АННОТАЦИЯ дисциплины «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ»

Объем трудоемкости: 3 зачетные единицы (108 часа, из них – 48 часов аудиторной нагрузки: лекционных 32 ч., практических 16 ч., 30 ч. самостоятельной работы)

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цели и задачи освоения дисциплины

Учебная дисциплина «Электричество и магнетизм» ставит своей целью сформировать у бакалавров представление об основных понятиях, явлениях, законах и методах раздела общего курса физики, а также привить навыки практических расчетов и экспериментальных исследований. Раздел «Электричество и магнетизм» занимает важное место в системе физического образования. Во-первых, он дает объяснение великому множеству физических явлений и тем интересен. Во-вторых, этот курс создает необходимую основу для продвижения в область квантовых явлений и в другие специальные разделы физики.

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- изучение современных законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научнотехнических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми физику приходится сталкиваться при изучении новых явлений;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
 - формирование у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

1.3 Место дисциплины в структуре образовательной программы

Курс «Электричество и магнетизм» читается во 2 семестре 1 курса. Необходимыми предпосылками для успешного освоения курса является следующее:

- В цикле математических дисциплин: знание основ линейной алгебры и математического анализа, умение дифференцировать и интегрировать, разложить функцию трех переменных в ряд Тейлора, решать простейшие дифференциальные уравнения, владение элементами векторного анализа, включая хорошее понимание интегральных теорем Остроградского-Гаусса и Стокса.
- В цикле общефизических дисциплин необходимыми предпосылками являются знание основ классической механики, молекулярной физики и специальной теории относительности.

В свою очередь, разделы курса «Электричество и магнетизм» как описание электромагнитных полей с помощью скалярного потенциала, явления в вакууме и изотропных средах, законы постоянного тока, магнитные явления в вакууме и в изотропных средах,

представление о системе уравнений Максвелла, энергии и импульсе электромагнитного поля, составляют необходимую основу для успешного изучения аналитической механики, электродинамики, физики конденсированного состояния вещества и сплошных сред, а также квантовой механики.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций: способность использовать положения, законы и методы естественных наук и математики для решения для решения задач инженерной деятельности (ОПК-1), способность самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2).

No	Индекс	Содержание	В результате изучения учебной дисциплины			
П.	компе-	компетенции	обучающиеся должны			
П.	тенции	(или её части)	знать	уметь	владеть	
1.	ОПК-1	способность	основные	пользовать-	методами решения за-	
		использовать	законы элек-	ся законами	дач электромагнетизма	
		положения, законы	тромагне-	электромаг-	(в порядке возрастания	
		и методы	тизма для	нетизма для	сложности), основан-	
		естественных наук и	вакуума и	анализа фи-	ными на принципе су-	
		математики для	изотропных	зической су-	перпозиции для опре-	
		решения для	сред;	ти изучае-	деления полей от за-	
		решения задач	_	мых явле-	данных источников, на	
		инженерной		ний;	интегральных соотно-	
	OHIC 2	деятельности			шениях (теорема Гаус-	
2.	ОПК-2	способность			са для потоков, теоре-	
		самостоятельно			мы для циркуляции,	
		проводить			интегральный закон об	
		экспериментальные			электромагнитной ин-	
		исследования и			дукции) – как для вы-	
		использовать			числения полей при	
		основные приемы			использовании сооб-	
		обработки и			ражений симметрии,	
		представления			так и для составления	
		полученных			соответствующих	
		данных			дифференциальных	
					уравнений и гранич-	
					ных условий, на законе	
					сохранения энергии	
					электромагнитного по-	
					ля, на правилах	
					Кирхгофа для вычис-	
					ления характеристик	
					электрических цепей.	
					r	

2. Структура и содержание дисциплины курса «Электричество и магнетизм» Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа, их распределение по видам работ представлено в таблице (для студентов ОФО).

Вид учебной работы	Всего	Семестры
	часов	(часы)

			2	-
Контактная работа, в том числе:				
Аудиторные занятия (во	сего):	48	48	
Занятия лекционного тип	a	32	32	
Лабораторные занятия		-	-	
Занятия семинарского ти ские занятия)	па (семинары, практиче-	16	16	
Иная контактная работ	a:		-	
Контроль самостоятельно	ой работы (КСР)	3	3	
Промежуточная аттестац	ия (ИКР)	0,3	0,3	
Самостоятельная работа, в том числе:			30	
Курсовая работа		-	-	
Проработка учебного (те	оретического) материала	24	24	
Выполнение индивидуал сообщений, презентаций	Выполнение индивидуальных заданий (подготовка			
Реферат		-	-	
Подготовка к текущему к	онтролю	6	6	
Контроль:	26,7	26,7		
Подготовка к экзамену	26,7	26,7		
Общая трудоемкость	час.	108	108	
	в том числе контактная работа	51,3	51,3	
	зач. ед	3	3	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 2 семестре (для студентов $O\Phi O$):

	т азделы диециыниы, изу шек	Количество часов				
№	Наимонарамиа разлачар (там)		Аудиторная			Внеаудиторная рабо-
710	Наименование разделов (тем)	Всего		работа		та
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1	Электростатика	15	5		2	5
2	Диэлектрики	15	5		2	5
3	Электрический ток	15	5	2		5
4	Магнитное поле в вакууме	15	5	2		5
5	Магнитное поле в веществе	15	5		2	5
6	Закон электромагнит- ной индукции	15	5		3	3
7	Уравнения Максвелла 18 2		3	2		
	Итого по дисциплине:		32		16	30

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№	Наименование	Содержание раздела	Форма текущего
	раздела		контроля
1	2	3	4

1	Энакте с ото	Drawmayyy 200 - 200 - 1/ D	Ompomi
1	Электростатика	Электрический заряд. Закон Кулона. Электриче-	
		ское поле и его напряженность. Принцип супер-	
		позиции. Поток электрического поля. Теорема	сы (КВ)
		Гаусса. Дивергенция электрического поля. Объ-	
		емная плотность заряда. Потенциальность элек-	
		тростатического поля. Электрический потенциал.	
		Градиент потенциала. Эквипотенциальные по-	
		верхности. Силовые линии электрического поля.	
		Основное уравнение электростатики. Уравнение	
		Пуассона. Поле диполя. Сила и момент сил, дей-	
		ствующие на диполь во внешнем поле. Энергия	
		диполя во внешнем поле. Энергия системы заря-	
		дов. Емкость системы проводников. Электроем-	
2	п	кость. Плотность энергии электрического поля.	ICD
2	Диэлектрики	Диэлектрики. Вектор поляризации. Свободные и	КВ
		связанные заряды. Электрическое поле и вектор	
		индукции. Диэлектрическая проницаемость. Си-	
		стема уравнений для поля в диэлектрике. Теорема	
		Гаусса. Граничные условия для поля в диэлек-	
		трике. Электрическое поле в однородном диэлек-	
		трике. Уравнения электростатики в диэлектрике.	
		Задачи с границами раздела диэлектриков. Опре-	
2	n v	деление связанных зарядов.	ICD
3	Электрический	Электрический ток. Объемная и поверхностная	КВ
	ток	плотности тока. Закон сохранения заряда. Урав-	
		нение непрерывности. Закон Ома . Проводимость	
		металлов. Условие применимости закона Ома.	
		Закон Джоуля-Ленца. Уравнения и граничные	
		условия для полей при прохождении тока. Релак-	
		сация зарядов в проводящей среде. Электродви-	
		жущая сила. Электрические цепи. Правила Кирхгофа.	
4	Магинтиод пода в	Магнитное поле. Сила Лоренца. Закон Био-	КВ
7			KD
	вакууме	Савара. Теоремы о потоке и циркуляции магнитного поля. Магнитный диполь. Сила и момент	
		сил, действующие на магнитный диполь во	
		внешнем магнитном поле.	
5	Магнитное поле в	Магнитное поле в среде. Молекулярные токи.	КВ
	веществе	Вектор намагниченности. Полная система урав-	KD
	вещеетве	нений магнитостатики в среде. Диамагнетики и	
		парамагнетики. Оценки магнитной проницаемо-	
		сти. Ферромагнетизм. Гистерезис. Остаточная	
		магнитная индукция и коэрцитивная сила. Элек-	
		тромагниты и постоянные магниты.	
6	Закон электро-	Закон электромагнитной индукции. Первая пара	КВ
		уравнений Максвелла. Силы, действующие на	TCD
	дукции	проводник с током в магнитном поле.	
7	-	Ток смещения. Вторая пара уравнений Максвел-	КВ
'	велла	ла. Энергия магнитного поля. Квазистационар-	KD
	D-31314	ный ток в контуре, индуктивность и уравнение	
		для тока. Сохранение магнитного потока. Закон	
		сохранения энергии электромагнитного поля.	
<u> </u>	1	companion on opini on oxiponia in intito i nom.	

2.3.2 Занятия семинарского типа.

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текуще- го контроля
1	Электростатика	Закон Кулона. Принцип суперпозиции. Теорема Гаусса. Объемная и поверхностная плотность заряда.	Решение задач
2	Электростатика	.Потенциал точечного заряда, вычисление потенциала для случаев поля, создаваемого системой точечных зарядов и плоским конденсатором; связь между напряженностью и потенциалом. Электрический диполь. Поле диполя.	Решение задач
3	Диэлектрики	Проводники в электростатическом поле. Поле внутри и на поверхности проводника. Электроемкость, конденсаторы, расчет электроемкости. Соединение конденсаторов.	Решение задач
4	Электрический ток	Постоянный электрический ток. Законы Ома и Джоуля – Ленца. Правила Кирхгофа. Расчеты для сложных электрических цепей.	Решение задач
5	Магнитное поле в вакууме	Понятие магнитного поля, закон Био - Савара - Лапласа, расчет вектора магнитной индукции. Теорема о циркуляции вектора магнитной индукции, вихревой характер магнитного поля, применение теоремы о циркуляции к расчету магнитного поля.	Решение задач
6	Магнитное поле в веществе	Понятие магнитного поля, закон Био - Савара - Лапласа, расчет вектора магнитной индукции. Теорема о циркуляции вектора магнитной индукции, вихревой характер магнитного поля, применение теоремы о циркуляции к расчету магнитного поля.	Решение задач
7	Закон электро- магнитной ин- дукции	. Сила Лоренца. Электромагнитная индукция. Самоиндукция. Индуктивность, формула для ЭДС самоиндукции, исчезновение и установление тока в цепи, содержащей индуктивность.	Решение задач
8	Уравнения Макс- велла	Переменный ток. Характеристики переменного тока. Мощность в цепи переменного тока. Электрические колебания и волны. Уравнения Максвелла.	Решение задач

2.3.3 Лабораторные занятия.

	2.5.5 51a00pa10	риыс запития:	
No	No		Форма текуще-
Π/Π	раздела	Наименование лабораторных работ	ГО
11/11	дисциплины		контроля
	Энактаннаакий	0	Отчет по
1	Электрический	Определение удельного сопротивления проводника	лабораторной
	ток		работе
	O T O YATTO O YAYYY	Измерение сопротивления резисторов мостовым мето-	Отчет по
2	Электрический	дом	лабораторной
	ток		работе

3	Электростатика	Измерение характеристик эквипотенциального электрического поля	Отчет по лабораторной работе
4	Закон электро- магнит- ной индукции	Резонансные методы измерения индуктивностей кату- шек	Отчет по лабораторной работе
5	Диэлектрики	Измерение емкости конденсаторов с помощью моста Сотти	Отчет по лабораторной работе
6	Магнитное по- ле в веществе	Определение магнитных характеристик сердечника трансформатора	Отчет по лабораторной работе
7	Электрический ток	Определение рассеиваемой мощности элементов электрических цепей	Отчет по лабораторной работе
8	Магнитное по- ле в вакууме	Измерение напряженности магнитного поля Земли с помощью тангенс-гальванометра	Отчет по лабораторной работе

Лабораторные работы выполняются в лаборатории электричества и магнетизма на специализированных стендах.

В результате выполнения лабораторных работ у студентов формируются и оцениваются требуемые

ФГОС и ООП по направлению 11.03.04 «Электроника и наноэлектроника» (профиль

«Нанотехнологии в электронике») компетенции: ОПК-1, ОПК-2.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены

Основная литература:

- 1. Сивухин Д.В. Общий курс физики. Электричество/ Сивухин Д.В. Т.3. М.: Физматлит, 2005
- 2. И. Е. Иродов "Задачи по общей физике"/ И. Е. Иродов, издательство "Лань", СПб. 2006
- 3. Иродов, И. Е. Электромагнетизм. Основные законы : учебное пособие для физических специальностей вузов / Иродов, И. Е. . 7-е изд . М. : БИНОМ. Лаборатория знаний, 2010
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. СПб.: Книжный мир: [Профессия], 2006
- 5. Матвиенко Г.И. Электричество и магнетизм: лабораторный практикум/ Матвиенко Г.И., Исаев В.А., Григорьян Л.Р. Кубанский государственный университет, 2011.-61c

Автор РПД

Ю.А. Половодов