МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования - первый

проректор

Хагуров Т.

20 апреля 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.14 ФИЗИКА ПОЛУПРОВОДНИКОВ

Направление подготовки 11.03.04 Электроника и наноэлектроника

Направленность (профиль) Нанотехнологии в электронике

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «Физика полупроводников» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.04 «Электроника и наноэлектроника» профиль «Нанотехнологии в электронике».

Программу составил:

М.А. Жужа, доцент кафедры радиофизики и нанотехнологий ФТФ КубГУ, канд. физ.-мат. наук

М. Му

Рабочая программа дисциплины «Физика полупроводников» утверждена на заседании кафедры радиофизики и нанотехнологий протокол № 6 «20» апреля 2020 г.

Заведующий кафедрой (разработчика) Копытов Г.Ф.

Рабочая программа обсуждена на заседании кафедры радиофизики и нанотехнологий протокол № 6 «20» апреля 2020 г. Заведующий кафедрой (выпускающей) Копытов Г.Ф.

подпись

Утверждена на заседании учебно-методической комиссии физико-технического факультета протокол № 9 «20» апреля 2020 г. Председатель УМК факультета Богатов Н.М.

подпись

Рецензенты:

Гаврилов А.И., доцент кафедры физики ФГБОУ ВО КубГТУ, канд. физ.-мат. наук

Исаев В.А., заведующий кафедрой теоретической физики и компьютерных технологий ФГБОУ ВО КубГУ, д-р физ.-мат. наук

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Учебная дисциплина «Физика полупроводников» ставит своей целью изучение физических эффектов и процессов в полупроводниках и полупроводниковых приборах.

1.2 Задачи дисциплины.

- изучение основных понятий, эффектов, законов и моделей физики полупроводников и соответствующих им математических формул;
- изучение методов экспериментального исследования характеристик полупроводников и полупроводниковых приборов.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Физика полупроводников» относится к вариативным дисциплинам Блока 1 учебного плана. Для успешного изучения дисциплины необходимы знания общего курса физики, «Математического анализа» и «Дифференциальных уравнений». Освоение дисциплины необходимо для изучения дисциплины «Полупроводниковые микро- и наноматериалы».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций (ПК):

№	Ин- декс	Содержание компетенции	В результате изуч обучан	ения учебной ощиеся должн	
п.п.	компе-	(или её части)	знать	уметь	владеть
1	ПК-1	Способен строить физические и математические модели приборов, устройств и материалов электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования	физические процессы и эффекты, основные понятия, законы и модели физики полупроводников и соответствующие им математические формулы	строить физические и матема- тические модели по- лупровод- никовых приборов и материалов	навыками работы со стандарт- ными про- граммными средствами компьютер- ного моде- лирования
2	ПК-2	Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения	методы экспериментальных исследований параметров и характеристик полупроводников и полупроводниковых приборов	работать с измери- тельными приборами	приемами обработки результатов измерений

№	Ин- декс	Содержание компетенции (или её части)	В результате изучения учебной дисциплины обучающиеся должны			
п.п.	компе- тенции		знать	уметь	владеть	
3	ПК-3	Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования	средства автоматизации проектирования	составлять техниче- ское зада- ние	навыками расчетов и проектиро- вания элек- тронных приборов	

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 3 зач. ед., (108 часов), и их распределение по видам работ представлено в таблице.

Ви	Вид учебной работы		Семестры (часы)
			6
Контактная работа, в т	ом числе:	82,2	82,2
Аудиторные занятия (в	всего):	80	80
Занятия лекционного ти	па	32	32
Лабораторные занятия		48	48
Занятия семинарского ти	та		
(семинары, практически	е занятия)	_	_
Иная контактная работ	га:	2,2	2,2
Контроль самостоятельн	юй работы (КСР)	2	2
Промежуточная аттестан	ция (ИКР)	0,2	0,2
Самостоятельная работ	га, в том числе:	25,8	25,8
Проработка учебного (те	еоретического) материала	15,8	15,8
Оформление и подготов	ка к защите лабораторных работ	10	10
Контроль:			
Подготовка к экзамену		-	-
Общая трудоемкость	Общая трудоемкость час.		108
	в том числе контактная работа	82,2	82,2
	зач. ед.	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в <u>6-м</u> семестре:

		Количество часов				
№	Наименование		Аудиторная работа			Внеаудиторная
	разделов (тем)	Всего				работа
			Л	ПЗ	ЛР	СР
1	Носители заряда	19	8	_	4	7
	в полупроводниках	17	O		•	,
2	Генерация, рекомбинация, диффу-	14,8	8	_	1	6,8
	зия и дрейф носителей заряда					
3	Контактные и поверхностные явления в полупроводниках	30	8	-	16	6
4	• 1					
4	Физические эффекты в полупро-	42	8	_	28	6
	водниках					
	Итого по дисциплине:	105,8	32	-	48	25,8

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента.

2.3. Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа.

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1	Носители заряда в полу- проводниках	Электропроводность полупроводников. Равновесные и неравновесные носители заряда. Дрейфовая скорость. Подвижность носителей заряда. «Горячие» электроны. Собственные, примесные и скомпенсированные полупроводники. Основные и неосновные носители. Температурный диапазон применения полупроводниковых приборов.	Устный опрос, компьютерное тестирование
2	Носители заряда в полу- проводниках	Элементы зонной теории. Гипотеза Планка. Постулаты Бора. Гипотеза де Бройля. Принцип запрета Паули. Энергетические уровни и зоны, энергетическая диаграмма. Квазиимпульс и эффективная масса. Волновой вектор. Графики энергии свободного электрона и электрона в кристалле. «Отрицательная» масса электрона. Дырка. «Легкие» и «тяжелые» дырки.	Устный опрос, компью- терное тестиро- вание
3	Носители заряда в полу- проводниках	Статистика электронов и дырок в полупроводниках. Функция распределения Ферми-Дирака. Уровень Ферми. Распределение Максвелла-Больцмана. Вырожденные и невырожденные полупроводники. Концентрации носителей заряда в примесных и собственных полупроводниках.	Устный опрос, компью- терное тестиро- вание

1	2	3	4
4		Расчет положения уровня Ферми для невырожден-	Устный
•	II.	ных полупроводников: для собственного и полу-	опрос,
	Носители	проводников п- и р-типа. Определение ширины за-	компью-
	заряда в полу- проводниках	прещенной зоны и глубины залегания примесных	терное
	проводниках	уровней по температурной зависимости электро-	тестиро-
		проводности.	вание
5	Генерация, ре-	Равновесные и неравновесные носители. Квази-	
	комбинация,	уровни Ферми. Оптическая биполярная генерация.	Vorm
	диффузия и	Линейная и квадратичная рекомбинации. Время	Устный
	дрейф носите-	жизни неравновесных носителей заряда.	опрос,
6	лей заряда Генерация, ре-	Основные виды рекомбинации. Демаркационные	компью-
U	комбинация,	уровни. Диффузионные и дрейфовые токи. Урав-	терное
	диффузия и	нение полного тока. Соотношение Эйнштейна.	тестиро-
	дрейф носите-	neime neimere ream econnomemme eminine	вание
	лей заряда		
7	Генерация, ре-	Уравнение непрерывности. Уравнение Пуассона.	
	комбинация,		
	диффузия и		Устный
	дрейф носите-		опрос,
	лей заряда		компью-
8	Генерация,	Диффузия и дрейф неравновесных носителей заря-	терное
	рекомбинация,	да при монополярной проводимости. Длина экра-	тестиро-
	диффузия и	нирования. Максвелловское время релаксации.	вание
	дрейф носите- лей заряда	Диффузия и дрейф при биполярной оптической генерации. Диффузионная длина. Длина дрейфа.	
	леи заряда	нерации. диффузионная длина. длина дреифа.	
9	Контактные и	Контакт металл-полупроводник: зонные диаграм-	
	поверхностные	мы, работа выхода, электронное сродство, кон-	Устный
	явления в по-	тактная разность потенциалов. Распределение объ-	опрос,
10	лупроводниках	емного заряда и поля. Омические контакты. ВАХ.	компью-
10	Контактные и	Поверхностные состояния. Эффект поля. Поверх-	терное
	поверхностные	ностно-барьерная неустойчивость тока.	тестиро-
	явления в по- лупроводниках		вание
11	Контактные и	Классификация р-п-переходов. Диаграммы распре-	
11	поверхностные	деления объемного заряда, электрического поля,	Устный
	явления в по-	концентраций носителей. Барьерная емкость.	опрос,
	лупроводниках		компью-
12	Контактные и	Инжекция и экстракция неосновных носителей за-	терное
	поверхностные	ряда. Диффузионная емкость. ВАХ.	тестиро-
	явления в по-		вание
	лупроводниках	-	
13	Физические	Фотоэлектрические явления в полупроводниках:	
	эффекты в по-	фотопроводимость, фотоЭДС, ЭДС Дембера. Фо-	
1.4	лупроводниках	тосопротивление, фотодиод, солнечная батарея.	Устный
14	Физические	Гальваномагнитные эффекты в полупроводниках:	
	эффекты в по-	эффекты Холла и Гаусса, магнитоконцентрационный эффект.	опрос, компью-
15	лупроводниках Физические	ныи эффект. Термоэлектрические явления и эффекты: Зеебека,	1
13	эффекты в по-	Пельтье и Томсона. Метод термозонда.	терное
	лупроводниках	темпье и томосии инстод термозопди.	тестиро- вание
16	Физические	Полупроводники в сильных электрических полях:	ванис
-0	эффекты в по-	эффект Ганна, туннельный эффект.	
	лупроводниках		
		I	l .

2.3.2 Занятия семинарского типа.

Семинарские занятия – не предусмотрены.

2.3.3 Лабораторные занятия.

№	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущего контроля
1	2	3	4
1	Носители заряда в полупроводниках	Четырёхзондовый метод и метод термозонда. Измеряется удельное сопротивление полупроводников четырёхзондовым методом. Определяется тип полупроводника (р-типа или п-типа) методом термозонда.	Защита ЛР
2	Контактные и поверхностные явления в полупроводниках	Основные характеристики МТОП-структуры. Изучается поверхностно-барьерная неустойчивость тока в структуре с контактом «металл – туннельный окисел – полупроводник (МТОП)».	Защита ЛР
3	Контактные и поверхностные явления в полупроводниках	ВАХ полупроводниковых диодов. Измеряются 10 вольт-амперных характеристик (ВАХ) 6 диодов.	Защита ЛР
4	Контактные и поверхностные явления в полупроводниках	ВАХ светодиодов. Измеряются ВАХ светодиодов различного цвета.	Защита ЛР
5	Физические эффекты в полупроводниках	Исследование эффекта Холла в полупроводниках. Исследуется зависимость ЭДС Холла от силы тока через полупроводник и магнитного поля.	Защита ЛР
6	Физические эффекты в полупроводниках	Датчики физических величин. Исследуются 9 различных датчиков.	Защита ЛР
7	Физические эффекты в полупроводниках	Датчики температуры. Исследуются 7 различных датчиков температуры.	Защита ЛР
8	Физические эффекты в полупроводниках	Фотоприемники. Часть 1. Фоторезистор. Исследуются характеристики фоторезистора.	Защита ЛР
9	Физические эффекты в полупроводниках	Фотоприемники. Часть 2. Фотодиод. Исследуются характеристики фотодиода.	Защита ЛР
10	Физические эффекты в полупроводниках	Фотоприемники. Часть 3. Солнечная батарея. Исследуются характеристики солнечной батареи.	Защита ЛР
11	Физические эффекты в полупроводниках	Фотоприемники. Часть 4. Фототранзистор. Исследуются характеристики фототранзистора.	Защита ЛР

2.3.4 Примерная тематика курсовых работ (проектов).

Курсовые работы – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

No	Вид СР	Перечень учебно-методического обеспечения дисциплины
	211,4 01	по выполнению самостоятельной работы
1	Проработка	Методические указания по изучению теоретического материала,
	теоретического	утвержденные кафедрой радиофизики и нанотехнологий, прото-
	материала	кол № 7 от 20.03.2017.
2	Оформление	Методические указания по выполнению лабораторных работ,
	и подготовка	утвержденные кафедрой радиофизики и нанотехнологий, прото-
	к защите	кол № 7 от 20.03.2017.
	лабораторных	Warra M. A. Character and a second se
	работ	Жужа М.А. Физика полупроводников: лабораторные работы /
		М.А. Жужа, Е.Н. Жужа, Г.П. Ильченко. – Краснодар: Кубанский
		гос. ун-т, 2014.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по освоению дисциплины «Физика полупроводников» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- проблемное обучение;
- обсуждение сложных вопросов и проблем.

На лекции выносится 80 % материала, изложенного в программе дисциплины. Остальные 20 % материала выносятся для самостоятельного изучения. При объяснении нового материала используются проблемное изложение и поисковая беседа. Часть учебного материала предъявляется также и в электронном виде для ознакомления и изучения. Благодаря этому сокращается время на конспектирование лекционных занятий, что позволяет показывать наглядные пособия, обсуждать современные достижения науки и техники и разбирать конкретные проблемные ситуации, возникавшие в процессе исторического развития производства полупроводниковых материалов и приборов.

На лабораторных занятиях студенты, работая малыми группами по 2 человека, измеряют характеристики полупроводников и полупроводниковых приборов, применяя на практике теоретические знания, учатся работать с цифровыми и аналоговыми измерительными приборами.

Эффективность учебной деятельности студентов оценивается по рейтинговой системе.

В учебном процессе используются следующие активные и интерактивные формы

проведения занятий: проблемное изложение, поисковая беседа, работа в малых группах, дискуссия.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Информационно-коммуникационные технологии представлены также средой модульного динамического обучения Moodle. На сайте Moodle КубГУ создан электронный курс для обеспечения интернет-поддержки обучения.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущей аттестации.

Текущий контроль:

- устный опрос по контрольным вопросам по разделам учебной программы;
- защита лабораторных работ,
- компьютерное тестирование.

Промежуточная аттестация:

– зачёт.

4.1.1 Примеры контрольных вопросов для устного опроса по разделам учебной программы.

Раздел 1. Носители заряда в полупроводниках.

Назовите основные специфические особенности полупроводников.

С какой целью легируют полупроводники?

Как формируются разрешенные и запрещенные зоны в полупроводнике?

Как объяснить температурную зависимость концентрации носителей заряда в полупроводнике?

В каких полупроводниках концентрация неосновных носителей выше: в сильнолегированных или в слаболегированных?

Раздел 2. Генерация, рекомбинация, диффузия и дрейф носителей заряда.

Для описания какого состояния полупроводника вводят понятия квазиуровней Ферми?

Для чего вводят понятие «демаркационный уровень»?

Какие слагаемые входят в уравнение полного тока?

Какие физические величины связывают соотношения Эйнштейна?

Какие физические процессы в полупроводниках учитывает уравнение непрерывности?

Раздел 3. Контактные и поверхностные явления в полупроводниках.

Для чего вводят понятие «электронное сродство»?

При каких условиях контакт металл-полупроводник является невыпрямляющим?

В чём заключается эффект инверсии электропроводности у поверхности?

Что такое контактная разность потенциалов? Как она образуется?

Почему в состоянии равновесия ток через p-n-переход равен нулю?

Раздел 4. Физические эффекты в полупроводниках.

Как объяснить спектральную характеристику полупроводниковых фотоприёмников?

Обязательно ли при поглощении фотона полупроводником появляются свободные носители заряда?

Какие конструкции имеют полупроводниковые магниторезистивные структуры, в которых устраняется мешающий эффект Холла?

Каким образом в полупроводниковых термоэлементах возникает термо-ЭДС?

Какие физические эффекты изменяют концентрацию и подвижность носителей заряда в сильных электрических полях?

Критерии оценки:

Оценка «зачтено» ставится, если продемонстрирован достаточный уровень эрудированности студента, выводы и наблюдения самостоятельны и в целом продемонстрированы знания и умения необходимых компетенций.

Оценка «**не зачтено**» ставится, если студент не может дать правильные ответы на 50 % вопросов или в ответах допущены несколько грубых ошибок.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Перечень вопросов, выносимых на зачёт:

- 1. Основы электронной теории электропроводности. Отличительные свойства электропроводности полупроводников. Энергия активации проводимости. Равновесные и неравновесные носители заряда. Дрейфовая скорость и ее оценка. Вывод формулы для удельной электропроводности полупроводников. Подвижность носителей заряда. «Горячие» электроны.
- 2. Модельные представления об электропроводности полупроводников. Генерация. Дырка. Рекомбинация. Удельная электропроводность собственных, примесных и скомпенсированных полупроводников. Основные и неосновные носители. Температурный диапазон применения полупроводниковых приборов.
- 3. Элементы зонной теории. Особое место валентных электронов. Противоречия классической электродинамики. Гипотеза Планка. Постулаты Бора. Гипотеза де Бройля. Принцип запрета Паули. Образование энергетических зон. Объяснение отличия проводников, полупроводников и диэлектриков на основе зонной теории. Энергетическая диаграмма полупроводника с донорной и акцепторной примесями.
- 4. Квазиимпульс и эффективная масса. Волновой вектор. Графики энергии свободного электрона и электрона в кристалле. Зоны Бриллюэна. «Отрицательная» масса электрона. Дырка. «Легкие» и «тяжелые» дырки.
- 5. Статистика электронов и дырок в полупроводниках. Плотность квантовых состояний. Функция распределения Ферми-Дирака для электронов. Уровень Ферми. Распределение Максвелла-Больцмана. Вырожденные и невырожденные полупроводники. Функция распределения для дырок.
- 6. Расчет концентраций электронов и дырок в зонах. Графики функций N(E), f(E,T), dn/dE. Эффективная плотность квантовых состояний. Расположение уровня Ферми в невырожденных и вырожденных полупроводниках. Расчет концентраций носителей $(n_i \ u \ p_i)$ для собственного полупроводника.
- 7. Расчет положения уровня Ферми для невырожденных полупроводников (расчеты иллюстрировать графиками): а) если заданы концентрация носителей и температура; б) из условия электрической нейтральности кристалла для собственного полупроводника. Положение уровня Ферми в широком интервале температур. Температуры T_S и T_i .
- 8. Определение ширины запрещенной зоны и глубины залегания примесных уровней по температурной зависимости электропроводности.
- 9. Равновесные и неравновесные носители. Квазиуровни Ферми. Высокий и низкий уровень инжекции.
- 10. Оптическая биполярная генерация и линейная рекомбинация. Время жизни неравновесных носителей заряда.
- 11. Оптическая биполярная генерация и квадратичная рекомбинация. Мгновенное время жизни.

- 12. Основные виды рекомбинации: межзонная, через ловушки, рекомбинация Оже. Поверхностная рекомбинация. Центры прилипания. Демаркационные уровни.
- 13. Диффузионные и дрейфовые токи. Уравнение полного тока. Соотношения Эйнштейна.
- 14. Уравнение непрерывности, учитывающее генерацию, рекомбинацию диффузию и дрейф носителей заряда. Уравнение Пуассона.
- 15. Диффузия и дрейф неравновесных носителей заряда при монополярной проводимости. Длина экранирования. Максвелловское время релаксации.
- 16. Диффузия и дрейф в случае биполярной оптической генерации. Диффузионная длина. Длина дрейфа.
- 17. Полупроводники в сильных электрических полях: «разогрев» носителей, эффект Ганна, ударная и электростатическая ионизации, туннельный эффект. Туннельный диол.
- 18. Физические процессы в контакте металл-полупроводник. Зонные диаграммы металла и полупроводника до контакта и структуры после контакта в состоянии равновесия и при подаче внешнего напряжения. Работа выхода, электронное сродство, контактная разность потенциалов. Распределение объемного заряда и поля. Омические контакты. ВАХ.
- 19. Поверхностные состояния. Уровни Тамма. Энергетические диаграммы обедненного, инверсного и обогащенного слоев. Быстрые и медленные поверхностные состояния. Эффект поля.
- 20. Электронно-дырочный переход в состоянии равновесия. Классификация р-п-переходов. Диаграммы распределения объемного заряда, электрического поля, концентраций носителей. Расчет высоты потенциального барьера. Ширина и барьерная емкость резкого и плавного p-n-перехода.
- 21. Неравновесное состояние p-n-перехода. Инжекция и экстракция неосновных носителей заряда. Изменения высоты, ширины барьера и барьерной емкости при прямом и обратном включении. Определение контактной разности потенциалов по вольт-фарадной характеристике. Диффузионная емкость. Расположение квазиуровней Ферми. ВАХ p-n-перехода.
- 22. Фотоэлектрические явления в полупроводниках. Классификация и характеристики приемников оптического излучения. Фоторезисторы, фотодиоды, фототранзисторы. Солнечная батарея. ЭДС Дембера.
- 23. Гальваномагнитные эффекты в полупроводниках: Холла, Гаусса, магнитокон-центрационный. Магниторезисторы. Магнитодиоды. Магнитотранзисторы.
- 24. Термоэлектрические явления и эффекты Зеебека, Пельтье и Томсона. Физическая сущность и применение в промышленности. Метод термозонда.

Зачет проводится в устной форме, при этом студентам задаются 2 вопроса из общего перечня вопросов к зачету и дается время (30-50 минут) для подготовки планаконспекта ответа.

Рекомендуется следующие критерии оценки знаний.

Оценка «**неудовлетворительно/не зачтено**» выставляется в том случае, если студент демонстрирует:

- незнание основных законов, формул, понятий и терминов учебной дисциплины;
- поверхностное знание теоретического материала.

Оценка «удовлетворительно/зачтено» ставится студентам, которые при ответе:

- в основном знают учебно-программный материал в объёме, необходимом для продолжения учебы и работы по профессии;
 - в целом усвоили основную литературу;
- в ответах на вопросы имеют нарушения в последовательности изложения учебного материала, демонстрируют поверхностные знания вопроса, приводят без математических выводов необходимые физические формулы;

- имеют краткие ответы только в рамках лекционного курса;
- приводят нечеткие формулировки физических понятий и законов;
- имеют существенные погрешности и грубые ошибки в ответе.

Оценка «хорошо/зачтено» ставится студентам, которые при ответе:

- обнаруживают твёрдое знание программного материала, который излагают систематизировано, последовательно и уверенно;
 - усвоили основную и наиболее значимую дополнительную литературу;
- допускают отдельные погрешности и незначительные ошибки при ответе и легко устраняет отдельные неточности с помощью дополнительных вопросов преподавателя.

Оценка «отлично/зачтено» ставится студентам, которые при ответе:

- обнаруживают всестороннее систематическое и глубокое знание программного материала (знание основных понятий, законов и терминов учебной дисциплины, умение оперировать ими);
 - излагают материал логично, последовательно, развернуто и уверенно;
- излагают материал с достаточно четкими формулировками, подтверждаемыми графиками, цифрами или примерами;
 - владеют научным стилем речи;
- демонстрируют знание материала лекций, базовых учебников и дополнительной литературы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

1. Шалимова К.В. Физика полупроводников: учебник / К.В. Шалимова. – Изд. 4-е, стер. – СПб. [и др.]: Лань, 2010. – 392 с. – (Учебники для вузов. Специальная литература).

- 2. Ансельм А.И. Введение в теорию полупроводников. [Электронный ресурс]: учеб. пособие Электрон. дан. СПб.: Лань, 2016. 624 с. Режим доступа: http://e.lanbook.com/book/71742.
- 3. Зегря Г.Г. Основы физики полупроводников. [Электронный ресурс]: учеб. пособие / Г.Г. Зегря, В.И. Перель. Электрон. дан. М.: Физматлит, 2009. 336 с. Режим доступа: http://e.lanbook.com/book/2371.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань», «Юрайт», «Университетская библиотека ONLINE».

5.2 Дополнительная литература:

- 1. Игумнов Д.В. Основы полупроводниковой электроники [Электронный ресурс]: учеб. пособие / Д.В. Игумнов, Г.П. Костюнина. Электрон. дан. М.: Горячая линия-Телеком, 2011. 394 с. Режим доступа: https://e.lanbook.com/book/5157.
- 2. Бурбаева Н.В. Основы полупроводниковой электроники [Электронный ресурс]: учеб. пособие. Электрон. дан. М.: Физматлит, 2012. 312 с. Режим доступа: https://e.lanbook.com/book/5261.
- 3. Смирнов Ю.А. Физические основы электроники: учебное пособие / Ю.А. Смирнов, С.В. Соколов, Е.В. Титов. СПб. [и др.]: Лань, 2013.
- 4. Жужа М.А. Физика полупроводников: лабораторные работы / М.А. Жужа, Е.Н. Жужа, Г.П. Ильченко. Краснодар: Кубанский гос. ун-т, 2014. 35 с.

5.3 Периодические издания:

В библиотеке КубГУ имеются следующие периодические издания по профилю дисциплины:

В мире науки.

Известия ВУЗов. Серия: Радиофизика.

Известия ВУЗов. Серия: Радиоэлектроника.

Известия ВУЗов. Серия: Физика.

Инженерная физика.

Микроэлектроника.

Радиотехника и электроника.

Радиотехника. Реферативный журнал. ВИНИТИ.

Сенсор.

Физика и техника полупроводников.

Электроника.

Электроника. Реферативный журнал. ВИНИТИ.

Электроника: наука, технология, бизнес.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. Единое окно доступа к образовательным ресурсам URL: http://window.edu.ru/.
- 2. Федеральный образовательный портал URL: http://www.edu.ru/db/portal/sites/res_page.htm.
 - 3. Каталог научных ресурсов URL: http://www.scintific.narod.ru/literature.htm.
 - 4. Большая научная библиотека URL: http://www.sci-lib.com/.
- 5. Раздел «Физика» Естественно-научного образовательного портала URL: http://www.en.edu.ru/catalogue/304.

- 6. Раздел «Полупроводники» образовательного проекта А.Н. Варгина «Физика, химия, математика студентам и школьникам» URL: http://www.ph4s.ru/books_tehnika.html.
- 7. Раздел «Технические науки (Радиофизика. Радиоэлектроника. Полупроводниковая электроника и др.)» образовательного проекта А.Н. Варгина «Физика, химия, математика студентам и школьникам» URL: http://www.ph4s.ru/book_ph_poluprovodnik.html.
- 8. Информационные ресурсы Научной библиотеки КубГУ URL: http://www.kubsu.ru/ru/university/library/resources.

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Для успешного освоения дисциплины «Физика полупроводников» при самостоятельной работе студент должен иметь:

- 1) конспект лекций в бумажном или электронном виде;
- 2) учебник (учебное пособие) в соответствии со списком литературы;
- 3) тетрадь для лабораторных работ.

Самостоятельная работа содержит следующие виды учебной деятельности студентов:

- теоретическую самоподготовку к лабораторным занятиям и к зачету по конспектам и учебной литературе;
- оформление отчетов по результатам лабораторных работ (о выполненной лабораторной работе студенты отчитываются преподавателю на следующем (очередном) лабораторном занятии).

Приступая к изучению «Физики полупроводников» студенты должны хорошо владеть необходимым математическим аппаратом: интегрированием и дифференцированием, а также решать дифференциальные уравнения.

Студенту необходимо систематически работать в течение семестра по изучению теоретического материала и приобретению навыков экспериментальной работы.

Для запоминания лекционного материала (в том числе и в период подготовки к зачету) студенту необходимо хорошо знать свойства памяти и активно пользоваться мнемотехническими приемами. Методические рекомендации по запоминанию можно найти в Интернете по ключевым словам: «память», «мнемоника», «мнемотехника», «как запомнить учебный материал». Желательно также ознакомиться с приемами конспектирования, т.е. со способами сокращения записи слов и словосочетаний, например, применяемыми в словарях и энциклопедиях.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Успешность освоения студентом учебной дисциплины отражается в его рейтинге — сумме баллов, которая формируется в течение семестра по результатам устных опросов и защит лабораторных работ.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- 1. Консультирование посредством электронной почты.
- 2. Среда модульного динамического обучения Moodle.

8.2 Перечень информационных справочных систем:

- 1. Электронный каталог научной библиотеки КубГУ (http://212.192.134.46/MegaPro/Web).
- 2. Электронная библиотечная система «Университетская библиотека ONLINE» (http://biblioclub.ru/index.php?page=main_ub_red).
 - 3. Электронная библиотечная система издательства «Лань» (https://e.lanbook.com/).
 - 4. Электронная библиотечная система «Юрайт» (https://www.biblio-online.ru/).

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

	T	
No	Вид работ	Материально-техническое обеспечение дисциплины
3 1_	Вид расст	(модуля) и оснащенность
1.	Лекционные	Аудитория 317с, оснащенная переносным проектором
	занятия	и магнитно-маркерной доской.
2.	Семинарские	- (Учебным планом семинарские занятия не преду-
	занятия	смотрены.)
3.	Лабораторные	Аудитория 317с, оснащенная оборудованием, необ-
	занятия	ходимым для проведения лабораторных работ.
4.	Групповые (индивиду-	Аудитория 317с, оснащенная переносным проектором
	альные) консультации	и магнитно-маркерной доской.
5.	Текущий контроль, про-	Аудитория 317с, оснащенная переносным проектором
	межуточная аттестация	и магнитно-маркерной доской.
6.	Самостоятельная	Аудитория 311с, оснащенная компьютерной техникой
	работа	с подключением к сети Интернет.
		<u>-</u>

Учебная лаборатория	полупроводниковой электроники ФТФ КубГУ	
Лабораторные занятия по	Оборудование учебной лаборатории:	Кол-
дисциплине «Физика полу-	F) M	ВО
проводников» проводятся в	Осциллограф С1-78	2
учебной лаборатории полу-	Осциллограф С1-92	1
проводниковой электроники (ауд. 317с), оснащенной не-	Осциллограф цифровой запоминающий АКИП- 4115/1A	1
обходимым лабораторным	Цифровой вольтметр В7-38	5
оборудованием и прибора-	Цифровой мультиметр АКТАКОМ ABM-4084	1
ми.	Источник питания Б1-12	1
	Источник питания Б5-9	5
	Источник питания Б5-12	1
	Частотомер электронно-счетный Ч3-54	1
	Измеритель мощности термисторный M3-22A	1
	Измеритель характеристик полупроводниковых приборов Л2-56	1
	Комплект лабораторного оборудования К32	1
	Измеритель КСВН панорамный РК2-47	1
	Измеритель КСВН панорамный Р2-59	1
	Генератор импульсов Г5-54	2
	Генератор Л30	3