Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.Б.16 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Направление подготовки /специальность

01.05.01 ФУНДАМЕНТАЛЬНЫЕ МАТЕМАТИКА И МЕХАНИКА

Направленность (профиль) /специализация

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Форма обучения ОЧНАЯ

Квалификация (степень) выпускника

МАТЕМАТИК. МЕХАНИК. ПРЕПОДАВАТЕЛЬ

Краснодар 2018

Рабочая программа дисциплины УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 01.05.01 ФУНДАМЕНТАЛЬНЫЕ МАТЕМАТИКА И МЕХАНИКА

Программу составил:

А.Н. Марковский доцент МКМ, к.ф.-м.н,

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов протокол № 9 «10» апреля 2018 г.

Заведующий кафедрой (разработчика) Дроботенко М. И.

Рабочая программа обсуждена на заседании кафедры математических и компьютерных методов

протокол № 10 «10» апреля 2018 г.

Заведующий кафедрой (выпускающей) Барсукова В.Ю.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 2 «17» апреля 2018 г

протокол № 2 «17» апреля 2018 г.

Председатель УМК факультета Титов Г.Н

trumob

Рецензенты:

Савенко И.В., коммерческий директор ООО "РосГлавВино"

Никитин Ю.Г., доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Целями освоения дисциплины «Уравнения в частных производных» являются: подготовка в области уравнений в частных производных, находящих применение в задачах математической физике, механике, биологии, экологии. Овладение аналитическими и вычислительными методами решения основных начально краевых задач.

1.2 Задачи дисциплины.

Овладение основными понятиями, идеями и методами теории уравнений в частных производных; методами Фурье и базисных потенциалов для аналитического и численного решения основных начально краевых задач с использованием системы компьютерной алгебры (MathCAD), визуализация полученных результатов.

При освоении дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для анализа дифференциальных уравнений в частных производных и эффективно их решать. Получаемые знания лежат в основе математического образования и опираются на знания дисциплин: математический анализ, алгебра, дифференциальные уравнения, функциональный анализ, теория функций комплексного переменного, вычислительные методы.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Уравнения в частных производных» относится к базовой части Блока 1 "Дисциплины (модули)" учебного плана.

Знания и умения, приобретенные студентами в результате изучения дисциплины, будут использоваться при изучении общих и специальных курсов, при выполнении курсовых и дипломных работ, связанных с аналитическим и численными методами использующие компьютерные пакеты прикладных программ для решения начально краевых задач математической физики.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций

№	Индекс компет	Содержание компетенции (или её	В результате изучения учебной дисциплины обучающиеся должны		
П.П.	енции	части)	знать	уметь	владеть
1.	ОПК-2	способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно- коммуникационных технологий и с учётом основных требований информационной безопасности	информационно- коммуникационные технологии и основные требования информационной безопасности	решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры	способностью решать стандартные задачи профессиональной деятельности
2	ПК-2	способностью к самостоятельному анализу	информационно- коммуникационные	решать стандартные задачи	способностью решать
		физических аспектов в	технологии и	профессиональной	стандартные за

No	Индекс	Содержание	В результате изучения учебной дисциплины		
	компет	компетенции (или её	обучающиеся должн		НЫ
П.П.	енции	части)	знать	уметь	владеть
		классических постановках	основные	деятельности на	профессиональной
		математических задач и	требования	основе	деятельности
		задач механики	информационной	информационной и	
			безопасности	библиографической	
				культуры	

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 8 зачетные единицы (288 часа, из них – 154,5 часа аудиторной нагрузки: лекционных 72 часа, практических 72 часа; 88,8 часов самостоятельной работы; 44,7 часов КСР), их распределение по видам работ представлено в таблице

Вид учебной работы		Всего часов		естры асы)
			6-й	7-й
Контактная работа, в том	числе:	154,5	76,2	78,3
Аудиторные занятия (всег	0)	144	72	72
Занятия лекционного типа		72	36	36
Занятия семинарского типа занятия)	а (семинары, практические			
Лабораторные занятия		72	36	36
Иная контактная работа:				
Контроль самостоятельной работы (КСР)			4	6
Промежуточная аттестация (ИКР)			0,2	0,3
Самостоятельная работа, в том числе:			31,8	101,7
Проработка учебного (теоре	етического) материала	88,8	31,8	57
Подготовка к экзамену		44,7		44,7
Общая трудоемкость	час.	288	108	180
	в том числе контактная работа	154,5	76,2	78,3
	зач. ед	8	3	5

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 6 и 7 семестре

	Наименование разделов		Количество часов				
№			Аудиторная работа			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
	6-й семестр						
1	Функциональные пространства	36	14		14	8	
2	Спектральные задачи	24	8		8	8	
3	Уравнение диффузии	20	6		6	8	
4	Гармонические функции	23,8	8		8	7,8	
	Итого по дисциплине:		36		36	31,8	
	7-й семестр						
1	Теория потенциала	42	14		14	14	
2	Обобщенное решение	30	8		8	14	
3	Классификация уравнений второго порядка	26	6	_	6	14	
4	Уравнений гиперболического типа	31	8		8	15	
	Итого по дисциплине:		36		36	57	

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

			Форма
$N_{\underline{0}}$	Наименование раздела	Содержание раздела	текущего
			контроля
1	2	3	4
		6-й семестр	
	Функциональные	Замыкание множества. Линейные	
	пространства	многообразия плотные в нормированном	
		пространстве. Банахово пространство.	
1		Пополнение нормированного пространства.	
1		Пространство Лебега. Изоморфизм, изометрия	
		и вложение нормированных пространств.	
		Пространства Соболева и простейшая теорема	
		вложения. Неравенство Фридрихса	
	Спектральные задачи	Гильбертовы пространства. Ряды Фурье.	
		Полные ортогональные системы.	
2		Ортогональные разложения в гильбертовом	
2		пространстве. Формулы Остроградского и	
		Грина. Спектральные задачи уравнения	
		Лапласа	
	Уравнение диффузии	Уравнение диффузии, принцип максимума.	
		Первая краевая задача уравнения	
		теплопроводности, единственность. Метод	
3		Фурье, существование решения. Стабилизация	
		решения при неограниченном времени. Вторая	
		краевая задача уравнения теплопроводности,	
		существование. Вторая краевая задача,	
		стабилизация. Обратная задача	

		теплопроводности, некорректность. Обратная	
		задача теплопроводности, регуляризация	
	Гармонические	Фундаментальное решение уравнения Лапласа,	
	функции	свойства. Интегральное представление	
		функции. Гармонические функции, свойства.	
4		Теорема о среднем. Подпространство	
4		гармонических функций, полная система	
		потенциалов. Подпространство гармонических	
		функций, лемма Новикова. Задача Робена,	
		алгоритм, полнота системы	
		7-й семестр	
	Элементы теории	Потенциала двойного слоя, граничные	
	потенциала	свойства, интегральный оператор. Методы	
		теории потенциала решения 1-ой и 2-ой	
1		краевых задач. Полнота системы альфа и бетта.	
1		Метод базисных потенциалов. Внутренняя	
		задачи Дирихле и Внутренняя задачи Неймана.	
		Алгоритмы. Бигармоническая задача,	
		единственность, алгоритм МБП	
	Обобщенное решение	Другое определение обобщенной производной.	
		Теорема Рисса об общем виде линейных	
2		функционалов. Вложение гильбертовых	
		пространств. Следствие из теоремы Рисса.	
		Существование и единственность решения	
	xc 1	задачи Дирихле уравнения Пуассона	
	Классификация	Уравнения характеристик. Классификация	
	уравнений второго	уравнений второго порядка. Приведение к	
3	порядка	каноническому виду. Соотношения на	
		характеристиках. Сетка характеристик, метод	
	T7	характиристик	
	Уравнений	Вывод уравнений звуковых колебаний.	
	гиперболического типа	Основные задачи. Уравнения звуковых	
1		колебаний, основные задачи. Краевые задачи	
4		на примере уравнения мембраны. Метод Фурье	
		для первой краевой задачи. Вторая краевая	
		задача звуковых колебаний мембраны. Закон	
<u> </u>		сохранения и теорема единственности	

2.3.2 Занятия семинарского типа. Занятия семинарского типа не предусмотрены

2.3.3 Лабораторные занятия.

		Форма			
№	Наименование лабораторных работ	текущего			
		контроля			
1	3	4			
	6-й семестр				
1	Вычисление криволинейного интеграла первого и второго рода	ЛР			
2	Вычисление криволинейных интегралов специального випа	ЛР			
3	Вычисление двойного интеграла по заданной области	ЛР			
4	Интегральное представление заданной функции	ЛР			

5	Ортогональные вистемы. Разложение в ряд Фурье заданной функции	ЛР	
6	Представление решение уравнения теплопроводности	ЛР	
7	Алгоритм решения обратной задачи теплопроводности	ЛР	
8	Регуляризация решения обратной задачи теплопроводности	ЛР	
9	Задача Робена	ЛР	
7-й семестр			
10	Внутренняя краевая задача Дирихле для уравнения Лапласа	ЛР	
11	Внешняя краевая задача Дирихле для уравнения Лапласа	ЛР	
12	Внутренняя краевая задача Неймана для уравнения Лапласа	ЛР	
13	Внешняя краевая задача Неймана для уравнения Лапласа	ЛР	
14	Внутренняя краевая задача Дирихле для уравнения Пуассона	ЛР	
15	Бигармоническая задача	ЛР	
16	Задача собственного вихря заданной области	ЛР	
17	Приведение уравнения к каноническому виду		

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Проработка учебного (теоретического) материала	Литература из основного и дополнительного списков
2	Подготовка к текущему контролю	Образцы программ по темам лабораторных занятий в электронном виде

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа,

Для лиц с нарушениями слуха:

- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Лекции, лабораторные занятия, контрольные работы, зачет и экзамен.

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Сем	Вид занятия	Используемые интерактивные образовательные	Кол-во
естр		технологии	часов
	Лабораторные	Дискуссия на тему: «Линейные многообразия	4
6	занятия	плотные в нормированном пространстве»	
		Коллоквиум на тему: «Пополнение	6
		нормированного пространства»	
		Коллоквиум на тему: «Пространства Соболева и	4
		простейшая теорема вложения»	
		Коллоквиум на тему: «Ортогональные разложения	4
		в гильбертовом пространстве»	
	Лекционные	Проблемная лекция: «Первая краевая задача	4
6	занятия	уравнения теплопроводности, единственность»	
		Проблемная лекция: «Вторая краевая задача,	6
		стабилизация»	
		Проблемная лекция: «Гармонические функции»	4
		Проблемная лекция: «Фундаментальное решение	4
		уравнения Лапласа, свойства»	
	Лабораторные	Дискуссия на тему: «Подпространство	4
7	занятия	гармонических функций, полная система	
		потенциалов»	
		Коллоквиум на тему: «Задача Робена, алгоритм,	6
		полнота системы»	
		Коллоквиум на тему: «Корректность	4
		математических моделей»	
		Коллоквиум на тему: «Вычислительный	4
		эксперимент и его роль»	
Итог	o:		54

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

4.1.1 Примерный перечень тем для рефератов и устных опросов

- 1. Дайте определение квазилинейного уравнения первого порядка, его решения?
- 2. Какое геометрическое толкование можно дать квазилинейному уравнению первого порядка, его решению, характеристикам?
- 3. Сформулируйте задачу Коши для квазилинейного уравнения первого порядка и дайте ей геометрическую интерпретацию.
- 4. Чем определяется тип уравнения второго порядка?
- 5. С помощью, каких преобразований можно уравнение второго порядка привести к каноническому виду?
- 6. Найти области гиперболичности, эллиптичности и параболичности уравнения и привести его к каноническому виду в области гиперболичности.
- 7. Сформулируете теорему Коши-Ковалевской.
- 8. Дайте определение корректно поставленной задачи математической физики.
- 9. Каковы характерные особенности задач, приводящихся к уравнениям гиперболического типа?

- 10. В чем заключается физическая интерпретация формулы Даламбера?
- 11. Что такое прямая и обратная волна?
- 12. Что такое область зависимости решения?
- 13. Чем объясняется тот факт, что принцип Гюйгенса не имеет места в плоском случае?
- 14. Пользуясь методом спуска, получите из формулы Пуассона решения задачи о колебании бесконечной струны.
- 15. Что такое запаздывающий потенциал?
- 16. В каком случае может существовать стационарное решение неоднородного уравнения с неоднородными граничными условиями?
- 17. Какая задача называется характеристической?

4.1.2 Образцы индивидуальных заданий

Номер варианта k задания определяется номером студента по списку группы. Каждому варианту соответствует криволинейный треугольник Q_k с границей $S = S_k$ (см. [5], с. 5).

Задание № 1 (k). Вычислить аналитически и на компьютере (в системе символьной алгебры) двойной и криволинейные интегралы первого и второго рода

$$J_0 = \iint_O dx dy$$
, $J_1 = \int_S 2 ds$, $J_2 = \int_S y dx$,

по указанным контурам $S = S_k$ с положительным направлением обхода, записав для каждой части контура S_k параметрическое представление и соответствующие определенные интегралы, учитывая направление обхода.

Задание № 2 (k). Вычислить значения криволинейного интеграла

$$J_3(x_m, y_m) = \frac{1}{4\pi} \int_c \frac{\partial}{\partial n} \ln((x - x^m)^2 + (y - y^m)^2) ds$$

где $S = S_k$ — указанный для каждого варианта контур, точки (x^m, y^m) , m = 1, 2, 3 — соответственно внешняя, граничная и внутренняя точки (выбрать самостоятельно), $n = \vec{n}(x, y)$ — внешняя единичная нормаль к S.

Задание № **3.** 1) Доказать, что функция $\ln((x-x^m)^2+(y-y^m)^2)$ является гармонической при $(x,y)\neq(x^m,y^m)$, а функция

$$\beta(r,t) = \int_{S} \ln((x-r)^2 + (y-t)^2) ds$$

гармоническая в Q и в области $Q^+ = R^2 \setminus \overline{Q}$.

2) Доказать асимптотическое равенство

$$\beta(r,t) = \ln((r)^2 + (t)^2) \int_{s} ds + o(1), \qquad r^2 + t^2 \to \infty.$$

Задание № 4 (k). Построить аналитическое решение методом Фурье при $\varphi_0 = \varphi_1 = 0$ и f(x) = 0 и представить формулы коэффициентов Фурье задачи

$$\begin{aligned} u_t &= u_{xx}(x,t) + f(x), \quad x \in (0,1), \quad t \in (0,T), \\ u\Big|_{x=0} &= \varphi_0(t), \quad u\Big|_{x=1} = \varphi_1(t), \\ u\Big|_{t=0} &= H(x). \end{aligned}$$

Функция y = H(x), определяется для варианта k криволинейными сторонами треугольника Q_k .

Задание № 5 (k). Построить аналитическое решение методом Фурье при $\varphi_0 = \varphi_1 = 0$ и f(x) = 0 и представить формулы коэффициентов Фурье задачи

$$\begin{aligned} u_t &= u_{xx}(x,t) + f(x), \quad x \in (0,1), \quad t \in (0,T), \\ \frac{\partial u}{\partial n}\bigg|_{x=0} &= \varphi_0(x), \quad \frac{\partial u}{\partial n}\bigg|_{x=1} = \varphi_1(x), \\ u\bigg|_{t=0} &= H(x). \end{aligned}$$

Задание № 6 (*k*). Для решений задач 4 и 5, вычислить *N* первых коэффициентов Фурье h_n начальной функции y = H(x), построить графики функций $u^N(0.3,t),\ u^N(0.5,t),\ 0 \le t \le T\ (N=5,\ 10,\ 20,\ \text{сравнить их на одном графике}), получить графики функций <math>y = H(x)$, $y = u^N(x,0)$ и оценку $\left\|u^N(x,0) - H(x)\right\|_{(0,1)}$.

Задание № 7 (*k*). Решить задачи 4 и 5 для неоднородного уравнения теплопроводности при $f(x) = 0.5 q \sin q \pi x$, где q=2 для нечетных номеров и q=4 для четных номеров *k* ; построить графики функций $u^N(0.3,t),\ u^N(0.5,t),\ t>0$; получить формулы для $c_m(t)$.

Задание № 8 (*k*). Обратная теплопроводность. Найти начальное распределение $v(x,t)\big|_{t=0} = G(x)$. температуры в стержне, если в момент времени T>0 задано финальное распределение g(x) – указанная выше функция, v(x,t) – решение задачи:

$$v_t(x,t) = \Delta v(x,t)\big|_{x\in Q}, \quad v(x,t)\big|_{\partial Q} = 0, \quad v(x,t)\big|_{t=T} = g(x),$$

Рассмотреть метод простейшей регуляризации, δ – малый положительный параметр:

$$v_t(x,t) = \Delta v(x,t)\big|_{x \in Q}, \quad v(x,t)\big|_{\partial Q} = 0, \quad \delta v(x,0)\big| + v(x,T) = g(x)$$

Для данного T (T=0.1, 0.2) и выбранного δ вычислить $c_K(t)$, получить решение обратной задачи в виде конечной суммы Фурье $v^N(x,t)$, определить приближенно искомую начальную функцию v(x,0), для нее получить решение прямой задачи u(x,t) с начальным условием $u\Big|_{t=0} = v(x,0)$, вычислить финальную погрешность $\|u(x,T) - H(x)\|_{(0,1)}$ при разных δ и N.

Задание № **9** (k). Потенциал простого слоя

$$R(x) = \int_{S} \varphi^{*}(y)E(x - y)dS_{y},$$

принимающий постоянные значения на границе

$$R(x)|_S = R_S \equiv \text{const},$$

называется потенциалом Робена, а φ^* и R_S — плотностью и константой Робена соответственно. Для заданной кривой S найти плотность φ^* и константу R_S Робена. Используя метод базисных потенциалов.

Задание № 10 (k). Для краевой задачи Неймана для уравнения Пуассона

$$\Delta v(x, y)|_{D} = f(x, y), , (x, y) \in D,$$

$$\frac{\partial v}{\partial n}|_{\partial D} = 0.$$

в области $D=(0,\pi)\times(0,\pi)$ вычислить коэффициенты v_{nk} разложения решения v(x,y) по ортонормированной системе $\varphi_{nk}(x,y)$ и получить аналитическое решение (в виде ряда), где $f(x,y)=H(x)\cos(2y)$ для нечетных вариантов k и $f(x,y)=\sin x H(y)$ для четных вариантов k; функция H(x) для варианта k определяется сторонами S2, S3 криволинейного треугольника Q_k . Представить график поверхности $v^N(x,y)$; графики $\Delta v^N(x,y)$ и вычислить погрешность $\varepsilon(N)=(\iint_D (\Delta v^N(x,y)-f(x,y))^2 dx\,dy)^{\frac{N}{2}}$; для n,k=0,1,...,7 представить таблицу коэффициентов v_{nk} . Использовать метод Фурье (метод разложения по собственным функциям оператора Лапласа образующими полную систему в подпространстве $L_2^C(D)$, ортогональном единице, $L_2(D)=\{1\}\oplus L_2^C(D)$:

$$\varphi_{n0}(x, y) = \sqrt{\frac{2}{\pi}} \cos n x, \quad \varphi_{0k}(x, y) = \sqrt{\frac{2}{\pi}} \cos k y,$$

$$\varphi_{nk}(x, y) = \frac{2}{\pi} \cos n x \cos k y, \quad n, k = 1, 2, ...$$

Задание № 11 (k). Решить численно внутреннюю задачу Дирихле для уравнения Лапласа

$$\Delta u(x, y)|_{Q} = 0$$
, $(x, y) \in Q$,
 $u|_{S} = g(x, y)$,

используя систему функций α_m^+ , m=1,...,N; где $Q=Q_k$, $\partial Q_k=S=S1\cup S2\cup S3$, g(x,y)=M при $(x,y)\in S$. Представить линии уровня функции $u^N(x,y)$; вычислить погрешность $\delta(N)=\left\|g-u^N\right\|_S$ для разных N. Вычислить интеграл по S от нормальной производной $u^N(x,y)$.

Задание № 12 (k). Решить численно краевую задачу для бигармонического уравнения

$$\Delta^2 w(x,y)\Big|_{Q} = 0, \quad (x,y) \in Q,$$

$$w|_{S} = a(x, y), \quad \frac{\partial w}{\partial n}|_{S} = b(x, y),$$

где
$$a(x,y) = \begin{cases} -1, (x,y) \in S_1, \\ 0, (x,y) \in S_2, & \text{и} \ b(x,y) = \begin{cases} 0, (x,y) \in S_1, \\ 1, (x,y) \in S_2, \\ 0, (x,y) \in S_3. \end{cases}$$

Представить: формулировку задачи, представление решения w(x,y), график линий уровня функции w(x,y), погрешность $\delta(N) = \|g - w^N\|_S$, таблицу вычисленных коэффициентов (физическая интерпретация: если w(x,y) — функции тока, то вершины треугольника — это точечные источники и стоки).

Задание № 13 (*k*). Решить численно краевую задачу для бигармонического уравнения при условии a(x, y) = 0, $b(x, y) = \varphi^*(x, y)$, где $\varphi^*(x, y)$ – плотность потенциала Робена для *S* . Решение w(x, y) – собственный (регулярный) вихрь области.

Задание № 14 (k). Для номеров k = 1, 2, ..., 12 решить задачу

$$u_{tt} = u_{xx}(x,t) + f(x), \quad x \in (0,\pi), \quad t \in (0,T),$$

$$u\Big|_{x=0} = \varphi_0(t), \quad u\Big|_{x=\pi} = \varphi_1(t),$$

$$u\Big|_{t=0} = u^0(x), \quad \frac{\partial u}{\partial n}\Big|_{t=0} = u^1(x),$$

 $\varphi_1(t)=\varphi_0(t)=0$, разложением функций по синусам кратных дуг (при этом $a_n(t)=0$). Для номеров k=1,2,...,6 взять $u^0(x)=H(x), x\in (0,1), u^0(x)=0, x\in (1,\pi); u^1(x)=0$. Для номеров $k=7,...,12-u^0(x)=0, u^1(x)=H(x), x\in (0,1), u^1(x)=0, x\in (1,\pi)$. Функция H(x) $x\in (0,1),$ определяется криволинейными сторонами треугольника Q_k . Записать в аналитическом виде решение задачи методом Фурье при f(x)=0; выписать формулы для коэффициентов $b_n(t)\colon b_n''(t)=-n^2b_n(t), b_n'(0)=u_n^0, b_n'(0)=u_n^1$. Выбрать N для приближенного решения $u^N(x,t)=\sum_1^N b_n(t)\sqrt{\frac{2}{\pi}}\sin nx$, построить графики функций $u(x_j,t),t>0$, для некоторых $u(x_j,t)$ 0, $u(x_j,t)$ 1, $u(x_j,t)$ 2, графики функций $u(x_j,t)$ 3, графики функций $u(x_j,t)$ 4, $u(x_j,t)$ 5, графики функций $u(x_j,t)$ 6, $u(x_j,t)$ 7, при некотором малом $u(x_j,t)$ 8, $u(x_j,t)$ 9, $u(x_j,t)$ 9,

Задание № 15 (k). Решить эту задачу для неоднородного уравнения

$$u_{tt} = u_{xx}(x,t) + f(x), \quad x \in (0,\pi), \quad t \in (0,T),$$

при $f(x) = 0.5 q \sin q \pi x$, где q=2 для нечетных номеров и q=4 для четных номеров k; построить графики функций $u(0.3,t),\ u(0.5),\ t>0$. Замечание. Заменой искомой функции можно перейти к задаче с однородным уравнением.

Для получения зачёта студент должен выполнить и сдать преподавателю полученные практические семестровые задания.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Примерный перечень вопросов к экзамену

- 1. Основные функциональные пространства.
- 2. Замыкание множества.
- 3. Линейные многообразия плотные в нормированном пространстве.
- 4. Банахово пространство.
- 5. Пополнение нормированного пространства.
- 6. Пространство Лебега.
- 7. Изоморфизм, изометрия и вложение нормированных пространств.
- 8. Пространства Соболева и простейшая теорема вложения.
- 9. Неравенство Фридрихса.
- 10. Гильбертовы пространства.
- 11. Ряды Фурье.
- 12. Полные ортогональные системы.
- 13. Ортогональные разложения в гильбертовом пространстве.
- 14. Формулы Остроградского и Грина.
- 15. Спектральные задачи уравнения Лапласа
- 16. Уравнение диффузии, принцип максимума.
- 17. Первая краевая задача уравнения теплопроводности, единственность.
- 18. Метод Фурье, существование решения.
- 19. Стабилизация решения при неограниченном времени.
- 20. Вторая краевая задача уравнения теплопроводности, существование.
- 21. Вторая краевая задача, стабилизация.
- 22. Обратная задача теплопроводности, некорректность.
- 23. Обратная задача теплопроводности, регуляризация.
- 24. Гармонические функции.
- 25. Фундаментальное решение уравнения Лапласа, свойства.
- 26. Интегральное представление функции.
- 27. Гармонические функции, свойства.
- 28. Теорема о среднем.
- 29. Подпространство гармонических функций, полная система потенциалов.
- 30. Подпространство гармонических функций, лемма Новикова.
- 31. Задача Робена, алгоритм, полнота системы.
- 32. Потенциала двойного слоя, граничные свойства, интегральный оператор.
- 33. Методы теории потенциала решения 1-ой и 2-ой краевых задач.
- 34. Полнота системы альфа и бетта.
- 35. Метод базисных потенциалов.
- 36. Внутренняя задачи Дирихле и Внутренняя задачи Неймана. Алгоритмы.
- 37. Бигармоническая задача, единственность, алгоритм МБП.
- 38. Определение обобщенной производной.
- 39. Теорема Рисса об общем виде линейных функционалов.
- 40. Вложение гильбертовых пространств.
- 41. Следствие из теоремы Рисса.
- 42. Существование и единственность решения задачи Дирихле уравнения Пуассона

- 43. Классификация уравнений второго порядка.
- 44. Уравнения характеристик.
- 45. Классификация уравнений второго порядка.
- 46. Приведение к каноническому виду.
- 47. Соотношения на характеристиках.
- 48. Сетка характеристик, метод характиристик
- 49. Уравнений гиперболического типа.
- 50. Вывод уравнений звуковых колебаний. Основные задачи.
- 51. Уравнения звуковых колебаний, основные задачи.
- 52. Краевые задачи на примере уравнения мембраны.
- 53. Метод Фурье для первой краевой задачи.
- 54. Вторая краевая задача звуковых колебаний мембраны.
- 55. Закон сохранения и теорема единственности

4.2.2 Примерные билеты к экзамену

БИЛЕТ № 1

- 1. Пространства Соболева и простейшая теорема вложения
- 2. Классификация уравнений второго порядка

Зав. кафедрой математических и компьютерных методов

(М.И. Дроботенко)

БИЛЕТ № 2

- 1. Первая краевая задача уравнения теплопроводности, единственность
- 2. Существование и единственность решения задачи Дирихле уравнения Пуассона

Зав. кафедрой математических и компьютерных методов

(М.И. Дроботенко)

Экзамены оцениваются по системе: неудовлетворительно, удовлетворительно, хорошо, отлично.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Владимиров В.С., Жаринов В.В. Уравнения математической физики. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2000. 400 с. Режим доступа: https://e.lanbook.com/book/2363#book_name
- 2. Треногин В.А. Функциональный анализ. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2007. 488 с. Режим доступа: https://e.lanbook.com/book/59471?category_pk=911#book_name
- 3. Олейник О.А. Лекции об уравнениях с частными производными. [Электронный ресурс] Электрон. дан. М.: Лаборатория знаний, 2015. 263 с. Режим доступа: https://e.lanbook.com/book/70703?category_pk=906#book_name
- 4. Вашарин А.А., Владимиров В.С., Каримова Х.Х., Михайлов В.П., Сидоров Ю.В., Шабунин М.И. Сборник задач по уравнениям математической физики. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2003. 288 с. Режим доступа: https://e.lanbook.com/book/59314#book_name

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1. Петровский И.Г. Лекции об уравнениях с частными производными. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2009. 404 с. Режим доступа: https://e.lanbook.com/book/59551#book_name
- 2. Соболева Е.С., Фатеева Г.М. Задачи и упражнения по уравнениям математической физики. [Электронный ресурс] Электрон. дан. М.:Физматлит, 2012, 96 с. Режим доступа: https://e.lanbook.com/book/5295#book_name
- 3. Треногин В.А., Недосекина И.С. Уравнения в частных производных. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2013. 228 с. Режим доступа: https://e.lanbook.com/book/59744?category_pk=3145#book_name

3.3. Периодические издания:

- 1. Вычислительные методы и программирование. Электронный научный журнал НИВЦ МГУ (Научно-исследовательский вычислительный центр Московского государственного университета им. М.В. Ломоносова) http://num-meth.srcc.msu.ru.
- 2. Сибирские электронные математические известия, электронный научный журнал института математики им. Соболева Сибирского отделения Российской академии наук, http://semr.math.nsc.ru/indexru.html.
- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).
 - 1. Электронно-библиотечная система Издательства «Лань» http://e.lanbook.com.
 - 2. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp

3. Общероссийский математический портал - www.mathnet.ru;

7. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, рассматриваются основные приёмы решения задач и решаются примеры практических задач.

На лабораторных занятиях студенты, решая семестровые задания, приобретают практические навыки аналитического решения уравнений в частных производных опираясь на метод Фурье и численного решения используя алгоритмы метода базисных потенциалов решая основные краевые задачи математической физики.

Важнейшим этапом курса является самостоятельная работа по дисциплине «Уравнения в частных производных», во время которой студенты осуществляют проработку необходимого материала, используя литературу из основного и дополнительного списков, готовятся к текущему контролю, изучая примеры задач, рассмотренных на лекциях и на практических занятиях, и образцы программ по темам лабораторных занятий (выдаются студентам в электронном виде).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Освоение курса «Уравнения в частных производных» предполагает теоретическое изучение основ уравнений в частных производных и использование компьютерных технологий и проведение практических занятий с использованием компьютера.

8.2 Перечень необходимого программного обеспечения.

Пакет компьютерной (символьной) алгебры MATHCAD 14.

8.3 Перечень информационных справочных систем:

- 1. Мурашкин В. Г. Инженерные и научные расчеты в программном комплексе MathCAD: учебное пособие. Самара: СГАСУ, 2011. 84 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.
- 2. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория
2.	Лабораторные	Лаборатория, укомплектованная компьютерами для
	занятия	работы студентов и компьютером для преподавателя,
		подключенным к интерактивной доске.

3.	Текущий контроль,	Лаборатория, укомплектованная компьютерами для
	промежуточная	работы студентов и компьютером для преподавателя,
	аттестация	подключенным к интерактивной доске.
4.	Самостоятельная	Лаборатория, укомплектованная компьютерами для
	работа	работы студентов

РЕЦЕНЗИЯ

на рабочую программу учебной дисциплины

Б1.Б.16

УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Рабочая программа ПО дисциплине «Уравнения частных производных» составлена кандидатом физико-математических наук, доцентом кафедры математических и компьютерных методов факультета математики компьютерных наук Кубанского государственного университета Марковским А. Н.

Программа одобрена на заседании кафедры математических и компьютерных методов и на заседании учебно-методического совета факультета математики и компьютерных наук.

Дисциплина «Уравнения в частных производных» относится к базовой части (Б) профессионального цикл (Б1).

Дисциплина "Уравнения в частных производных" посвящена основным уравнениям в частных производных в основном второго порядка. Рассматриваются параболические, гиперболические и эллиптические уравнения. Спектральные задачи уравнения Лапласа, гармонические функции и их свойства. Метод базисных потенциалов и алгоритмы решения основных классических задач математической физики.

На основе изучения основной и дополнительной литературы бакалавры изучают дисциплину на лабораторных занятиях; цель этих занятий состоит в углубленном изучении наиболее значимых разделов курса и приобретении практических навыков решение задач. Лабораторные занятия позволяют закрепить полученные при чтении учебной и научной литературы знания.

Считаю, что рабочая программа по дисциплине «Уравнения в частных производных» может быть рекомендована для подготовки бакалавров по направлению подготовки: 01.05.01 Фундаментальные математика и механика.

Кандидат физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий КубГУ

Ю.Г. Никитин

РЕЦЕНЗИЯ

на рабочую программу учебной дисциплины

Б1.Б.16

УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Направления подготовки: 01.05.01 Фундаментальная математика и механика.

Рабочая программа «Уравнения ПО дисциплине частных производных» составлена физико-математических кандидатом наук, доцентом кафедры математических и компьютерных методов факультета математики компьютерных Кубанского государственного наук университета Марковским А. Н.

Программа одобрена на заседании кафедры математических и компьютерных методов и на заседании учебно-методического совета факультета математики и компьютерных наук.

Дисциплина «Уравнения в частных производных» относится к базовой части (Б) профессионального цикл (Б1).

Дисциплина "Уравнения в частных производных" посвящена основным уравнениям в частных производных в основном второго порядка. Рассматриваются параболические, гиперболические и эллиптические уравнения. Спектральные задачи уравнения Лапласа, гармонические функции и их свойства. Метод базисных потенциалов и алгоритмы решения основных классических задач математической физики.

На основе изучения основной и дополнительной литературы бакалавры изучают дисциплину на лабораторных занятиях; цель этих занятий состоит в углубленном изучении наиболее значимых разделов курса и приобретении практических навыков решение задач. Лабораторные занятия позволяют закрепить полученные при чтении учебной и научной литературы знания.

Считаю, что рабочая программа по дисциплине «Уравнения в частных производных» может быть рекомендована для подготовки бакалавров по направлению подготовки: 01.05.01 Фундаментальные математика и механика.

Коммерческий директора ООО "РосГлавВино

Савенко И.В.