КИДАТОННА

дисциплины «Б1.В.ДВ.08.01 МАТЕРИАЛЫ ЭЛЕКТРОННОЙ ТЕХНИКИ»

Объем трудоемкости: 5 зачетных единиц (180 часа, из них – 72,3 часа аудиторной нагрузки: лекционных 32 ч., лабораторных работ 32 ч., 107,7 часа самостоятельной работы)

Цель дисциплины: формирование комплекса устойчивых знаний о материалах электронной техники, их структурах, свойствах, физических, технологических и химических процессах, происходящих в проводниковых, полупроводниковых и диэлектрических материалах.

Задачи дисциплины: изучение электрофизических свойств, характеристик и областей использования материалов, применяемых в электронной технике и нанотехнологии;

формирование навыков использования новых достижение в области электроники и наноэлектроники, прогнозирования свойств элементов электроники, наноэлектроники и оптоэлектроники с учетом физических, химических и технологических свойств используемых материалов;

овладение способностью выполнять работы по технологической подготовке производства материалов и изделий электронной техники (ПК-8);

овладение готовностью к участию в монтаже, испытаниях и сдаче в эксплуатацию опытных образцов материалов и изделий электронной техники (ПК-14).

Место дисциплины в структуре ООП ВО

Дисциплина «Материалы электронной техники» относится к базовой части Блока 1 дисциплин по выбору по направлению подготовки 11.03.04 Электроника и наноэлектроника профиль подготовки «Нанотехнология в электронике» учебного плана.

Дисциплина базируется на знаниях, полученных по дисциплинам электричество и магнетизм, оптика, атомная физика, химия и является основой для изучения следующих дисциплин: наноэлектроника, наносенсоры, основы технологии электронной компонентной базы и нанокомпозитные радиопоглощающие материалы. Знания, приобретенные в курсе «Материалы электронной техники», необходимы для создания широкого класса элементов электроники, оптоэлектроники и наноэлектроники и их правильного эксплуатирования.

Требования к уровню освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций: ПК-8, ПК-14.

<u>№</u>	Индекс компе-	Содержание компетенции (или её ча-	В результате изучения учебной дисциплины обучающиеся должны					
П.П.	тенции	сти)	знать	владеть				
2.	ПК-8	способностью вы- полнять работы по технологической подготовке произ- водства материалов и изделий электрон- ной техники.	Основные материалы электронной техники; их свойства, области применения и способы получения.	Применять полученные теоретические знания к практическому взаимодействию с объектами радиоэлектронной и оптоэлектронной техники, производства, науки и быта.	Навыками проведения фотолитографии, как основного процесса создания элементов микроэлектроники.			
3.	ПК-14	готовностью к участию в монтаже, испытаниях и сдаче в эксплуатацию опытных образцов материалов и изделий электронной техники.	Основы производства материалов и изделий электронной техники.	Получать тон- кие пленки металличе- ских материа- лов вакуум- ными метода- ми.	Методами оптического контроля размеров элементов электроники и оптоэлектроники.			

Основные разделы дисциплины:

Разделы дисциплины, изучаемые в 7 семестре (для студентов $O\Phi O$)

	Наименование разделов (тем)	Количество часов						
No		Всего	Аудиторная			КСР	Внеаудитор-	
			работа				ная работа	
			Л	П3	ЛР		CPC	
1.	Основные сведения о материалах электронной техники, применяемых в микроэлектронике, нано-	12	2	_	4	0,5	5,5	
	электронике и оптоэлектронике.							
2.	Классификация материалов электронной техники по их физическим, технологическим и химическим свойствам.	9,8	2	_	_	0,3	7,5	

		Количество часов					
Mo	II ()	Аудиторная					Внеаудитор-
No	Наименование разделов (тем)	Всего	1	работа	ì	КСР	ная работа
			Л	ПЗ	ЛР		CPC
3.	Проводниковые материалы. Пара-						
	метры и свойства проводниковых	10	2	_	_	0,5	7,5
	материалов						, , , ,
4.	Металлическая связь. Зонная тео-						
	рия твердых тел. Кристаллические	18	2	_	4	0,2	11,8
	решетки металлов.	10	_			0,2	11,0
5.	Проводниковые материалы с вы-						
] 3.	сокой электропроводностью, их						
	физические и химические и тех-	22	2		8	0,2	11,8
	нологические свойства и области	22			0	0,2	11,0
-	применения.						
6.	Проводниковые материалы с низкой электропроводностью их фи-						
	1 1	10	2	_	_	0,2	7,8
	зико-химические свойства и об-						
7	ласти применения.						
7.	Полупроводниковые материалы.						
	Ковалентная связь. Понятие о мо-	10	2	_	_	1	7
	нокристаллах и эпитаксиальных						
	структурах, методы их получения.						
8.	Способы получения, применения и						
	свойства полупроводниковых мо-	10	2	_	_	0,5	7,5
	нокристаллов.						
9.	Диэлектрические материалы. Мо-						
	лекулярная и ионная связь. Поля-	20	2	_	8	0,7	9,3
	ризация диэлектриков.						
10.	Электрические и химические						
	свойства диэлектриков. Электро-	8	2	_	_	1	5
	проводность. Диэлектрические	O				1	3
	потери.						
11.	Полимерные материалы, их строе-						
	ние, свойства и области примене-	20	2	-	8	1,1	8,9
	ния.						
12.	Пластические массы. Структуры						
	линейных, разветвленных и сетча-						
	тых полимеров, их основные хи-	6	2			0.2	20
	мические и физико-технические	6		_	_	0,2	3,8
	свойства. Достоинства и недостат-						
	ки пластмасс.						
13.	Стеклообразное состояние ве-						
	ществ. Кристаллохимическое опи-		_			0.2	2.7
	сание строения стекол. Кварцевое	6	2	-	_	0,3	3,7
	стекло, его структура и свойства.						
14.	Многокомпонентные силикатные						
'''	стёкла. Основные физико-	6	2	_	_	0,5	3,5
	химические свойства стекол.		_			0,5	
	Aman tookho oboho iba olokon.	<u> </u>			l	<u> </u>	1

	Наименование разделов (тем)	Количество часов						
$N_{\overline{0}}$		Всего	Аудиторная работа			КСР	Внеаудитор- ная работа	
			Л	ПЗ	ЛР		CPC	
15.	Керамические материалы. Техническая керамика. Технология изготовления керамических изделий. Химические свойства керамики.	6	2	_	_	0,5	3,5	
16.	Магнитные материалы. Классификация магнитных материалов, их свойства и области применения.		2	_	_	0,3	3,7	
	Итого по дисциплине:	179,7	32		32	8	107,7	

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента.

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Основная литература:

- 1. Никитин В.А. Материалы электронной техники: учеб. пособие / В.А. Никитин, Н.А. Яковенко. Краснодар, КубГУ, 2015.
- 2. Физические технологии интегральной оптики: лабораторный практикум / В.А. Никитин, Н.А. Яковенко, А.С. Левченко Краснодар, 2013.
- 3. Коледов, Л.А. Технология и конструкция микросхем, микропроцессоров и микросборок: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2009. 400 с. Режим доступа: https://e.lanbook.com/book/192.
- 4. Михеева, Е.В. Материалы и компоненты электронных средств: лабораторный практикум / Е.В. Михеева; Поволжский государственный технологический университет. Йошкар-Ола: ПГТУ, 2014. 164 с.: табл., граф., ил. Библиогр. в кн. ISBN 978-5-8158-1317-5; URL: http://biblioclub.ru/index.php?page=book&id=439241
- 5. Сорокин, В.С. Материалы и элементы электронной техники. Активные диэлектрики, магнитные материалы, элементы электронной техники: учеб. пособие / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. Электрон. дан. Санкт-Петербург: Лань, 2016. 384 с. Режим доступа: https://e.lanbook.com/book/71735

Автор РПД – В. А. Никитин, кандидат технических наук, профессор кафедры оптоэлектроники физико-технического факультета КубГУ