МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Институт географии, геологии, туризма и сервиса Кафедра геофизических методов поисков и разведки

"УТВЕРЖДАЮ"

Проректор по учебной работе,

качеству образования

первый проректор

T.A.Xarypo

" 28 "

lear

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.05 УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ ДЛЯ ГОРНЫХ ИНЖЕНЕРОВ

Направление подготовки

05.03.01 "Геология"

Направленность (профиль)

"Геофизика"

Программа подготовки:

академическая

Форма обучения

очная

Квалификация (степень) выпускника: бакалавр

Краснодар 2021

Рабочая программа дисциплины «Уравнения математической физики для горных инженеров» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 05.03.01 «Геология», утвержденным приказом Министерства науки и высшего образования Российской Федерации №896 от 07.08.2020 г.

Программу составил:

Захарченко Е.И., канд. техн. наук, доцент, и.о. заведующего кафедрой геофизических методов поисков и разведки

Рабочая программа дисциплины рассмотрена и утверждена на заседании кафедры геофизических методов поисков и разведки « $\frac{13}{2}$ » $\frac{2021}{2}$ г. Протокол № $\frac{9}{2}$

И.о. заведующего кафедрой геофизических методов поисков и разведки, канд. техн. наук, доцент Захарченко Е.И.

Рабочая программа дисциплины утверждена на заседании учебнометодической комиссии Института географии, геологии, туризма и сервиса «39» _____ 2021 г. Протокол № ____ 4__

Председатель учебно-методической комиссии ИГГТиС, канд. геогр. наук, доцент Филобок А.А.

Рецензенты:

Гуленко В.И., д-р техн. наук, профессор кафедры геофизических методов поисков и разведки Рудомаха Н.Н., директор ООО «Гео-Центр»

СОДЕРЖАНИЕ

	Стр
1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ	5
1.1. Цели изучения дисциплины	5
1.2. Задачи изучения дисциплины	5
1.3. Место дисциплины (модуля) в структуре образовательной	
программы	5
1.4. Перечень планируемых результатов обучения по	
дисциплине (модулю), соотнесенных с планируемыми	
результатами освоения образовательной программы	6
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	8
2.1. Распределение трудоёмкости дисциплины по видам работ	8
2.2. Структура дисциплины	9
2.3. Содержание разделов (тем) дисциплины	11
2.3.1. Занятия лекционного типа	11
2.3.2. Занятия семинарского типа	13
2.3.3. Лабораторные занятия	13
2.3.4. Примерная тематика курсовых работ (проектов)	14
2.4. Перечень учебно-методического обеспечения для	
самостоятельной работы обучающихся по дисциплине (модулю)	14
3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	14
4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	
УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	17
4.1. Фонд оценочных средств для проведения текущей	
аттестации	17
4.2. Фонд оценочных средств для проведения промежуточной	
аттестации	20
5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ	
ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ	
ДИСЦИПЛИНЫ (МОДУЛЯ)	24
5.1. Основная литература	24
5.2. Дополнительная литература	24
5.3. Периодические издания	25
6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-	
ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", В ТОМ	
ЧИСЛЕ СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ	
ДАННЫХ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ,	
НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)	25

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО	
ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)	26
8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ,	
ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ	
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	
(МОДУЛЮ)	27
8.1. Перечень информационных технологий	27
8.2. Перечень необходимого лицензионного программного	
обеспечения	27
8.3. Перечень необходимых информационных справочных	
систем	28
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ	
ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА	
ПО ДИСЦИПЛИНЕ (МОДУЛЮ)	28
РЕЦЕНЗИЯ	29
РЕЦЕНЗИЯ	30

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Дисциплина "Уравнения математической физики в геофизике" является одним из важных курсов для изучения основных разделов разведочной геофизики, широко применяемой при поисках нефтегазовых месторождений, геологическом картировании, в решении задач инженерной геологии.

Целями освоения дисциплины "Уравнения математической физики в геофизике" являются: фундаментальная подготовка в области дифференциальных уравнений с частными производными; овладение аналитическими методами математической физики; овладение современным математическим аппаратом для дальнейшего использования в приложениях; приобретение навыков математического моделирования процессов и объектов, разработки математических методов решения задач геофизики.

1.2. Задачи изучения дисциплины

Основными задачами дисциплины "Уравнения математической физики в геофизике" являются:

- изучение основных методов нахождения точных решений уравнений математической физики: уравнения Лапласа, уравнения колебаний, уравнений теплопроводности и диффузии;
- изучение основных методов доказательства существования решений начально-краевых задач для указанных уравнений;
- ознакомление с приближенными методами решения этих уравнений;
- практическое применение уравнений математической физики для моделирования различного рода процессов и явлений.

Объектами профессиональной деятельности выпускников, освоивших программу бакалавриата, являются:

- Земля, земная кора, литосфера, горные породы, подземные воды, минералы, кристаллы;
- минеральные ресурсы, природные и техногенные геологические процессы;
- геохимические и геофизические поля, экологические функции литосферы.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "Уравнения математической физики в геофизике" введена в учебные планы подготовки бакалавров по направлению подготовки 05.03.01 "Геология" направленности (профилю) "Геофизика", согласно ФГОС ВО, утвержденного приказом Министерства образования и науки Российской Федерации от №954 от 7 августа 2014 г., относится к блоку Б1, к вариативной части (Б1.В). Индекс дисциплины согласно ФГОС — Б1.В.05, читается в шестом семестре.

Предшествующие смежные дисциплины логически и содержательно взаимосвязанные с изучением данной дисциплины: Б1.Б.05 "Математика", Б1.Б.06 "Информатика в геологии", Б1.Б.07 "Физика", Б1.В.08 "Магниторазведка", Б1.В.09 "Гравиразведка", Б1.В.10 "Электроразведка".

Последующие дисциплины, для которых данная дисциплина является предшествующей, в соответствии с учебным планом: Б1.В.11 "Сейсморазведка", Б1.В.13 "Геофизические исследования скважин", Б1.В.15 "Вертикальное сейсмическое профилирование".

Дисциплина предусмотрена основной образовательной программой (ООП) КубГУ в объёме 3 зачетных единиц (108 часов, итоговый контроль — экзамен).

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины "Уравнения математической физики в геофизике" направлен на формирование элементов следующих общепрофессиональных и профессиональных компетенций:

- способность использовать в профессиональной деятельности базовые знания математики и естественных наук (ОПК-3);
- способность получать самостоятельно геологическую информацию, использовать В научно-исследовательской деятельности лабораторных геологических полевых И исследований навыки соответствии с направленностью (профилем) подготовки) (ПК-2).

В результате изучения дисциплины "Уравнения математической физики в геофизике" студент должен уметь решать задачи, соответствующие его квалификации.

Изучение дисциплины "Уравнения математической физики в геофизике" направлено на формирование у обучающихся компетенций, что отражено в таблице 1.

Таблица 1.

№	Индекс компетенции	Содержание компетенции	В результате изучения учебной дисциплины о должны		ины обучающиеся
п.п.	Ин,	(или её части)	знать	уметь	владеть
1	ОПК- 3	способность использовать в профессиональной деятельности базовые знания математики и естественных наук	основные типы дифференциальных уравнений с частными производными; методы доказательства существования решений начальнокраевых задач для уравнений математической физики; основные методы нахождения точных решений уравнений математической физики	решать и исследовать основные типы дифференциальных уравнений с частными производными; проводить анализ уравнений математической физики для моделирования геолого-геофизических процессов; ставить задачу с начальными и граничными условиями, классифицировать Уравнения математической физики в геофизике	практическими навыками в решении и исследовании основных типов дифференциальных уравнений с частными производными; начальными математического моделирования геолого- геофизических полей; способностью выполнять наукоемкие разработки в области создания новых технологий геологической разведки, включая моделирование систем и процессов, автоматизацию научных исследований
2	ПК-2	способность самостоятельно получать геологическую информацию, использовать в научно- исследовательской деятельности навыки полевых и лабораторных геологических исследований (в соответствии с направленностью (профилем) подготовки)	основные понятия теории дифференциальных уравнений с частными производными, определения и свойства математических объектов в этой области, формулировки утверждений, методы их доказательства, возможные сферы их приложений; уравнения в частных производных гиперболического,	применять методы обработки информации, получаемой при геофизических исследованиях с помощью методов математической физики; применять качественный анализ решений, решать задачи теоретического характера в области уравнений в частных производных;	математическим аппаратом уравнений в частных производных; методами решения задач и доказательства утверждений в области уравнений с частными производными; способностью решать прямые и обратные (некорректные) задачи геофизики на высоком уровне фундаментальной подготовки

No	Индекс компетенции	Содержание компетенции	В результате изучения учебной дисциплины обучающи должны		ины обучающиеся
п.п.	Ш Комп	(или её части)	знать	уметь	владеть
			параболического и эллиптического типов; методы решения дифференциальных уравнений с частными производными второго порядка	приводить уравнения к каноническому виду, решать поставленную задачу математической физики	по теоретическим, методическим и алгоритмическим основам создания новейших технологических геофизических
					процессов

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины "Уравнения математической физики в геофизике" приведена в таблице 2. Общая трудоёмкость учебной дисциплины составляет 3 зачётные единицы. Таблица 2.

Вид учебной работы	Всего часов	Трудоемкость, часов (в том числе часов в интерактивной форме)
Контактная работа, в том числе:		
Аудиторные занятия (всего):	56 / —	56 / —
Занятия лекционного типа	28 / —	28 / —
Лабораторные занятия	-	-
Занятия семинарского типа (семинары, практические занятия)	28 / —	28 / —
Иная контактная работа:		
Контроль самостоятельной работы (КСР)	2	2
Промежуточная аттестация (ИКР)	0,3	0,3
Самостоятельная работа, в том числе:		
Курсовая работа	-	-
Проработка учебного (теоретического) материала	6	6
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	5	5

Контрольная работа	6	6	
Подготовка к текущему ко	Подготовка к текущему контролю		6
Контроль:			
Подготовка к экзамену	26,7	26,7	
	час.	108	108
Общая трудоемкость	в том числе контактная работа	58,3	58,3
	зач. ед.	3	3

2.2. Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам (темам) дисциплины "Уравнения математической физики в геофизике" приведено в таблице 3.

Таблица 3.

		Количество часов				
№ раздела	Наименование разделов (тем)	всего	аудит	орная р	абота	внеаудиторная работа
			Л	ЛР	ПЗ	CPC
1	2	3	4	5	6	7
1	Дифференциальные уравнения с частными производными	18	6		6	6
2	Уравнения колебаний	17	6		6	5
3	Уравнения теплопроводности и диффузии	22	8		8	6
4	Уравнение Лапласа	22	8		8	6

2.3. Содержание разделов (тем) дисциплины

2.3.1. Занятия лекционного типа

Принцип построения программы — модульный, базирующийся на выделении крупных разделов (тем) программы — модулей, имеющих внутреннюю взаимосвязь и направленных на достижение основной цели преподавания дисциплины. В соответствии с принципом построения программы и целями преподавания дисциплины курс "Уравнения математической физики в геофизике" содержит 4 модуля, охватывающих основные разделы (темы).

Содержание разделов (тем) дисциплины приведено в таблице 4. Таблица 4.

Таоли	ца 1.		Фанта
$N_{\underline{0}}$	Наименование	C	Форма
раздела	раздела (темы)	Содержание раздела (темы)	текущего
1	2	3	контроля 4
1		Однородные линейные дифференциальные	4
1	Дифференциальные уравнения с частными производными	уравнения с частными производными и свойства их решений. Оператор Лапласа в полярных, цилиндрических и сферических координатах. Классификация линейных дифференциальных уравнений с частными производными второго порядка. Корректность постановки задач математической физики	КР, УО
2	Уравнения колебаний	Вывод уравнения колебаний струны. Постановка начальных и краевых условий. Колебания бесконечной и полубесконечной струны. Метод Даламбера. Бесконечная струна. Формула Даламбера. Распространение волн отклонения. Распространение волн импульса. Полубесконечная струна. Метод Фурье. Стоячие волны. Вынужденные колебания струны. Колебания струны в среде с сопротивлением. Продольные колебания стержня. Постановка задачи и метод решения. Крутильные колебания вала. Уравнения крутильных колебаний. Крутильные колебания вала с диском на одном конце. Электрические колебания в длинных однородных линиях. Телеграфное уравнение. Линия без потерь. Линия без искажения. Линии конечной длины. Уравнение колебаний мембраны. Вывод уравнение колебаний мембраны. Начальные и краевые условия. Колебания прямоугольной мембраны. Собственные функции. Стоячие волны прямоугольной мембраны. Собственные функции. Стоячие волны прямоугольной мембраны с одинаковой частотой. Уравнение Бесселя. Условие ортогональности функций Бесселя нулевого порядка. Колебания круглой мембраны. Стоячие волны круглой мембраны.	КР, УО, ДКР
3	Уравнения теплопроводности и диффузии	Уравнение линейной теплопроводности. Вывод уравнения линейной теплопроводности. Начальное и краевые условии. Теплопроводность в стержне при наличии теплообмена через боковую поверхность. Теплопроводность в	КР, УО

No॒	Цантонованно		Форма
	Наименование раздела (темы)	Содержание раздела (темы)	текущего
раздела	раздела (темы)		контроля
		бесконечном стержне. Метод Фурье для бесконечного стержня. Преобразование решения уравнения теплопроводности. Фундаментальное решение уравнения теплопроводности и его физический смысл. Теплопроводность в конечном стержне. Приведение к задаче с однородными краевыми условиями. Метод Фурье. Распространение тепла в стержне в случаях постоянной температуры на концах или теплоизоляции концов. Общий случай красных условий. Теплопроводность в полубесконечном стержне. Распространение тепла при теплоизоляции или постоянстве температуры конца стержня. Вывод уравнения теплопроводности в пространственном случае. Начальное и краевые условия. Распространение тепла в однородном щилиндре. Распространение тепла в однородном шаре. Уравнение диффузии. Уравнения теплопроводности и диффузии с краевым условием, зависящим от времени	
4	Уравнение Лапласа	Краевые задачи для уравнения Лапласа. Метод функции Грина для задачи Дирихле (трехмерный случай). Метод функции Грина для задачи Дирихле (двумерный случай). Задача Неймана. Решение задачи Дирихле для шара и полупространства. Решение задачи Дирихле для круга и полуплоскости. Метод Фурье для уравнения Лапласа. Двумерное уравнение Лапласа и задача Дирихле для круга. Разделение переменных в трехмерном уравнении Лапласа в сферических координатах. Многочлены Лежандра. Решение задачи Дирихле для шара в осесимметричном случае разложением по многочленам Лежандра	КР, УО

Форма текущего контроля — контрольные работы (КР), домашние контрольные работы (ДКР), устный опрос (УО).

2.3.2. Занятия семинарского типа

Перечень практических занятий по дисциплине "Уравнения математической физики в геофизике" приведен в таблице 5.

Таблица 5.

№ раздела	Наименование раздела (темы)	Тематика практических работ	Форма текущего контроля
1	2	3	4
	Дифференциальные	Решение дифференциального уравнения с частными производными	KP-1
1	уравнения с частными производными	Приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя и тремя независимыми переменными	КР-2, УО-1
	уравнения уравнения Решение и исследование задач о колеб струны и стержня Решение и исследование задач о кр	Общее решение уравнения колебаний	КР-3
			КР-4
2		Решение и исследование задач о колебаниях струны и стержня	ДКР-1
		Решение и исследование задач о круглой мембране	ДКР-2, УО-2
3	Уравнения теплопроводности и	Решение неоднородного уравнения теплопроводности с однородными граничными условиями.	KP-5
	диффузии	Решение уравнения теплопроводности с неоднородными граничными условиями	КР-6, УО-3
4	Уравнение Лапласа	Решение задач на собственные значения и собственные функции оператора Лапласа	КР-7, УО-4

Форма текущего контроля — защита контрольных работ (КР-1 — КР-7), домашних контрольных работ (ДКР-1 — ДКР-2), устный опрос (УО-1 — УО-5).

2.3.3. Лабораторные занятия

Лабораторные занятия по дисциплине "Уравнения математической физики в геофизике" не предусмотрены.

2.3.4. Примерная тематика курсовых работ (проектов)

Курсовые работы (проекты) по дисциплине "Уравнения математической физики в геофизике" не предусмотрены.

2.4. Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю)

Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю) приведен в таблице 6. Таблица 6.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы		
1	2	3		
1	CPC	Методические указания по организации самостоятельной работы по дисциплине "Уравнения математической физики в геофизике", утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.		
2	Контрольная работа	Методические рекомендации по написанию контрольных работ, утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.		

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Общим вектором изменения технологий обучения должны стать активизация студента, повышение уровня его мотивации и ответственности за качество освоения образовательной программы.

При реализации различных видов учебной работы по дисциплине "Уравнения математической физики в геофизике" используются следующие образовательные технологии, приемы, методы и активные формы обучения:

- 1) разработка и использование активных форм лекций (в том числе и с применением мультимедийных средств):
 - а) проблемная лекция;
 - б) лекция-визуализация;
 - в) лекция с разбором конкретной ситуации.
 - 2) разработка и использование активных форм практических работ:
 - а) практическое занятие с разбором конкретной ситуации;
 - б) бинарное занятие.

В сочетании с внеаудиторной работой в активной форме выполняется также выполнение контролируемых самостоятельных работ (КСР).

В процессе проведения лекционных занятий и практических работ практикуется широкое использование современных технических средств (проекторы, интерактивные доски, Интернет). С использованием Интернета осуществляется доступ к базам данных, информационно-справочным и поисковым системам.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Занятий, проводимых в интерактивных формах, не предусмотрено.

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1. Фонд оценочных средств для проведения текущей аттестации

К формам письменного контроля относится контрольная работа, которая является одной из сложных форм проверки; она может применяться для оценки знаний по базовым и вариативным дисциплинам всех циклов. Контрольная работа, как правило, состоит из небольшого количества средних по трудности вопросов, задач или заданий, требующих поиска обоснованного ответа.

Во время проверки и оценки контрольных письменных работ проводится анализ результатов выполнения, выявляются типичные ошибки, а также причины их появления.

Контрольная работа может занимать часть или полное учебное занятие с разбором правильных решений на следующем занятии.

Перечень контрольных работ приведен ниже.

Контрольная работа №1. Решение дифференциального уравнения с частными производными.

Контрольная работа №2. Приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя и тремя независимыми переменными.

Контрольная работа №3. Общее решение уравнения колебаний.

Контрольная работа №4. Решение задачи Коши для волнового уравнения.

Контрольная работа №5. Решение неоднородного уравнения теплопроводности с однородными граничными условиями.

Контрольная работа №6. Решение уравнения теплопроводности с неоднородными граничными условиями.

Контрольная работа №7. Решение задач на собственные значения и собственные функции оператора Лапласа.

Критерии оценки контрольных работ:

- оценка "зачтено" выставляется студенту, если он правильно применяет теоретические положения курса при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения, а также правильно выполняет расчеты контрольной работы: а именно расчёт искомых величин, расчёт погрешностей к этим величинам, построение графиков, объяснение полученных результатов и графиков;
- оценка "не зачтено" выставляется студенту, если он не знает значительной части программного материала, в расчетной части контрольной работы допускает существенные ошибки, затрудняется объяснить расчетную часть, а также неуверенно, с большими затруднениями выполняет задания или не справляется с ними самостоятельно.

Домашняя контрольная работа — одна из форм контроля уровня знаний студента и ориентирования его в вопросах, ограниченных объемом учебной тематики.

Цели домашней контрольной работы:

- углубить, систематизировать и закрепить теоретические знания студентов;
 - проверить степень усвоения одной темы или вопроса;
- выработать у студента умения и навыки самостоятельной обработки материала.

Перечень домашних контрольных работ приведен ниже.

Домашняя контрольная работа 1. Решение и исследование задач о колебаниях струны и стержня.

Домашняя контрольная работа №2. Решение и исследование задач о круглой мембране.

Критерии оценки домашних контрольных работ:

- оценка "зачтено" выставляется студенту, если выполнено не менее 60% заданий варианта, работа выполнена по стандартной или самостоятельно разработанной методике, в освещении вопросов не содержится грубых ошибок, по ходу решения сделаны аргументированные выводы;
- оценка "не зачтено" выставляется студенту, если он не справился с заданием (выполнено менее 60% задания), не раскрыто основное содержание работы, имеются грубые ошибки в освещении вопросов, в решении задач, а так же если работа выполнена не самостоятельно.

Текущий контроль успеваемости студентов представляет собой также устный опрос.

Устиный опрос — наиболее распространенный метод контроля знаний учащихся. При устном опросе устанавливается непосредственный контакт между преподавателем и учащимся, в процессе которого преподаватель получает широкие возможности для изучения индивидуальных особенностей усвоения учащимися учебного материала.

Цель устного опроса: проверка знаний учащихся; проверка умений учащихся публично излагать материал; формирование умений публичных выступлений.

Вопросы для проведения устного опроса приведены ниже.

Вопросы устного опроса по разделу №1 "Дифференциальные уравнения с частными производными".

- 1. Дифференциальные уравнения с двумя независимыми переменными.
 - 2. Характеристическое уравнение и его характеристики.
 - 3. Каноническая форма для уравнений гиперболического типа.
 - 4. Каноническая форма для уравнений параболического типа.
 - 5. Каноническая форма для уравнений эллиптического типа.
- 6. Канонические формы уравнений с постоянными коэффициентами.

Вопросы устного опроса по разделу №2 "Уравнения колебаний".

- 1. Уравнение поперечных колебаний струны.
- 2. Уравнение продольных колебаний стержней и струн.
- 3. Уравнения гидродинамики и акустики.
- 4. Краевые и начальные условия для уравнений гиперболического типа.
- 5. Метод распространяющихся волн для уравнений гиперболического типа. Формула Даламбера.
- 6. Физическая интерпретация формулы Даламбера (случай начального отклонения).

- 7. Физическая интерпретация формулы Даламбера (случай начальной скорости).
 - 8. Дисперсия волн.
 - 9. Уравнения газовой динамики. Закон сохранения энергии.
 - 10. Ударные волны. Условия динамической совместности.

Вопросы устного опроса по разделу №3 "Уравнения теплопроводности и диффузии".

- 1. Уравнение диффузии.
- 2. Распространение тепла в пространстве.
- 3. Постановка краевых задач для уравнений параболического типа.
- 4. Метод разделения переменных для уравнений параболического типа.
 - 5. Функция источника для уравнения теплопроводности.
 - 6. Неоднородное уравнение теплопроводности.
 - 7. Общая первая краевая задача для уравнения теплопроводности.
 - 8. Температурные волны.
 - 9. Стационарное тепловое поле. Постановка краевых задач.
- 10. Потенциальное течение жидкости. Потенциал стационарного тока и электростатического поля.

Вопросы устного опроса по разделу №4 "Уравнение Лапласа".

- 1. Уравнение Лапласа в криволинейной системе координат.
- 2. Формулы Грина.
- 3. Интегральное представление решения уравнения эллиптического типа.
- 4. Метод разделения переменных для уравнений эллиптического типа.
 - 5. Интеграл Пуассона.
 - 6. Применение метода конформного отображения в электростатике.
 - 7. Применение метода конформного отображения в гидродинамике.
 - 8. Обтекание кругового цилиндра.
- 9. Неоднородное уравнение Гельмгольца в неограниченном пространстве.

Критерии оценки защиты устного опроса:

- оценка "зачтено" ставится, если студент достаточно полно отвечает на вопрос, развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа, демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации;
- оценка "не зачтено" ставится, если ответ недостаточно логически выстроен, студент обнаруживает слабость в развернутом раскрытии профессиональных понятий.

4.2. Фонд оценочных средств для проведения промежуточной аттестации

К формам контроля относится экзамен — это форма промежуточной аттестации студента, определяемая учебным планом подготовки по направлению ВО. Экзамен служит формой проверки успешного выполнения студентами лабораторных работ и усвоения учебного материала лекционных занятий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Вопросы для подготовки к экзамену.

- 1. Дифференциальные уравнения с частными производными.
- 2. Однородные линейные дифференциальные уравнения с частными производными и свойства их решений.
- 3. Оператор Лапласа в полярных, цилиндрических и сферических координатах.

- 4. Уравнение колебаний струны.
- 5. Вывод уравнения колебаний струны.
- 6. Постановка начальных и краевых условий.
- 7. Колебания бесконечной и полубесконечной струны. Метод Даламбера.
 - 8. Бесконечная струна. Формула Даламбера.
 - 9. Распространение волн отклонения.
 - 10. Распространение волн импульса.
 - 11. Полубесконечная струна.
 - 12. Метод Фурье.
 - 13. Стоячие волны.
 - 14. Вынужденные колебания струны.
 - 15. Колебания струны в среде с сопротивлением.
- 16. Продольные колебания стержня. Постановка задачи и метод решения.
 - 17. Крутильные колебания вала.
 - 18. Уравнения крутильных колебаний.
 - 19. Крутильные колебания вала с диском на одном конце.
 - 20. Электрические колебания в длинных однородных линиях.
 - 21. Телеграфное уравнение.
 - 22. Линия без потерь.
 - 23. Линия без искажения.
 - 24. Линии конечной длины.
 - 25. Уравнение колебаний мембраны.
 - 26. Вывод уравнения колебаний мембраны.
 - 27. Начальные и краевые условия.
 - 28. Колебания прямоугольной мембраны.
 - 29. Собственные функции.
 - 30. Стоячие волны прямоугольной мембраны.
 - 31. Вторая часть метода Фурье. Двойные ряды Фурье.
 - 32. Стоячие волны с одинаковой частотой.
 - 33. Уравнение и функции Бесселя.
 - 34. Уравнение Бесселя.
 - 35. Условие ортогональности функций Бесселя нулевого порядка.
 - 36. Функции Бесселя первого порядка.
 - 37. Колебания круглой мембраны.
 - 38. Стоячие волны круглой мембраны.
 - 39. Уравнение линейной теплопроводности.
- 40. Вывод уравнения линейной теплопроводности. Начальное и краевые условии.

- 41. Теплопроводность в стержне при наличии теплообмена через боковую поверхность.
 - 42. Теплопроводность в бесконечном стержне.
 - 43. Метод Фурье для бесконечного стержня.
 - 44. Преобразование решения уравнения теплопроводности.
- 45. Фундаментальное решение уравнения теплопроводности и его физический смысл.
 - 46. Теплопроводность в конечном стержне.
- 47. Приведение к задаче с однородными краевыми условиями. Метод Фурье.
- 48. Распространение тепла в стержне в случаях постоянной температуры на концах или теплоизоляции концов.
 - 49. Общий случай красных условий.
 - 50. Теплопроводность в полубесконечном стержне.
- 51. Распространение тепла при теплоизоляции или постоянстве температуры конца стержня.
 - 52. Некоторые пространственные задачи теплопроводности.
- 53. Вывод уравнения теплопроводности в пространственном случае. Начальное и краевые условия.
 - 54. Распространение тепла в однородном цилиндре.
 - 55. Распространение тепла в однородном шаре.
 - 56. Задачи диффузии.
 - 57. Уравнение диффузии.
- 58. Уравнения теплопроводности и диффузии с краевым условием, зависящим от времени.
 - 59. Краевые задачи для уравнения Лапласа.
 - 60. Метод функции Грина. Постановка краевых задач.
 - 61. Метод функции Грина для задачи Дирихле (трехмерный случай).
 - 62. Метод функции Грина для задачи Дирихле (двумерный случай).
 - 63. Задача Неймана.
 - 64. Решение задачи Дирихле для шара и полупространства.
 - 65. Сопряженные точки.
 - 66. Задача Дирихле для шара.
 - 67. Задача Дирихле для внешности шара.
 - 68. Задача Дирихле для полупространства.
 - 69. Решение задачи Дирихле для круга и полуплоскости.
 - 70. Задача Дирихле для круга.
 - 71. Задача Дирихле для внешности круга.
 - 72. Задача Дирихле для полуплоскости.
 - 73. Метод Фурье для уравнения Лапласа.
 - 74. Двумерное уравнение Лапласа и задача Дирихле для круга.

- 75. Разделение переменных в трехмерном уравнении Лапласа в сферических координатах.
 - 76. Многочлены Лежандра.
- 77. Решение задачи Дирихле для шара в осесимметричном случае разложением по многочленам Лежандра.
- 78. Классификация линейных дифференциальных уравнений с частными производными второго порядка.
 - 79. Корректность постановки задач математической физики.

Критерии выставления оценок на экзамене.

оценку "отлично" заслуживает студент, показавший:

- всесторонние и глубокие знания программного материала учебной дисциплины; изложение материала в определенной логической последовательности, литературным языком, с использованием современных научных терминов;
- освоившему основную и дополнительную литературу, рекомендованную программой, проявившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний;
- полные, четкие, логически последовательные, правильные ответы на поставленные вопросы, способность делать обоснованные выводы;
- умение самостоятельно анализировать факты, события, явления, процессы в их взаимосвязи и развитии; сформированность необходимых практических навыков работы с изученным материалом;

оценку "хорошо" заслуживает студент, показавший:

- систематический характер знаний и умений, способность к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности;
- достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);
- последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы; уверенность при ответе на дополнительные вопросы;
- знание основной рекомендованной литературы; умение достаточно полно анализировать факты, события, явления и процессы, применять теоретические знания при решении практических задач;

оценку "удовлетворительно" заслуживает студент, показавший:

- знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности;
 - знакомому с основной рекомендованной литературой;
 - допустившему неточности и нарушения логической

последовательности в изложении программного материала в ответе на экзамене, но в основном, обладающему необходимыми знаниями и умениями для их устранения при корректировке со стороны экзаменатора;

- продемонстрировавшему правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки;
- проявившему умение применять теоретические знания к решению основных практических задач, ограниченные навыки в обосновании выдвигаемых предложений и принимаемых решений; затруднения при выполнении практических работ; недостаточное использование научной терминологии; несоблюдение норм литературной речи;

оценка "неудовлетворительно" ставится студенту, обнаружившему:

- существенные пробелы в знании основного программного материала по дисциплине;
- отсутствие знаний значительной части программного материала;
 непонимание основного содержания теоретического материала;
 неспособность ответить на уточняющие вопросы; отсутствие умения
 научного обоснования проблем; неточности в использовании научной
 терминологии;
- неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений;
- допустившему принципиальные ошибки, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Основная литература

- 1. Владимиров В.С., Жаринов В.В. Уравнения математической физики: Учебник для студентов вузов. Изд. 2-е, стер. М.: Физматлит, 2008. 399 с. (15)
- 2. Кудряшов Н.А. Методы нелинейной математической физики: учебное пособие. Долгопрудный: Интеллект, 2010. 364 с. (11)
- 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики: учебник. 7-е изд. М.: Наука, 2005. 798 с. (85)

- 4. Ильин А.М. Уравнения математической физики: учебное пособие. М.: Физматлит, 2009. 192 с. http://e.lanbook.com/books/element.php?pl1_id=2181.
- 5. Емельянов В.М., Рыбакина Е.А. Уравнения математической физики. Практикум по решению задач. СПб.: Лань, 2008. 214 с. [Электронный ресурс]: учебное пособие. Электрон. дан. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=140.

*Примечание: в скобках указано количество экземпляров в библиотеке КубГУ.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электроннобиблиотечных системах "Лань" и "Юрайт".

5.2. Дополнительная литература

- 1. Владимиров В.С., Жаринов В.В. Уравнения математической физики: учебник для вузов. М.: Физматлит, 2004. 400 с. (30)
- 2. Владимиров В.С. Уравнения математической физики. М.: Наука, 1976. 528 с. (1)
- 3. Владимиров В.С., Михайлов В.П., Вашарин А.А., Каримова Х.Х., Сидоров Ю.В., Шабунин М.И. Сборник задач по уравнениям математической физики / под редакцией Владимирова В.С. М.: Наука, 1974. 272 с.
- 4. Федорюк М.В. Обыкновенные дифференциальные уравнения. М.: Наука, 1980. 352 с.
- 5. Владимиров В.С., Вашарин А.А. Сборник задач по уравнениям математической физики. М.: Физматлит, 2001. 287 с. [Электронный ресурс]: учебное пособие. Электрон. дан. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2364.

5.3. Периодические издания

- 1. Известия высших учебных заведений. Геология и разведка: научно-методический журнал министерства образования и науки Российской Федерации. ISSN 0016-7762.
- 2. Геология и геофизика: научный журнал СО РАН. ISSN 0016-7886.
- 3. Доклады Академии наук: Научный журнал РАН (разделы: Геология. Геофизика. Геохимия). ISSN 0869-5652.
 - 4. Геофизика. Научно-технический журнал ЕАГО.

- 5. Каротажник. Научно-технический вестник АИС.
- 6. Теоретическая и математическая физика. ISSN 0564-6162.
- 7. Вычислительные методы и программирование: научный журнал. ISSN 1726-3522.
- 8. Математика в ВУЗе: общественный научный и методический интернет-журнал. ISSN 1819-6616.
- 9. Новые технологии в образовании: научно-методический журнал. ISSN 1815-6835.

6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", В ТОМ ЧИСЛЕ СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ, НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. www.moodle.kubsu.ru/ среда модульного динамического обучения КубГУ
 - 2. www.eearth.ru
 - 3. www.sciencedirect.com
 - 4. www.geobase.ca
 - 5. www.krelib.com
 - 6. www.geolib.ru
 - 7. www.geozvt.ru
 - 8. www.geol.msu.ru
 - 9. www.scintific.narod.ru/literature.htm каталог научных ресурсов
 - 10. www.sci-lib.com/ большая научная библиотека
- 11. www.eqworld.ipmnet.ru/ru/library/physics.htm раздел "Учебники и другие книги по физике и математике" учебно-образовательной физикоматематической библиотеки сайта EqWorld
 - 12. www.e-science.ru/math/
- 13. База данных Всероссийского института научной и технической информации (ВИНИТИ) РАН (www.2viniti.ru)
- 14. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных (www.rusnano.com)
- 15. Базы данных и аналитические публикации "Университетская информационная система Россия" (www.uisrussia.msu.ru).
 - 16. Мировой Центр данных по физике твердой Земли (www.wdcb.ru).
- 17. База данных о сильных землетрясениях мира (www.zeus.wdcb.ru/wdcb/sep/hp/seismology.ru).
 - 18. База данных по сильным движениям (SMDB) (www.wdcb.ru).

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические знания по основным разделам курса "Уравнения математической физики в геофизике" студенты приобретают на лекциях и практических занятиях, закрепляют и расширяют во время самостоятельной работы.

Лекции по курсу "Уравнения математической физики в геофизике" представляются в виде обзоров с демонстрацией презентаций по отдельным основным темам программы.

Для углубления и закрепления теоретических знаний студентам рекомендуется выполнение определенного объема самостоятельной работы. Общий объем часов, выделенных для внеаудиторных занятий, составляет 23 часа.

Внеаудиторная работа по дисциплине "Уравнения математической физики в геофизике" заключается в следующем:

- повторение лекционного материала и проработка учебного (теоретического) материала;
 - подготовка к практическим занятиям;
- выполнение индивидуальных заданий (подготовка сообщений, презентаций);
 - подготовка к текущему контролю;
- написание контролируемой самостоятельной работы (домашней контрольной работы).

Для закрепления теоретического материала и выполнения контролируемых самостоятельных работ по дисциплине во внеучебное время студентам предоставляется возможность пользования библиотекой КубГУ, возможностями компьютерных классов.

Итоговый контроль осуществляется в виде экзамена.

Контролируемой самостоятельной работы (КСР) по дисциплине "Уравнения математической физики в геофизике" является расчет 2-х домашних контрольных работ.

Контрольные работы в вузе могут быть:

- аудиторными (выполняемые во время аудиторных занятий в присутствии преподавателя);
 - домашними, которые задаются на дом к определенному сроку;
- текущими, целью которых является контроль знаний по только что пройденной теме;
 - экзаменационными, оценка по которым имеет статус итоговой.

Требования к аудиторным и домашним контрольным работам:

— оформленный титульный лист;

- подробное описание методик расчета;
- расчет задачи по индивидуальному варианту;
- список используемых источников.

Защита контролируемой самостоятельной работы (КСР) осуществляется на практических занятиях в виде собеседования с обсуждением отдельных его разделов, полноты раскрытия темы, новизны используемой информации.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8.1. Перечень информационных технологий

Использование электронных презентаций при проведении занятий лекционного типа и практических работ.

8.2. Перечень необходимого лицензионного программного обеспечения

При освоении курса "Уравнения математической физики в геофизике" используются лицензионные программы общего назначения, такие как Microsoft Windows 7, пакет Microsoft Officce Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point).

8.3. Перечень необходимых информационных справочных систем

- 1. Электронная библиотечная система издательства "Лань" (www.e.lanbook.com)
- 2. Электронная библиотечная система "Университетская Библиотека онлайн" (www.biblioclub.ru)
- 3. Электронная библиотечная система "ZNANIUM.COM" (www.znanium.com)

- 4. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 5. Единая интернет- библиотека лекций "Лекториум" (www.lektorium.tv)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
Занятия лекционного типа	Аудитория для проведения занятий лекционного типа, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением
Занятия семинарского типа	Аудитория для проведения занятий семинарского типа, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением
Групповые (индивидуальные) консультации	Аудитория для проведения групповых (индивидуальных) консультаций
Текущий контроль, промежуточная аттестация	Аудитория для проведения текущего контроля, аудитория для проведения промежуточной аттестации
Самостоятельная работа	Аудитория для самостоятельной работы студентов, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет", с соответствующим программным обеспечением, с программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета