Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет физико-технический

УТВЕРЖДАЮ: Проректор по учебной работе, качеству образования—первый проректор

Хагуров Т.А

20 апреля 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б23 ТЕОРИЯ КОЛЕБАНИЙ

Направление подготовки 03.03.03 Радиофизика

Направленность (профиль): Радиофизические методы по областям применения (биофизика)

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника бакалавр

Рабочая программа дисциплины «Теория колебаний» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки (профиль) 03.03.03 «Радиофизика».

Программу составил

Г.Ф. Копытов, профессор, доктор ф.-м. наук

Рабочая программа утверждена на заседании кафедры (выпускающей) радиофизики и нанотехнологий Протокол № 6 от 20 апреля 2020 года.

Заведующий кафедрой (выпускающей) Г.Ф. Копытов, профессор, доктор ф.-м. наук

Рабочая программа обсуждена на заседании кафедры (выпускающей) радиофизики и нанотехнологий Протокол № 6 от 20 апреля 2020 года.

Заведующий кафедрой (выпускающей) Г.Ф. Копытов, профессор, доктор ф.-м. наук

Заведующий кафедрой (разработчика) Г.Ф. Копытов, профессор, доктор ф.-м. наук

Утверждена на заседании учебно-методической комиссии физикотехнического факультета, протокол № 9 от 20 апреля 2020 года.

Председатель УМК физико-технического факультета Н.М. Богатов, профессор, доктор ф.-м. наук

Рецензент:

Ю.С. Медведев, доктор тех. наук, профессор, заведующий 103 кафедрой математики и информатики Краснодарского высшего военного авиационного училища летчиков им. Героя Советского Союза А.К. Серова

1. Цели и задачи изучения дисциплины.

1.1 Цель дисциплины.

Целью преподавания дисциплины «Теория колебаний» является изучение общих свойств колебательных процессов в системах с одной и несколькими степенями свободы, линейных, нелинейных, связанных и параметрических осцилляторов.

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- ознакомить студентов с методами теории колебаний;
- ознакомить студентов с приложениями теории колебаний в задачах радиофизики, оптики и др.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Теория колебаний» относится к базовой части Блока 1 «Дисциплины (модули)» учебного плана.

Для успешного изучения дисциплины необходимы знания общего курса физики, курсов «Теоретическая механика», «Электричество и магнетизм», и основ математического анализа, теории дифференциальных уравнений. Освоение дисциплины необходимо для изучения других дисциплин в рамках подготовки бакалавров, и для последующего обучения в магистратуре.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных компетенций (ОПК)

	Индекс	Содержание	В результате	изучения учебной д	писшиплины
No		' ' *	1 2	учающиеся должнь	
п.п.	компет	компетенции (или её	00	учающиеся должны	ol T
	енции	части)	знать	уметь	владеть
1.	ОПК-1	способностью к	основные	выбирать	практическим
		овладению базовыми	понятия теории	необходимые	и навыками в
		знаниями в области	механических	параметры для	обработке
		математики и	И	решения	данных,
		естественных наук,	электромагнит	конкретных	выполнении
		их использованию в	ных колебаний,	задач теории	расчетов,
		профессиональной	основные типы	колебаний;	решении
		деятельности	колебаний, их		задач
			характеристики		
			и способы		
			описания,		
			основные		
			закономерност		
			И		
			колебательных		
			процессов,		

N₂	Индекс	Содержание	В результате	изучения учебной д	цисциплины
	компет	ипет компетенции (или её	обучающиеся должны		
п.п.	енции	части)	знать	уметь	владеть
			принципиальн		
			ые схемы		
			колебательных		
			устройств (в		
			основном		
			радиотехничес		
			ких); методы		
			графического и		
			аналитического		
			представления		
			колебаний		

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их

распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы	Bcero		 естры	
Бид учесной рассты	часов	5		
Аудиторные занятия (всего)	74	74		
В том числе:				
Занятия лекционного типа	36	36		
Занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	36	36		
KCP	2	2		
Самостоятельная работа (всего)	34	34		
В том числе:				
Курсовая работа	8	8		
Проработка учебного (теоретического) материала	11	11		
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	8	8		
Подготовка к текущему контролю	7	7		
Вид промежуточной аттестации - зачет	6	6		
Общая трудоемкость час	108	108		
зач. ед.	3	3		

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в $\underline{5}$ семестре (для студентов О Φ О)

N.T.	т азделы длецинийны, изучасыы	Количество часов			•	
No				удиторн		Самостоятельная
разд	Наименование разделов	Всего	'	работа		работа
ела			Л	П3	CPC	•
1	2	3	4	5	6	7
	Введение в теорию колебаний.		4	4	1	4
	Гармонические колебания в					
1.	линейных бездиссипативных					
	системах с одной степенью					
	свободы					
	Колебания в линейных		4	4	_	4
2.	диссипативных системах с одной					
	степенью свободы					
3.	Колебания в цепях переменного		4	4	1	4
٥.	тока					
	Колебания в линейных системах		4	4	_	4
4.	с несколькими степенями					
	свободы					
	Гармонические колебания в		4	4	-	4
5.	системах с бесконечным числом					
٥,	степеней свободы. Волновые					
	процессы					
6.	Устойчивость колебательных		4	4	_	4
	систем					
7.	Параметрические колебания		4	4	_	4
	Распространение		4	4	_	4
8.	электромагнитных волн в					
0.	периодически-неоднородных					
	средах					
	Качественное и количественное		4	4	1	2
9.	рассмотрение нелинейных					
	колебательных систем					
	Итого по дисциплине	108	36	36	2	34

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

N₂	Наименование	Содержание раздела	Форма текущего
145	раздела	Содержание раздела	контроля
1	2	3	4
1.	Введение в теорию	Введение. Круг задач, решаемых теорией	Устный опрос,
	колебаний.	колебаний. Терминология и	решение задач
	Гармонические	математический аппарат теории	
	колебания в	колебаний. Свободные колебания в	
	линейных	системах с одной степенью свободы.	
	бездиссипативных	Примеры колебательных систем с одной	
	системах с одной	степенью свободы и их анализ.	
	степенью свободы	Колебания в системах с одной степенью	
		свободы под действием вынуждающей	

		силы.	
2.	Колебания в	Свободные колебания в диссипативных	Устный опрос,
_,	линейных	колебательных системах с одной	решение задач
	диссипативных	степенью свободы. Качественное	Formation of the second
	системах с одной	рассмотрение колебаний в	
	степенью свободы	диссипативных системах при	
	степенью своооды	различных законах трения. Случаи:	
		сухого трения, линейного трения,	
		квадратичного трения.	
		Вынужденные колебания в линейных	
		диссипативных системах. Резонанс.	
3.	Колебания в цепях	Сложение гармонических колебаний.	Устный опрос,
٥.	переменного тока	Векторные диаграммы. Фигуры	решение задач
	переменного тока	Бекторные диаграммы. Фигуры Лиссажу.	решение задач
		5	
		Колебания в цепях переменного тока.	
		Индуктивное, емкостное и активное	
1	Колебания в	сопротивление Колебания в линейных системах с	Vom
4.			Устный опрос,
	линейных системах с	двумя степенями свободы. Связь:	решение задач
	несколькими	индуктивная, емкостная, смешанная.	
	степенями свободы	Собственные колебания системы с	
		двумя степенями свободы.	
		Нормальные колебания. Парциальные и	
		собственные частоты.	
		Вынужденные колебания в системах с	
		двумя степенями свободы. Успокоение	
		колебаний.	
		Колебания в линейных системах с <i>n</i>	
		степенями свободы. Матричная форма	
		записи уравнений колебаний в	
		линейных системах. Нормальные	
_	_	колебания	''
5.	Гармонические	Колебания в однородных цепочках	Устный опрос,
	колебания в системах	(одномерная модель кристалла с одним	решение задач
	с бесконечным	атомом в элементарной ячейке).	
	числом степеней	Дисперсионное уравнение для	
	свободы. Волновые	однородной цепочки и его анализ.	
	процессы	Колебания в неоднородных цепочках	
		(одномерная модель кристалла с двумя	
		атомами в элементарной ячейке).	
		Дисперсионное уравнение для	
		неоднородной цепочки и его анализ.	
		Вынужденные колебания в системе	
		свободных зарядов. Плазменные	
		колебания.	
		Вынужденные колебания в системе	
		невзаимодействующих осцилляторов.	
		Элементарная теория дисперсии	
		электромагнитных волн в	
		конденсированных средах. Нормальная	
		и аномальная дисперсия.	
6.	Устойчивость	Устойчивость по Ляпунову,	Устный опрос,

	1 -		
	колебательных	асимптотическая устойчивость.	решение задач
	систем	Устойчивость колебательных систем с	
		дискретным спектром. Критерий Рауса-	
		Гурвица. Понятие о D-анализе	
		устойчивости колебательных систем.	
		Преобразование Лапласа и его свойства.	
		Устойчивость неавтономных систем.	
7.	Параметрические	Параметрические колебания и	Устный опрос,
	колебания	параметрическая неустойчивость.	решение задач
		Теорема Флоке-Блоха. Параметрический	
		резонанс.	
8.	Распространение	Общие свойства периодически-	Устный опрос,
	электромагнитных	неоднородных сред, методы их создания.	решение задач
	волн в периодически-	Фотонные кристаллы. Периодические	-
	неоднородных	неоднородные среды, имеющие	
	средах	синусоидальный профиль	
	_	неоднородности. Дисперсионное	
		уравнение.	
		Периодические неоднородные среды со	
		ступенчатой неоднородностью: точное	
		решение задачи о распространении	
		электромагнитной волны	
9.	Качественное и	Качественное рассмотрение нелинейных	Устный опрос,
	количественное	колебательных систем, их фазовые	решение задач
	рассмотрение	портреты.	-
	нелинейных	Точное решение задачи о	
	колебательных	математическом маятнике.	
	систем	Понятие о методе медленно	
		меняющихся амплитуд (ММА).	
		Исследование генератора Томсона с	
		помощью метода ММАОбщие методы	
		исследования нелинейных	
		динамических систем.	
	-		

2.3.2 Занятия семинарского типа.

	2.3.2 Занятия семи	тарского типа.	
No	Наименование	Тематика практических занятий	Форма текущего
1,40	раздела	(семинаров)	контроля
1	2	3	4
1.	Введение в	Введение. Круг задач, решаемых теорией	Проверочная
	теорию	колебаний. Терминология и	контрольная работа,
	колебаний.	математический аппарат теории	проверка
	Гармонические	колебаний. Свободные колебания в	домашнего задания
	колебания в	системах с одной степенью свободы.	
	линейных	Примеры колебательных систем с одной	
	бездиссипативных	степенью свободы и их анализ.	
	системах с одной	Колебания в системах с одной степенью	
	степенью свободы	свободы под действием вынуждающей	
		силы.	
2.	Колебания в	Свободные колебания в диссипативных	Проверочная
	линейных	колебательных системах с одной	контрольная работа,
	диссипативных	степенью свободы. Качественное	проверка
	системах с одной	рассмотрение колебаний в	домашнего задания

	1		
	степенью свободы	диссипативных системах при различных	
		законах трения. Случаи: сухого трения,	
		линейного трения, квадратичного	
		трения.	
		Вынужденные колебания в линейных	
	T7 6	диссипативных системах. Резонанс.	-
3.	Колебания в	Сложение гармонических колебаний.	Проверочная
	цепях	Векторные диаграммы. Фигуры Лиссажу.	
	переменного тока	Колебания в цепях переменного тока.	проверка
		Индуктивное, емкостное и активное	домашнего задания
4	T/	сопротивление	
4.	Колебания в	Колебания в линейных системах с	Проверочная
	линейных	двумя степенями свободы. Связь:	контрольная работа,
	системах с	индуктивная, емкостная, смешанная.	проверка
	несколькими	Собственные колебания системы с	домашнего задания
	степенями	двумя степенями свободы.	
	свободы	Нормальные колебания. Парциальные и	
		собственные частоты.	
		Вынужденные колебания в системах с	
		двумя степенями свободы. Успокоение	
		колебаний.	
		Колебания в линейных системах с п	
		степенями свободы. Матричная форма	
		записи уравнений колебаний в	
		линейных системах. Нормальные	
		колебания	-
			LIDODODOMINA
5.	Гармонические	Колебания в однородных цепочках	Проверочная
5.	колебания в	(одномерная модель кристалла с одним	контрольная работа,
5.	колебания в системах с	(одномерная модель кристалла с одним атомом в элементарной ячейке).	контрольная работа, проверка
5.	колебания в системах с бесконечным	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для	контрольная работа,
5.	колебания в системах с бесконечным числом степеней	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ.	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы.	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы.	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке).	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ.	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания.	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания.	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в	контрольная работа, проверка
5.	колебания в системах с бесконечным числом степеней свободы. Волновые	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная	контрольная работа, проверка
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия.	контрольная работа, проверка домашнего задания
6.	колебания в системах с бесконечным числом степеней свободы. Волновые процессы	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия.	контрольная работа, проверка домашнего задания Проверочная
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы Устойчивость колебательных	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия. Устойчивость по Ляпунову, асимптотическая устойчивость.	Проверочная контрольная работа, проверочная контрольная работа,
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия. Устойчивость по Ляпунову, асимптотическая устойчивость. Устойчивость колебательных систем с	Проверочная контрольная работа, проверочная контрольная работа, проверка
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы Устойчивость колебательных	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия. Устойчивость по Ляпунову, асимптотическая устойчивость. Устойчивость колебательных систем с дискретным спектром. Критерий Рауса-	Проверочная контрольная работа, проверочная контрольная работа,
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы Устойчивость колебательных	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия. Устойчивость по Ляпунову, асимптотическая устойчивость. Устойчивость колебательных систем с дискретным спектром. Критерий Рауса-Гурвица. Понятие о D-анализе	Проверочная контрольная работа, проверочная контрольная работа, проверка
	колебания в системах с бесконечным числом степеней свободы. Волновые процессы Устойчивость колебательных	(одномерная модель кристалла с одним атомом в элементарной ячейке). Дисперсионное уравнение для однородной цепочки и его анализ. Колебания в неоднородных цепочках (одномерная модель кристалла с двумя атомами в элементарной ячейке). Дисперсионное уравнение для неоднородной цепочки и его анализ. Вынужденные колебания в системе свободных зарядов. Плазменные колебания. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия. Устойчивость по Ляпунову, асимптотическая устойчивость. Устойчивость колебательных систем с дискретным спектром. Критерий Рауса-	Проверочная контрольная работа, проверочная контрольная работа, проверка

		Устойчивость неавтономных систем.	
7.	Параметрические	Параметрические колебания и	Проверочная
	колебания	параметрическая неустойчивость.	контрольная работа,
		Теорема Флоке-Блоха. Параметрический	проверка
		резонанс.	домашнего задания
8.	Распространение	Общие свойства периодически-	Проверочная
	электромагнитных	неоднородных сред, методы их создания.	контрольная работа,
	волн в	Фотонные кристаллы. Периодические	проверка
	периодически-	неоднородные среды, имеющие	домашнего задания
	неоднородных	синусоидальный профиль	
	средах	неоднородности. Дисперсионное	
		уравнение.	
		Периодические неоднородные среды со	
		ступенчатой неоднородностью: точное	
		решение задачи о распространении	
		электромагнитной волны	
9.	Качественное и	Качественное рассмотрение нелинейных	Проверочная
	количественное	колебательных систем, их фазовые	контрольная работа,
	рассмотрение	портреты.	проверка
	нелинейных	Точное решение задачи о	домашнего задания
	колебательных	математическом маятнике.	
	систем	Понятие о методе медленно	
		меняющихся амплитуд (ММА).	
		Исследование генератора Томсона с	
		помощью метода ММА Общие методы	
		исследования нелинейных динамических	
		систем.	

2.3.4 Примерная тематика курсовых работ (проектов)

- 1. Электронные приборы СВЧ.
- 2. Детектирование.
- 3. Взаимодействие релятивистских частиц с лазерным излучением.
- 4. Спектральные и поляризационные характеристики модулированной электромагнитной волны.
- 5. Движение заряженной частицы в поле частотно-модулированной электромагнитной волны.
- 6. Движение и излучение релятивистской частицы в поле лазерного импульса (в гауссовом пучке).
- 7. Движение заряженных частиц в электромагнитных полях в вакууме.
- 8. Движение заряженной частицы в поле плоской монохроматической электромагнитной волны и постоянном однородном магнитном поле.
- 9. Излучение заряженной частицы в поле амплитудно-модулированной волны.
- 10. Угловое распределение синхротронного излучения.
- 11. Исследование аналоговых сигналов. Применение их в модуляторах.
- 12. Исследование модулированных сигналов и их применение в аналоговых и цифровых модуляторах.
- 13. Криоэлектроника. Сверхпроводные цифровые и импульсные устройства.
- 14. Спектральные методы.
- 15. Интегральные микросхемы, их классификация и технология изготовления.
- 17. Расчет фрактальных антенн.
- 18. Фотоэффект и приборы на его основе.
- 19. Ондуляторное излучение. Вигглеры.

Методические указания по выполнению курсовых проектов: https://moodle.kubsu.ru/enrol/index.php?id=378

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по лисциплине (модулю).

00, -	ающихся по дисциплин	те (подучно).
Nº	Вид СРС	Перечень учебно-методического обеспечения дисциплины по
112	Бид СГС	выполнению самостоятельной работы
1	2	3
1	Проработка учебного	Методические указания по организации самостоятельной
	(теоретического)	работы студентов по дисциплине «Теория колебаний»,
	материала	утвержденные кафедрой радиофизики и нанотехнологий,
		протокол № 7 от «20» марта 2017 г.
2	Выполнение	Методические указания по организации самостоятельной
	индивидуальных	работы студентов по дисциплине ««Теория колебаний»,
	заданий (подготовка	утвержденные кафедрой радиофизики и нанотехнологий,
	сообщений,	протокол № 7 от «20» марта 2017 г.
	презентаций)	
3	Подготовка к текущему	Методические указания по организации самостоятельной
	контролю	работы студентов по дисциплине «Теория колебаний»,
		утвержденные кафедрой радиофизики и нанотехнологий,
		протокол № 7 от «20» марта 2017 г.
4	Подготовка к	Методические указания по решению задач по дисциплине
	практическим занятиям	
		нанотехнологий, протокол № 7 от «20» марта 2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме;
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа.

3. Образовательные технологии

Для проведения всех лекционных занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций.

Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

текущий контроль: проверка домашних заданий по семинарским занятиям. Ответы на контрольные вопросы, приведенные в описаниях работ и на дополнительные вопросы, касающиеся соответствующих разделов основной дисциплины.

итоговый контроль: зачет.

4.1 Фонд оценочных средств для проведения текущей аттестации.

Контрольные вопросы

- 1. Линейный осциллятор. Линейные динамические системы. Консервативные системы.
- 2. Фазовый портрет линейного осциллятора. Понятие фазовой траектории. Фазовые портреты линейных систем с одной степенью свободы.
- 3. Фазовые портреты линейных осцилляторов с учётом потерь. Периодический и апериодический режимы.
- 4. Резонанс в линейных колебательных системах с одной степенью свободы. Резонанс в системе с конечной добротностью.
- 5. Анализ поведения системы при воздействии произвольной вынуждающей силы.
- 6. Колебательные системы с несколькими степенями свободы. Колебания связанных осцилляторов. Нормальные и парциальные частоты.
 - 7. Эффект динамического демпфирования. Теорема взаимности.
- 8. Колебания в ансамбле невзаимодействующих линейных осцилляторов. Классическая теория дисперсии света. Формула Зейльмейера.
 - 9. Предел Лоренца. Учёт нетождественности осцилляторов.
- 10. Устойчивость линеаризованных систем с дискретным спектром. Устойчивость по Ляпунову.
- 11. Устойчивость сосредоточенных систем с постоянными параметрами. Критерий Рауса-Гурвица. Устойчивость неавтономных систем.
- 12. Параметрические колебательные системы. Резонансные и нерезонансные параметрические системы. Уравнение Матье.
- 13. Устойчивость параметрических систем. Теорема Флоке. Параметрический резонанс.
- 14. Колебания в нелинейных системах. Примеры нелинейных осцилляторов. Фазовый портрет нелинейного осциллятора. Неизохорность нелинейных осцилляторов.
- 15. Нелинейный резонанс. Анализ поведения осциллятора с малой нелинейностью.
 - 16. Нелинейный параметрический резонанс.
- 17. Периодические автоколебания в диссипативных (неконсервативных) системах. Предельные циклы. Мягкий и жёсткий режимы возбуждения.

18. Аттракторы. Влияние параметров системы на форму автоколебаний. Метод изоклин.

Практические задания

- 1. Напишите уравнение движения математического маятника без учета трения при малых и немалых углах отклонения с пояснением всех величин.
- 2. Напишите уравнение движения груза на пружине при наличии трения и его решение с пояснением всех величин.
- 3. Напишите уравнение, описывающее колебания в колебательном контуре с учетом активного сопротивления, и его решение с пояснением всех величин.
- 4. Постройте семейство фазовых траекторий, описывающих движение линейной консервативной системы
- 5. Постройте семейство фазовых траекторий, описывающих движение линейной неконсервативной системы
- 6. Постройте семейство фазовых траекторий, описывающих вращательное движение математического маятника
- 7. По какой зависимости можно судить об устойчивости автоколебаний в системе? Постройте эту зависимость.
- 8. Постройте бифуркационные диаграммы для мягкого и жесткого режимов автоколебаний. В чем их различия?
- 9. Запишите условия для параметрического резонанса. Как влияет амплитуда колебаний параметра и трение на эти условия? Постройте диаграмму условий параметрического резонанса
- 10. Постройте резонансную кривую для случая вынужденных колебаний в нелинейной консервативной системе с одной степенью свободы с мягкой восстанавливающей силой.
- 11. Как зависит частота колебаний от их амплитуды в случае жесткой и мягкой возвращающей силы. Построить график.
- 12. Постройте семейство фазовых траекторий, описывающих движение линейной неконсервативной системы методом изоклин.

Модуль 1.

- } Линейный осциллятор.
- } Понятие фазовой траектории. Фазовые портреты линейных систем с одной степенью свободы. Фазовые портреты линейных осцилляторов с учётом потерь.
 - **Периодический и апериодический режимы.**

Модуль 2.

- З Колебания связанных осцилляторов. Нормальные и парциальные частоты.
 Эффект динамического демпфирования. Теорема взаимности.
- Колебания в ансамбле невзаимодействующих линейных осцилляторов. Формула Зейльмейера. Предел Лоренца. Учёт нетождественности осцилляторов.
- Устойчивость линеаризованных систем по Ляпунову. Устойчивость сосредоточенных систем с постоянными параметрами. Критерий Рауса-Гурвица. Устойчивость неавтономных систем.
- Резонансные и нерезонансные параметрические системы. Уравнение Матье.
 Устойчивость параметрических систем. Теорема Флоке.

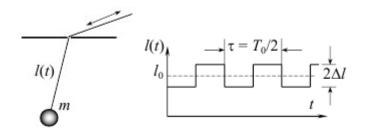
Модуль 3.

- } Колебания в нелинейных системах. Примеры нелинейных осцилляторов. Фазовый портрет нелинейного осциллятора. Неизохорность нелинейных осцилляторов.
- } Нелинейный резонанс. Анализ поведения осциллятора с малой нелинейностью. Нелинейный параметрический резонанс.
- } Периодические автоколебания в диссипативных системах. Мягкий и жёсткий режимы возбуждения. Аттракторы. Влияние параметров системы на форму автоколебаний.

Примерные задания для контрольной работы.

- Емкость в колебательном контуре меняется через равные интервалы времени τ от C_1 до C_2 и обратно, причем ${}^{\circ}C = C_2 C_1 << C_0 = (C_1 + C_2)/2$. На плоскости параметров (${}^{\circ}C/C_0$, $\omega_0 \tau$), $\omega_{20} = 1/LC_0$, найдите зоны параметрической неустойчивости системы. Ответ: $\delta \approx \pm ({}^{\circ}C/4C_0)$.

Ответ: по второй теореме Ляпунова нулевое решение системы асимптотически устойчиво.


В конденсаторе колебательного контура находится один электрон. Получите уравнения связанных колебаний заряда в контуре и электрона в конденсаторе. Оцените, на

сколько изменится собственная частота контура из-за присутствия электрона. Конденсатор считать плоским.

Otbet:
$$\P^2(\P^2) = \frac{e^2 \P^2}{mCd^2}$$

1. Исследуйте устойчивость нулевого решения, построив функцию Ляпунова $\dot{x} = -x + y + xy, \qquad \dot{y} = x - y - x^2 - 2y^5$

- 2. Математический маятник имеет длину l и находится в покое. В момент времени $^t=0$ грузику маятника с помощью толчка сообщают скорость t 0. Найти закон изменения во времени угла отклонения маятника от вертикали, считая, что при колебаниях маятника на его грузик действует сила вязкого трения t 0, где t 1. скорость грузика. Колебания маятника считать малыми.
- 3. Длина нити l математического маятника (см. рисунок) периодически изменяется на величину $^{2\Delta l}$ по закону меандра (см. рисунок) с периодом $^{\tau} = T_0/2$, где T_0 период колебаний маятника при $^{l} = l_0$, где l_0 среднее значение длины нити. Считая, что при движении маятника проявляются силы вязкого трения, а добротность маятника ран 2 , найти условие параметрического возбуждения колебаний.

4. В последовательный колебательный контур, состоящий из индуктивности L , емкости C и резистора $^{R_{0}}$, включен элемент с падающим участком на вольтамперной характеристике. Рабочая точка этого элемента выбрана таким образом, что падение напряжения на элементе с током, текущим через него, соотношением: $^{u}=-S_{1}i+S_{3}i^{3}$. Пользуясь методом медленно меняющихся амплитуд найти стационарные режимы и исследовать их устойчивость.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Вопросы к зачету

- 1. Свободные колебания в консервативных системах с одной степенью свободы.
 - 2. Примеры колебательных систем с одной степенью свободы и их анализ.

- 3. Колебания в системах с одной степенью свободы под действием вынуждающей силы. Вынужденные колебания в линейной системе при гармоническом силовом воздействии.
- 4. Свободные колебания в диссипативных колебательных системах с одной степенью свободы. Качественное рассмотрение колебаний в диссипативных системах при различных законах трения. Случаи: сухого трения, линейного трения, квадратичного трения.
 - 5. Вынужденные колебания в линейных диссипативных системах. Резонанс.
 - 6. Сложение гармонических колебаний. Векторные диаграммы. Фигуры Лиссажу.
- 7. Колебания в цепях переменного тока. Индуктивное, емкостное и активное сопротивление.
- 8. Колебания в линейных системах с двумя степенями свободы. Связь: индуктивная, емкостная, смешанная.
- 9. Собственные колебания системы с двумя степенями свободы. Нормальные колебания. Парциальные и собственные частоты.
- 10. Вынужденные колебания в системах с двумя степенями свободы. Успокоение колебаний.
- 11. Колебания в линейных системах с *п* степенями свободы. Матричная форма записи уравнений колебаний в линейных системах. Нормальные колебания
 - 12. Колебания в однородных цепочках. Дисперсионное уравнение и его анализ.
 - 13. Колебания в неоднородных цепочках. Дисперсионное уравнение и его анализ.
- 14. Вынужденные колебания в системе свободных зарядов. Плазменные колебания.
- 15. Вынужденные колебания в системе невзаимодействующих осцилляторов. Элементарная теория дисперсии электромагнитных волн в конденсированных средах. Нормальная и аномальная дисперсия.
- 16. Устойчивость колебательных систем с дискретным спектром. Критерий Рауса-Гурвица.
 - 17. Устойчивость неавтономных систем.
 - 18. Параметрические колебания и параметрическая неустойчивость.
 - 19. Теорема Флоке-Блоха. Параметрический резонанс.
- 20. Периодические неоднородные среды, синусоидальный профиль неоднородности.
 - 21. Периодические неоднородные среды со ступенчатой неоднородностью
 - 22. Параметрический резонанс при воздействии на систему с частотой, много

большей частоты собственных колебаний.

- 23. Качественное рассмотрение нелинейных колебательных систем, их фазовые портреты.
 - 24. Точное решение задачи о математическом маятнике.
- 25. Генератор Томсона. Общие методы исследования нелинейных динамических систем.
- 5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Стрелков С.П. Введение в теорию колебаний: учебник. СПб.: Лань, 2005. ISBN 5811406142.
- 2. Стрелков С.П., Введение в теорию колебаний: -Лань, 2005 ISBN:5-8114-0614-2 https://e.lanbook.com/book/603#book_name.
- 3. Горелик Г.С. Колебания и волны: учебное пособие М.: <u>Физматлит</u>, 2007 ISBN: 978-5-9221-0776-1 http://biblioclub.ru/index.php?page=book_red&id=68389&sr=1
- 4. Карлов Н.В., Кириченко Н.А. Колебания, волны, структуры. М.: ФИЗМАТЛИТ, 2008 http://biblioclub.ru/index.php?page=book_red&id=68395&sr=1
- 5. Каганов В.И. Колебания и волны в природе и технике: учебное пособие для вузов. 2015

5.2 Дополнительная литература:

- 1. Яблонский А.А., Курс теории колебаний: учебное пособие, Изд. 4-е, СПб., Лань, 2003, 248 с., ISBN 5811405197.
- 2. Дубнищев Ю.Н., Колебания и волны: учебное пособие для студентов, Новосибирский гос. техн. ун-т., 2-е изд., испр. и доп., Новосибирск: Сибирское университетское издво, 2004., 323 с., ISBN 5940871062.
- 3. Трубецков Д. И., Введение в синергетику. Колебания и волны, Изд. 2-е, испр. и доп., М.: [Едиториал УРСС], 2003, 220 с., ISBN 5354005310.
- 4. Кузнецов А.П., Линейные колебания и волны: сборник задач: учебное пособие для студентов вузов; Федеральная целевая программа "Гос. поддержка интеграции высш. образования фундамент. науки на 1997-2000 годы". М.: Физматлит, 2001. 128 с. ISBN 5940520235.
- 5. Карлов Н.В., Колебания, волны, структуры. М.: ФИЗМАТЛИТ, 2003. 496 с. ISBN 5922102052.
- 6. Алдошин Г.Т., Теория линейных и нелинейных колебаний, Лань ISBN: 978-5-8114-1460-4, Год: 2013, Издание: 2-е, 320 страниц, https://e.lanbook.com/book/4640#authors
- 7. Комаров И.В., Основы теории радиолокационных систем с непрерывным излучением частотно-модулированных колебаний, Издательство "Горячая линия-Телеком", 2010, 392 с., ISBN:978-5-9912-0103-2, https://e.lanbook.com/book/5165#authors

- 8. Скубов Д.Ю., Основы теории нелинейных колебаний, Издательство: "Лань" ISBN:978-5-8114-1470-3 2013 https://e.lanbook.com/book/30203#authors
- 9. Глэдвелл Г. М. Л., Обратные задачи теории колебаний /; пер. с англ. А. С. Матвеева и Е. М. Крейнес; под науч. ред. А. Э. Гутермана. М.: НИЦ "Регулярная и хаотическая динамика", 2008; Ижевск: Институт компьютерных исследований, 2008. 607 с.: ил. Библиогр.: с. 577-602. ISBN 9785939726603

5.3. Периодические издания:

- 1. В мире науки.
- 2. Известия ВУЗов. Серия: Радиофизика.
- 3. Известия ВУЗов. Серия: Радиоэлектроника.
- 4. Известия ВУЗов. Серия: Физика.
- 5. Успехи физических наук.
- 6. Физика. Реферативный журнал ВИНИТИ.
- 7. Электромагнитные волны и электронные системы.
- 8. Электроника.
- 9. Электроника. Реферативный журнал ВИНИТИ.
- 10. Электроника: наука, технология, бизнес.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. http://www.edu.ru/ (Единое окно доступа к образовательным ресурсам).
- 2. http://www.edu.ru/db/portal/sites/res_page.htm (Федеральный образовательный портал)
 - 3. http://www.scientific.narod.ru/literature.htm (Каталог научных ресурсов)
 - 4. http://www.sci-lib.com/ (Большая научная библиотека)
- 5. http://www.ph4s.ru/books_tehnika.html (Раздел «Технические науки (радиотехника, радиоэлектроника, электроника, схемотехника, полупроводниковая электроника и др.» образовательного проекта А.Н. Варгина «Физика, химия, математика студентам и школникам»)
 - 6. http://www.rsl.ru/ (Российская государственная библиотека)
 - 7. http://www.nlr.ru/(Российская национальная библиотека)
 - 8. http://www.benran.ru/ (Библиотека РАН по естественным наукам)
- 9. http://www.gpntb.ru/ (Государственная публичная научно-техническая библиотека)
- 10. http://www.skrutka.ru/sk/tekst.php?id=19 (Онлайн расчет обмоток трансформатора)
- 11. http://www.club155.ru/ (Клуб 155 разнообразные материалы по программированию и схемотехнике)
- 12. http://www.radio-stv.ru/radio tehnologii-radio-programm/raschet-mostovogo-vyiprjamitelja (Программа для расчета мостового выпрямителя)
 - 13. http://www.soel.ru (журнал Современная электроника)
- 14. http://www.adcomlogod.narod.ru (сайт интерактивной поддержки проведения лабораторных и самостоятельных работ по дисциплине).

7. Методические указания для обучающихся по освоению дисциплины (модуля).

На самостоятельную работу студентов отводится 40% времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов организовано в следующих формах:

Самостоятельная работа призвана закрепить теоретические знания и практические навыки, полученные студентами на лекциях, практических и лабораторных занятиях. Кроме того, часть времени, отпущенного на самостоятельную работу, должна быть использована на освоение теоретического материала по дисциплине и на подготовку к лабораторным занятиям.

Вся работа по организации выбора студентами тем курсовых проектов и закреплению научных руководителей проводится кафедрой оптоэлектроники, совместно с заведующим кафедры.

Примерная тематика курсового проектирования разрабатывается и ежегодно обновляется кафедрой. Закрепление за студентами тем курсовых проектов производится по их личным заявлениям на имя декана или зав кафедрой, по согласованию с научным руководителем возможно корректировка выбранной темы. В дальнейшем студент и научный руководитель составляет задание с подробным планом по выполнению курсового проекта. Подробная информация по требованиям к курсовому проектированию располагается на сайте кафедры оптоэлектроники в документе Методические указания по выполнению курсовых проектов: http://ftf.kubsu.ru/htmlfiles/dip/MetodUk2018.rtf и

https://moodle.kubsu.ru/enrol/index.php?id=378

Вопросы для самостоятельной работы

- Раздел 1. Свободные колебания в системах с одной степенью свободы. Вынужденные колебания в системах с одной степенью свободы под действием вынуждающей силы. Вынужденные колебания в линейной системе при гармоническом силовом воздействии. Решение задач.
- Раздел 2. Колебания в линейных диссипативных системах с одной степенью свободы. Выдача задания №1 для самостоятельной работы, опрос.
 - Раздел 3. Колебания в цепях переменного тока. Решение задач.
- Раздел 4. Колебания в линейных системах с несколькими степенями свободы. Проверка выданного задания № 1, выдача задания № 2
- Раздел 5. Гармонические колебания в системах с бесконечным числом степеней свободы. Волновые процессы. Решение задач.
 - Раздел 6. Устойчивость колебательных систем. Решение задач
- Раздел 7. Параметрические колебания. Проверка выданных заданий №№ 1, 2, опрос.
- Раздел 8. Распространение электромагнитных волн в периодически-неоднородных средах. Решение задач.
- Раздел 9. Качественное и количественное рассмотрение нелинейных колебательных систем. Проверка выданного задания № 2, опрос.
- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

- 1. Операционная система MS Windows и Linux.
- 2. GNU демопакет программы САПР Micro-Cap.
- 3. Интегрированное офисное приложение.
- 4. ПО для организации управляемого и безопасного доступа в Интернет.
- 5. GNU и/или GNL пакеты: Свободно распространяющиеся программы моделирования СВЧ устройств MMANA, RFSimm99, smithchart.
 - 6. Программа управления Graphit P4M версия 2 (фирма «МИКРАН»).
- 7. эмулятор векторного анализатора цепей СОМ-драйвер версии 1.2.16. (фирма «МИКРАН»).

9. Материально-техническая база, необходимая для осуществления

образовательного процесса по дисциплине (модулю).

oopu.	obatembiloi o ilpodecca il	о дисциплине (модулю).
No	Вид работ Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
1.	Лекционные занятия	Аудитория 209С, оснащенная интерактивным проектором
		и магнитно-маркерной доской.
2.	Семинарские занятия	Аудитории 230С, 317С оснащенные магнитно-маркерной
		доской
3.	Лабораторные	Лаборатория 205Са, укомплектованная оборудованием
	занятия	необходимым для проведения лабораторных работ
4.	Курсовое	Аудитория 311С, оснащенная компьютерной техникой с
	проектирование	подключением к сети Интернет
5.	Групповые	Аудитория 311С, оснащенная компьютерной техникой с
	(индивидуальные)	подключением к сети Интернет
	консультации	
6.	Текущий контроль,	Аудитория 311С, оснащенная компьютерной техникой с
	промежуточная	подключением к сети Интернет
	аттестация	
7.	Самостоятельная	Аудитория 311С, оснащенная компьютерной техникой с
	работа	возможностью подключения к сети «Интернет»,
		программой экранного увеличения и обеспеченный
		доступом в электронную информационно-образовательную
		среду университета.