силы, действующей на атом со стороны резонансного поля, найдите силу резонансного давления на атом в сильном световом поле. Сделать численные оценки.
- 2. Найдите выражение для полосы усиления квантового усилителя бегущей волны длиной L. Насыщением пренебречь. Указание: Использовать стационарное уравнение переноса излучения в волне $\frac{dI}{dz} = -\beta + \frac{c_b I}{1 + u^2 + I}$, где z –ось распространения

волны. Обозначения: I – безразмерная интенсивность, полученная нормированием на насыщающую интенсивность для рабочего перехода I _{нас}; β – коэффициент нере-

зонансных потерь в активной среде; $c_0 = \frac{\omega N_{0.9 \phi \phi}}{2 T_1 I_{nac}}$ - коэффициент ненасыщенного усиления, $\mathbf{u} = (\omega_{12} - \omega) \mathbf{T}_2$ – безразмерная расстройка частоты от центра спектральной линии.

- 3. Используя уравнение переноса излучения в стационарной активной среде квантового усилителя бегущей волны: $\frac{dI}{dz} = -\beta I + \frac{c_0 I}{1+u^2+I}$, где z —ось распространения волны, найдите выражение для максимально возможной величины $I_{\text{макс}}$ на выходе. Обозначения: I безразмерная интенсивность, полученная нормированием на насыщающую интенсивность для рабочего перехода $I_{\text{нас}}$; β коэффициент нерезонансных потерь в активной среде; $\alpha_{\!\!\!\!6} = \frac{\omega N_{0:\!\!\!4\phi}}{2T_{\!\!\!1}I_{\!\!\!\!\!\!\!\!\!\!-ac}}$ коэффициент ненасыщенного усиления
- 4. Считая для рубинового лазера $W_{32} > W_{31}$, A_{31} и используя уравнения баланса населенностей (для диагональных элементов матрицы плотности подсистемы), покажите, что разность населенностей на рабочей паре уровней E_2 и E_1 удовлетворяет уравнению: $dN/dt = (N N_{o \ 9\varphi\varphi})/T_{1 \ 9\varphi\varphi}$ при отсутствии лазерной генерации. Найдите выражения для $N_{o \ 9\varphi\varphi}$ и $T_{1 \ 9\varphi\varphi}$. Как эти выражения зависят от мощности поля накачки ? Обозначения: W_{13} вероятность поглощения фотона накачки в единицу времени, W_{31} вероятность индуцированного излучения под действием источника накачки, W_{32} вероятность безызлучательного перехода между уровнями 3 и 2, A_{32} и A_{31} вероятность спонтанного излучения.
- 5. Считая одно зеркало в резонаторе Фабри-Перо "глухим" (R_1 = 1), а другое полупрозрачным (R_2 = R), найдите зависимость мощности лазера от R. Существует ли оптимальная величина R ?
- 6. Активная среда лазера заполняет все пространство между плоскопараллельными зеркалами резонатора. Коэффициент усиления среды в отсутствии поля $\alpha_0 = 0,008$ см $^{-1}$ (ненасыщенное усиление). В рамках одномерной задачи (z направление оси лазера) и считая, что при наличии в резонаторе волн интенсивностей I_+ и I_- коэффициент усиления изменяется как $\alpha(z) = \alpha_0 \cdot [1 + (I_+ + I_-)/I_0]^{-1}$, найти интенсивности волн I_+ и I_- на зеркалах. $I_{\text{Hac}} = 30 \; \text{Вт/см}^2$ насыщающая интенсивность, $L = 100 \; \text{см}$ длина лазерного резонатора, $R_1 = 1 \; \text{и} \; R_2 = 0,49$ коэффициенты отражения зеркал. Условие самовозбуждения лазера считать выполненным.
- 7. Оценить минимальную мощность лампы-накачки (к.п.д. = 100 %), необходимую для создания инверсии в твердотельном лазере с концентрацией активных частиц $n=10^{19}~{\rm cm}^{-3}$, объемом кристалла $V=10~{\rm cm}^3$. Частота середины полосы оптической накачки равна $v=6\cdot10^{14}~{\rm \Gamma}$ ц, время жизни частиц на верхнем рабочем уровне $t_{\rm cn}=3\cdot10^{-3}~{\rm cek}$.
- 8. Нарисуйте и объясните график зависимости мощности лазера от величины отражения выходного зеркала резонатора.
- 9. Рассчитайте минимально необходимую мощность источника накачки для неодимового лазера на кристалле YAG. Указание: Использовать следующий набор параметров этого ОКГ: вероятность спонтанного излучения на рабочем переходе А $_{32} = 5 \cdot 10^3 \text{ c}^{-1}$; центр полосы поглощения $\lambda \sim 800$ нм. Длина волны излучения 1,06 мкм. Пороговая разность населенностей $N_{09\varphi\varphi} = 10^{16}$ см⁻³, объем рабочей среды V=10 см³.

4.2 Фонд оценочных средств для проведения промежуточной аттестации Перечень вопросов, которые выносятся на зачет

- 1. Предмет квантовой радиофизики.
- 2. Примеры проявления квантовых явлений. Возникновение квантовой механики.
- 3. Примеры использования уравнения Шредингера.
- 4. Решение уравнения Шредингера для потенциальной ямы.
- 5. Решение уравнения Шредингера для одномерного гармонического осциллятора.
- 6. Решение уравнения Шредингера для двумерного гармонического осциллятора.
- 7. Симметричные и антисимметричные волновые функции
- 8. Вырожденные состояния.
- 9. Туннельный эффект. Вероятность туннелирования.
- 10. Туннельный диод, туннельный пробой.
- 11. Наноэлектронные приборы.
- 12. Резонансно-туннельном диод
- 13. Спонтанные и вынужденные переходы.
- 14. Уширение спектральных линий. Механизмы уширения линии. Однородное и неоднородное уширение.
- 15. Принципы работы лазеров
- 16. Динамика населенности энергетических уровней, скоростные уравнения.
- 17. Изменение разности населенностей уровней в двухуровневой системе.
- 18. Усиление в активной среде. Эффект насыщения
- 19. Влияние накачки и генерации на уровень инверсии.
- 20. Сравнительные характеристики трех-, и четырехуровневых систем.
- 21. Оптические открытые резонаторы.
- 22. Роль резонатора и спонтанного излучения при возникновении генерации.
- 23. Свойства лазерных пучков: монохроматичность, когерентность, направленность, яркость.
- 24. Вероятности поглощения и вынужденного излучения.
- 25. Скоростные уравнения четырехуровневого лазера.
- 26. Газовые лазеры. Общая характеристика. Процессы создания инверсии. Атомарные лазеры. Гелий неоновый лазер. Ионные лазеры. Молекулярные лазеры. Лазер на углекислом газе. Другие типы газовых лазеров.
- 27. Твердотельные лазеры. Общая характеристика и особенности. Устройство.
- 28. Жидкостные лазеры.
- 29. Полупроводниковые инжекционные лазеры. Основные особенности. Характеристики, применение.

Зачет проводится в устной форме, при этом студентам задаются 2 вопроса из общего перечня вопросов к зачету.

Рекомендуется следующие критерии оценки знаний.

Оценка **«неудовлетворительно/не зачтено»** выставляется в том случае, если студент демонстрирует:

- поверхностное знание теоретического материала;
- незнание основных законов, понятий и терминов учебной дисциплины, неверное оперирование ими;
 - грубые стилистические и речевые ошибки.

Оценка «удовлетворительно/зачтено» ставится студентам, которые при ответе:

- в основном знают учебно-программный материал в объѐме, необходимом для предстоящей учебы и работы по профессии;
 - в целом усвоили основную литературу;
- в ответах на вопросы имеют нарушения в последовательности изложения учебного материала, демонстрируют поверхностные знания вопроса;
 - имеют краткие ответы только в рамках лекционного курса;

- приводят нечеткие формулировки физических понятий и законов;
- имеют существенные погрешности и грубые ошибки в ответе на вопросы.

Оценка «хорошо/зачтено» ставится студентам, которые при ответе:

- обнаруживают твердое знание программного материала, который излагают систематизировано, последовательно и уверенно;
 - усвоили основную и наиболее значимую дополнительную литературу;
 - допускают отдельные погрешности и незначительные ошибки при ответе;
- в ответах не допускает серьезных ошибок и легко устраняет отдельные неточности с помощью дополнительных вопросов преподавателя.

Оценка «отлично/зачтено» ставится студентам, которые при ответе:

- обнаруживают всестороннее систематическое и глубокое знание программного материала (знание основных понятий, законов и терминов учебной дисциплины, умение оперировать ими);
 - излагают материал логично, последовательно, развернуто и уверенно;
- излагают материал с достаточно четкими формулировками, подтверждаемыми графиками, цифрами или примерами;
 - владеют научным стилем речи;
- демонстрируют знание материала лекций, базовых учебников и дополнительной литературы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Тарасов Л.В. Физика лазера. Изд.2, испр. и доп. –М.:, изд-во "Физматлит" 2010 г.
- 2. Айхлер Ю., Айхлер Г.-И. Лазеры. Исполнение, управление, применение. М.: Изд-во "Техносфера", 2008 г.
- 3. Карлов Н.В. Лекции по квантовой электронике. М. Наука.1988
- 4. Звелто О. Физика лазеров. ИЛ. 1996.

5.2 Дополнительная литература:

- 5. Демтредер В. Лазерная спектроскопия М. Наука. 1986.
- 6. Справочник по лазерам под ред. Прохорова А.М. М. Наука. 1978.
- 7. Писаренко В.Ф. Лазеры. КубГУ. Электронное издание. 1999.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань», «Юрайт», «Университетская библиотека ONLINE».

5.3. Периодические издания:

- 1. Квантовая электроника
- 2. Журнал технической физики.
- 3. Известия ВУЗов. Серия: Физика.
- 4. Успехи физических наук.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. http://eqworld.ipmnet.ru/ru/library/physics/optics.htm
- 2. Электронная библиотека. http://e-library.ru
- 3. Электронно-библиотечная система http://e.lanbook.com

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Формирование у студентов способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию и эффективно еè использовать происходит в течение всего периода обучения через участие студентов в лекционных и практических (семинарских) занятиях, причèм самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Для понимания лекционного материала и качественного его усвоения студентам необходимо вести конспекты лекций. В течение лекции студент делает пометки по тем вопросам лекции, которые требуют уточнений и дополнений. Вопросы, которые преподаватель не отразил в лекции, студент должен изучать самостоятельно.

При подготовке к семинарским занятиям следует использовать основную литературу из представленного списка, а также руководствоваться приведенными указаниями и рекомендациями. Для наиболее глубокого освоения дисциплины рекомендуется изучать литературу, обозначенную как «Дополнительная» в представленном списке.

На семинарских занятиях рекомендуется принимать активное участие в обсуждении проблем, возникающих при решении учебных задач, развивать способность на основе полученных знаний находить наиболее эффективные решения поставленных проблем по тематике семинарских занятий.

Студенту рекомендуется следующая схема подготовки к семинарскому занятию:

- проработка конспекта лекций;
- чтение рекомендованной основной и дополнительной литературы по изучаемому разделу дисциплины;
- решение домашних задач. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи.
- При возникновении затруднений следует сформулировать конкретные вопросы к преподавателю.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Успешность освоения студентом учебной дисциплины отражается в его рейтинге – сумме баллов, которая формируется в течение семестра по результатам выполнения устных опросов и активности на семинарских занятиях.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- обеспечение выхода в сеть Интернет каждого участника учебного процесса в любое время и из различных мест пребывания;
- развитие единого информационного пространства образовательных индустрий и присутствие в нем в различное время и независимо друг от друга всех участников образовательного и творческого процесса;
- создание, развитие и эффективное использование управляемых информационных образовательных ресурсов, в том числе личных пользовательских баз и банков данных и знаний учащихся и педагогов с возможностью повсеместного доступа для работы с ними.

8.2 Перечень необходимого программного обеспечения.

1. Оригинальные программы и программы-симуляторы для выполнения расчетнографических и лабораторных работ на ЭВМ.

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU:

http://www.elibrary.ru

2. Аннотированный тематический каталог Интернет ресурсов по физике: http://www.college.ru/

3. Каталог научных ресурсов:

http://www.scintific.narod.ru/literature.htm

- 4. Большая научная библиотека:
- 5. Физическая энциклопедия:

http://www.femto.com.ua/articles/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины
1 12	Бид расст	(модуля) и оснащенность
1.	Лекционные	Аудитория, оснащенная переносным проектором и меловой
	занятия	доской.
2.	Семинарские	Аудитория, оснащенная переносным проектором и меловой
	занятия	доской.
3.	Групповые	Аудитория, оснащенная компьютерной техникой с подклю-

	(индивидуальные)	чением к сети Интернет.
	консультации	
4.	Текущий контроль, промежуточная	Аудитория, оснащенная переносным проектором и меловой доской.
	аттестация	
5.	Самостоятельная	Аудитория, оснащенная компьютерной техникой с подклю-
	работа	чением к сети Интернет.