Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования

проректор

Хагуров Т.А

27 » 21 20

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.02 «МАТЕМАТИЧЕСКИЙ АНАЛИЗ II»

Направление подготовки 01.03.02 Прикладная математика и информатика

Профиль Системный анализ, исследование операций и управление" (Математическое и информационное обеспечение экономической деятельности)

Программа подготовки Академическая

Форма обучения Очная

Квалификация выпускника Бакалавр

Рабочая программа дисциплины «Математический анализ II» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.03.02 Прикладная математика и информатика по профилю Системный анализ, исследование операций и управление" (Математическое и информационное обеспечение экономической деятельности).

Программу составили:

К.В. Малыхин, канд. физ.-мат. наук, доц

полпись

Н.М. Сеидова, канд. физ.-мат. наук, доц. КПМ

Рабочая программа дисциплины утверждена на заседании кафедры прикладной математи-

ки протокол № 7 от «18» апреля 2018г.

Заведующий кафедрой Уртенов М.Х.

подпись

Рабочая программа обсуждена на заседании кафедры прикладной математики протокол № 7 от «18» апреля 2018г.

Заведующий кафедрой Уртенов М.Х.

Рабочая программа утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 1 «20» апреля 2018г.

Председатель УМК факультета Малыхин К.В.

полпись

Рецензенты:

Шапошникова Татьяна Леонидовна.

Доктор педагогических наук, кандидат физико-математических наук, профессор. Почетный работник высшего профессионального образования РФ. Директор института фундаментальных наук (ИФН) Φ ГБОУ ВО «КубГТУ».

Марков Виталий Николаевич.

Доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная математика и информатика», в рамках которой преподается дисциплина.

1.1 Цель освоения дисциплины.

Целью преподавания и изучения дисциплины «Математический анализ II» является формирование представлений об обобщениях понятиях математического анализа на случай многомерных пространств и функциональных последовательностей и рядов и роли этих обобщений в системе математических наук и приложениях в естественных науках.

1.2 Задачи дисциплины. В ходе изучения дисциплины ставятся задачи:

- **знать** основные понятия, положения и методы математического анализа в многомерных пространствах;
- **уметь** доказывать утверждения, специфичные для математического анализа в многомерных пространствах, применять методы многомерного математического анализа для решения математических задач;
- **владеть** методами обобщений математического анализа в многомерных пространствах для исследования различных прикладных задач.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Математический анализ II» относится к вариативной части учебного плана.

Для изучения дисциплины студент должен владеть знаниями, умениями и навыками по дисциплине «Математический анализ» базовой части цикла учебного плана.

Знания, получаемые при изучении дисциплины «Математический анализ II» используются при изучении всех дисциплин.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций

№	Индекс компе-	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны				
	тенции	(или её части)	знать	уметь	владеть		
1.	ПК-2	способностью понимать, совершенствовать и применять современный математический аппарат	основные понятия, положения и методы математического анализа в многомерных пространствах	использовать знания по современному математическому аппарату для решения математических задач	навыками применения знаний по современному математическому аппарату для решения математических задач		

№	Индекс компе-	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны			
	тенции	(или её части)	знать	уметь	владеть	
2.	ОПК-1	способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой	 основные информационные ресурсы для получения новых знаний. проблемы, постановки и обоснования задач математического и информационного обеспечения при исследовании прикладных систем основные методы решения типовых задач математического анализа 	• доказывать утверждения, специфичные для математического анализа, • выбрать метод для решения конкретной задачи математического анализа; • применять полученные знания для использования в практической деятельности анализа и решения прикладных задач	• методами математического анализа для исследования различных прикладных задач и выбора эффективных алгоритмов для решения и исследовании профессиональных и социальных задач.	

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ. Общая трудоёмкость дисциплины составляет 6 зач.ед. (216 часов), их распределение по видам работ представлено в таблице

Вид работы	Трудоемкость, часов
	6 семестр
Контактная работа, в том числе:	146,5
Аудиторная работа:	144
Лекции (Л)	72
Практические занятия (ПЗ)	
Лабораторные работы (ЛР)	72
Иная контактная работа:	
Контроль самостоятельной работы (КСР)	2
Промежуточная аттестация (ИКР)	0,5
Самостоятельная работа (СР):	24,8
Курсовой проект (КП), курсовая работа (КР)	-
Самоподготовка (проработка и повторение лекционного матери-	5
ала и материала учебников и учебных пособий, подготовка к ла-	
бораторным и практическим занятиям, коллоквиумам и т.д.)	
Выполнение индивидуальных заданий	15
Реферат	-
Подготовка к текущему контролю	4,8
Контроль:	
Подготовка и сдача экзамена 1	44,7

¹ При наличии экзамена по дисциплине

Общая трудоемкость	час.	216
	в том числе контактная работа	146,5
	зач. ед	6
Вид итогового контроля	A Company	Зачет, экзамен

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

	Ay		Аудит	орная				
No	Наименование разделов	Всего		рабо	ота		СР	К
			Всего	Л	ЛР	КСР	-	
1	2	3	4	5	6	7	8	9
1.	Функции многих переменных. Предел, непрерывность	18	12	6	6		2	4
2.	Дифференцирование функций мно- гих переменных	41	30	16	14		3	8
3.	Исследование функций многих переменных		12	6	6		3	4
4	Функциональные последовательности Функциональные ряды	42	30	14	16		4	8
_	•	20	20	10	10		1	
5	Двойные интегралы	30	20	10	10		4	6
6	Тройные интегралы	25	16	8	8		3	6
7	Криволинейные интегралы	21	12	6	6		3	6
8	Поверхностные интегралы	17,5	12	6	6	2	2,8	2,7
	Всего по разделам дисциплины	213,5	146	72	72	2	24,8	44,7
	Промежуточная аттестация (ИКР)	0,5	0,5					
	Итого	216	146,5	72	72	2	24,8	44,7

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СР – самостоятельная работа студента, КСР – контролируемая работа студента, ЭЗ-подготовка к сдаче зачета и экзамена, К - контроль.

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

_	***	Г	x
No	Наименование	Содержание раздела	Форма текущего
	раздела		контроля
1	2	3	4
1.	2	Понятие евклидовой плоскости и евклидова пространства. Понятие функции 2-х и 3-х переменных, примеры. Понятие m-мерного координатного пространства и m-мерного евклидова пространства. Множества в них. Сходящиеся последовательности в Е ^ш . Лемма о покоординатной сходимости. Фундаментальная последовательность в Е ^m . Критерий Коши. Ограниченная последовательность в Е ^m . Теорема Больцано-Вейерштрасса. Предельная точка множества. Лемма. Понятие предела функции многих переменных (по Гейне, по Коши). Эквивалентность определений. Арифметические свойства пределов. Понятие. Теорема о связи между двойными и повториыми пределами. Определение функции многих переменных, непрерывной в точке. Примеры. Теорема о непрерывности сложной функций многих переменных. Теорема о сохранении знака непрерывной функции. Теорема о прохождении непрерывной функции многих переменных через промежуточные значения. I -я георема Вейерштрасса.	Опрос по результатам индивидуального задания
2.	Дифференцирование функций многих переменных	Частные производные. Понятие, примеры. Геометрический смысл. Понятие дифференцируемости функции многих переменных. Лемма об эквивалентности 2-х определений. Связь между дифференцируемостью и существованием частных производных, между дифференцируемостью и непрерывностью. Геометрический смысл дифференцируемости ф.м.п. Достаточное условие дифференцируемости функции многих переменных в точке. Теорема о дифференцируемости сложной ф.м.п. Дифференциал ф.м.п. Определение, геометрический смысл. Инвариантность формы дифференциала 1-го порядка. Производная по направлению. Градиент. Частные производные высших порядков. Понятие. Достаточное условие равенства смешанных производных. Дифференциалы высших порядков ф.м.п. Неинвариантность их формы. Формула Тейлора для ф.м.п. Теорема о дифференцируемости функции одной переменной, заданной неявно	Опрос по результатам индивиду- ального задания

1	2	3	4
3.	Исследование	Понятие экстремума ф.м.п. Необходимое условие	1. Опрос по ре-
	функций многих	локального экстремума.	зультатам инди-
	переменных	Достаточное условие локального экстремума ф.м.п.	видуального зада-
		Касательная плоскость и нормаль к поверхности.	Р К И Н
		Система функций, заданных неявно. Вычисление их	2. Контрольная
		частных производных.	работа
		Зависимость функций. Понятие. Достаточное усло-	3. Коллоквиум
		вие независимости.	
		Условный экстремум. Понятие, общий метод его	
		Поиска.	
1	Финанионовично	Метод множителей Лагранжа.	1 Оппаз на па
4.		Функциональная последовательность. Понятие, примеры. Поточечная и равномерная сходимости	1. Опрос по ре-
	сти	функциональной последовательности.	зультатам инди- видуального зада-
		Непрерывность предела равномерно сходящейся	ния.
	ряды	функциональной последовательности.	2. Контрольная
	РИДЫ	Функциональный ряд и его сходимость.	работа
		Равномерная сходимость функционального ряда.	pucciu
		Признак Вейерштрасса. Теорема о непрерывности	
		суммы равномерно сходящегося функционального	
		ряда. Следствие. Теорема о почленном интегрирова-	
		нии функциональных рядов. Теорема о почленном	
		дифференцировании функциональных рядов. Тео-	
		рема Абеля, следствие. Радиус сходимости степен-	
		ного ряда, его вычисление. Свойства степенных ря-	
		дов. Ряд Тейлора. Понятие. Критерий сходимости	
		ряда Тейлора. Достаточное условие сходимости ряда	
		Тейлора на промежутке. Разложение элементарных	
		функций в ряд Тейлора. Приложения рядов Тейлора.	
5.	Двойные инте-	Задача определения объёма цилиндрического бруса.	1. Опрос по ре-
	гралы	Определение двойного интеграла. Суммы Дарбу для	зультатам инди-
		двойного интеграла, их свойства. Условие суще-	видуального зада-
		ствования двойного интеграла. Основные свойства	ния
		двойных интегралов. Приведение двойного интегра-	
		ла к повторному для случая прямоугольной области.	
		Приведение двойного интеграла к повторному для	
		случая криволинейной области. Вычисление двойного интеграла в полярных координатах. Замена пе-	
		ременных в двойном интеграле. Приложения двой-	
		ного интеграла.	
6.	Тройные инте-	Задача нахождения массы тела. Определение трой-	1. Опрос по ре-
.	гралы	ного интеграла. Свойства тройного интеграла. Све-	зультатам инди-
	- L	дение тройного интеграла к повторному для случая	видуального зада-
		прямоугольного параллелепипеда. Вычисление	ния
		тройного интеграла по произвольному объёму.	2. Контрольная
		Вычисление тройного интеграла в цилиндрических	работа
		координатах. Вычисление тройного интеграла в	
		сферических координатах. Приложения тройного	
		интеграла.	

1	2	3	4
7.	Криволинейные	Криволинейные интегралы 1-го рода. Сведение к	Опрос по резуль-
	интегралы	определенному интегралу. Криволинейный интеграл	татам индивиду-
		2-го рода. Существование и вычисление КИВР. Вы-	ального задания
		числение площадей при помощи КИВР. Условие не-	
		зависимости КИВР от пути интегрирования. При-	
		знак полного дифференциала и нахождение перво-	
		образной для случая прямоугольной области.	
8.	Поверхностные	Поверхностный интеграл 1-го рода. Понятие. Вычис-	1. Опрос по ре-
	интегралы	ление поверхностного интеграла. Расчетная форму-	зультатам инди-
		ла. Вычисление площади поверхности. Сторона по-	видуального зада-
		верхности. Ориентация поверхности и пространства.	Р К И В В В В В В В В В В
		Поверхностный интеграл второго рода для случаев	2. Контрольная
		явного и неявного задания поверхности. Вычисление	работа
		Поверхностных интегралов 2-го рода	3. Зачет
			4. Экзамен

Практические занятия, защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) — не предусмотрены.

2.3.2 Занятия семинарского типа

Семинарские занятия не предусмотрены.

2.3.3 Лабораторные занятия

No	Наименование раз-		Наименование лабораторных работ	Форма текущего
No	дела/модуля		паименование лаоораторных раоот	контроля
1	2		3	4
1.	Функции многих переменных. Предел. Непрерывность	2 3	Область определения фунций многих переменных. Линии и поверхности уровня Повторные пределы. Предел функции многих переменных Непрерывность функции многих переменных. Линии и поверхности разрыва	1. Выполнение практических заданий 2. Опрос по результатам практических заданий
2.	Дифференцирование функций многих пе- ременных	4 5 6 7 8 9	Частные производные первого порядка Дифференциал функции многих переменных Градиент. Производная по направлению Дифференцирование сложных функций. Производные высших порядков Дифференциалы высших порядков Дифференцирование функций, заданных неявно Формула Тейлора	1. Выполнение практических заданий 2. Опрос по результатам практических заданий
3.	Исследование функций многих переменных	11 12 13	Безусловный экстремум функции многих переменных Нахождение условных экстремумов Контрольная работа по темам 1-12	1. Выполнение практических за- даний

	T			T
				2. Опрос по ре-
				зультатам практи-
				ческих заданий
				3. Контрольная
L				работа
4	J ,	14	Сходимость функциональных последова-	1. Выполнение
	последовательности.	1.7	тельностей	практических за-
	Функциональные	15	Равномерная сходимость функциональных	даний
	ряды	1.0	последовательностей	2. Опрос по ре-
		16	Сходимость и абсолютная сходимость	зультатам практи-
		17	функционального ряда	ческих заданий
		17	Равномерная сходимость функционального	теским задании
		18	ряда	3. Контрольная
		19	Сходимость степенных рядов Разложение функций в ряд Тейлора	работа
		20		
		21	Операции над степенными рядами Контрольная работа по темам 13-20	-
5	Двойные интегралы	22	Двойной интеграл. Сведение к повторному	1. Выполнение
	двоиные иптегралы	22	интегралу	
		23	Вычисление двойных интегралов	практических за-
		24	Вычисление двойных интегралов в поляр-	даний
		27	ных координатах	2. Опрос по ре-
		25	Замена переменных в двойном интеграле	зультатам практи-
		26	Приложения двойного интеграла	ческих заданий
		20	приножения двонного интеграна	
6	Тройные интегралы	27	Тройные интегралы. Сведение к повторно-	1. Выполнение
			My.	практических за-
		28	Вычисление тройных интегралов в цилин-	даний
			дрических координатах	
		29	Вычисление тройного интеграла в сфериче-	2. Опрос по ре-
			ских координатах	зультатам практи-
		30	Контрольная работа по темам 22-29	ческих заданий
				3. Контрольная
				работа
				pauura
7	Криволинейные ин-	31	Криволинейные интегралы первого рода	1. Выполнение
	тегралы	32	Криволинейные интегралы второго рода	практических за-
		33	Формула Грина, вычисление площадей,	даний
			нахождение первообразных	
				2. Опрос по ре-
				зультатам практи-
				ческих заданий
8	Поверхностные ин-	34	Поверхностные интегралы 1-го рода	1. Выполнение
	тегралы	35	Поверхностные интегралы 2-го рода	практических за-
				даний 2. Опрос по
		36	Контрольная работа по темам 31-35	результатам прак-
				тических заданий
				3. Контрольная
				работа
				1

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) – не предусмотрены.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы (КР) – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. За-

крепляются опыт и знания полученные во время лабораторных занятий.

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка и повторение лекционного материала, материала учебной и научной литературы, подготовка к семинарским занятиям	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
2	Подготовка к лабораторным занятиям	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
3	Подготовка к решению задач и тестов	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
4	Подготовка докладов	Методические указания для подготовки эссе, рефератов, курсовых работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
5	Подготовка к решению расчетно-графических заданий (РГЗ)	Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г. Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
6	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

С точки зрения применяемых методов используются как традиционные информационно-объяснительные *лекции*, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематические обзоры теории оптимизации с подачей материала в виде презентаций.

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Оценка самостоятельной работы студентов происходит по средствам оценки индивидуальных ответов и дополнений на занятиях по рассмотренным тематикам.

Занятия, проводимые с использованием интерактивных технологий

		Колич	нество часов
№	Наименование разделов (тем)	всего ауд. часов	интерактив- ные часы
1	2	3	4
1.	Функции многих переменных. Предел, непрерывность	12	4
2.	Дифференцирование функций многих переменных	30	6
3.	Исследование функций многих переменных	12	4
4.	Функциональные последовательности. Функциональные ряды	28	6
5.	Двойные интегралы	20	6
6.	Тройные интегралы	16	4
7.	Криволинейные интегралы	12	4
8.	Поверхностные интегралы	10	2
	Итого по дисциплине:	144	36

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной (зачетов) и итоговой аттестации (экзаменов).

Оценка успеваемости осуществляется по результатам:

выполнения лабораторных работ;

оценки, выставляемой при сдаче индивидуальных заданий;

оценок коллоквиумов;

ответа на экзамене.

Зачет выставляется по результатам выполненных контрольных работ, индивидуальных заданий, коллоквиумов и текущей работы на лабораторных занятиях.

4.1. Перечень примерных заданий для самостоятельной работы

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

4.1.1. Образцы контрольных заданий по лабораторным занятиям

- 1. Будут ли шары $B_1[(0,1),1]$ и $B_2[(1,5,2),1]$ пересекаться в пространстве \mathbb{R}^2 с нормой $\|\cdot\|_{\infty}$? А если рассмотреть норму $\|\cdot\|_1$?
- 2. Для шара B[(1,1),1] и точки X=(3,0) в пространстве R^2 найти шары $B_1[X,r_1]$ и $B_2[X,r_2]$ такие, что $B\cap B_1=\emptyset$ и $B\subset B_2$.
- 3. Исследовать последовательность

$$X_{m} = \left\{ \frac{m+1}{2m + \sqrt{m}}, \ln\left(2 + \frac{1}{m}\right), \sin\left(\frac{\pi m}{2}\right) \right\}$$

на покоординатную сходимость и на сходимость в пространстве ${\bf R}^{\bf 3}$.

4. Найти предел функции

$$f(x,y) = \frac{\arctan\left(\frac{1}{x^2}\right) + \exp(1+y)}{(1+2x) + (1-3y)}$$

при $x \to 0$, $y \to 0$.

5. Найти предел функции

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$

при $x \to 0$, $y \to 0$.

6.Существует ли предел функции

$$f(x,y) = \frac{x+y}{2x+3y}$$

при $x \rightarrow 0$, $y \rightarrow 0$?

7. Найти частные производные первого и второго порядков функции

$$u = f\left(\frac{x}{y}, 2z\right).$$

8. Найти частные производные первого порядка функции

$$z = f(u, v) + u \cdot v,$$

если $\mathbf{u} = \mathbf{x} + \mathbf{y}^2$, $\mathbf{v} = \mathbf{x} \cdot \mathbf{y}$.

9. Найти частные производные первого порядка функции z(x,y), заданной неявно уравнением

$$\mathbf{F}\left(\mathbf{x}\cdot\mathbf{z},\frac{\mathbf{y}}{\mathbf{z}}\right)=\mathbf{0}$$
.

- 10. Выписать формулы Тейлора для функции $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \frac{\cos(\mathbf{x})}{\cos(\mathbf{y})}$ в точке $(\mathbf{0}, \mathbf{0})$ до членов второго порядка включительно.
- 11. Исследовать на экстремум функцию

$$z = xy(x + y + 3)$$

в точках (0,0), (-1,-1), (-3,0), (-1,2).

12. Исследовать на экстремум функцию

$$z = \alpha x + \beta y - x^2 - y^2.$$

если $\alpha > 0$, $\beta > 0$.

13. Исследовать на экстремум функцию

$$z = (2x^2 + y^2) \exp(-x^2 - y^2)$$

14. Исследовать на экстремум функцию

$$z = \frac{x}{2} + \frac{y}{3}$$

при условии $x^2 + y^2 = 1$.

15. Найти наибольшее и наименьшее значения функции

$$z = x^2 - y^2 + 4x + 2y - 1$$

в области, ограниченной прямыми x = -3, y = 2, -x + y = 1.

16. Используя линии уровня, найти наибольшее и наименьшее значения функции

$$z = x + y + 3$$

в области, ограниченной прямыми x = 0, y = 0, x - y = 1.

17. Используя линии уровня найти наибольшее и наименьшее значения функции

$$z = max\{(x+2), (y+2)\}$$

в области, заданной неравенством $x^2 + y^2 \le 1$.

18. Для интеграла $\iint_{\mathbf{D}} \mathbf{xydxdy}$, где $\mathbf{D} = [0,1] \times [0,1]$, вычислить суммы Дарбу, разбивая

D на четыре равные части.

19. Какой знак имеет интеграл
$$\iint_{\mathbf{D}} \sqrt[3]{1-x^2-y^2} dxdy$$
, где $\mathbf{D} = \left\{ (x,y) : x^2 + y^2 \le 4 \right\}$?

Вывод проверить вычислением.

- 20. Для интеграла $\iint_{\mathbf{D}} \mathbf{f}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$, где $\mathbf{D} = \left\{ (\mathbf{x}, \mathbf{y}) : \mathbf{x}^2 + \mathbf{y}^2 \leq \mathbf{y} \right\}$, выписать повторные интегралы.
- 21. Поменять порядок интегрирования в интеграле

$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{y} f(x,y) dx.$$

22. Поменять порядок интегрирования в интеграле

$$\int_{1}^{4} dx \int_{(x-2)^2}^{5} f(x,y) dx.$$

23 Перейти к полярным координатам в интеграле

$$\int_{-1}^{0} dx \int_{-1-x}^{\sqrt{1-x^2}} f(x,y) dx$$

24. Вычислить площадь области

$$D = \left\{ (x, y) : 2y \le x^2 + y^2 \le 6y, y \ge \frac{\sqrt{3}}{3} |x| \right\}$$

25. Доказать, что

$$\iint\limits_{D} x^3 y^2 dx dy = 0,$$

где
$$D = \{(x,y): x^2 + y^2 \le 1\}.$$

26. Поменять порядок интегрирования в интеграле

$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x+y} f(x,y,z)dz.$$

27. Вычислить интеграл

$$\iiint\limits_{D}\sqrt{x^2+y^2+z^2}dxdydz\;,$$

где
$$D = \{(x, y, z) : x^2 + y^2 + z^2 \le z \}$$

28. Вычислить объем области

$$\mathbf{D} = \left\{ (x, y, z) : 0 \le z \le x^2 + y^2, y \ge 0, y \le 2x, y \le 6 - x \right\}.$$

29. Вычислить интеграл $\int_{\mathbf{I}} \mathbf{y} d\mathbf{l}$,

где
$$L = \{(x,y): x = t - \sin t, y = 1 - \cos t, 0 \le t \le 2\pi\}.$$

30 Вычислить интеграл
$$\int\limits_{L} (xy+1) dx + (y^2x+2) dy ,$$

если:

а)
$$L$$
 – отрезок прямой от точки $\left(-1,-1\right)$ до точки $\left(-2,3\right)$;

б)
$${\bf L}$$
 – часть кривой ${\bf x} = \sqrt{{\bf y}} + {\bf y}^{\bf 2}$ от точки $({\bf 0}\,,{\bf 0})$ до точки $({\bf 2}\,,{\bf 1})$.

31. Вычислить интеграл
$$\int_{(1,-1)}^{(1,1)} (x-y)(dx-dy)$$
.

32. Найти функцию $\mathbf{z}(\mathbf{x}, \mathbf{y})$, если

$$dz = (x^2 + 2xy - y^2)dx + (x^2 - 2xy - y^2)dy$$
.

33. Вычислить интеграл $\iint_{\mathbf{S}} \mathbf{xyds}$,

где S – часть конуса $z=\sqrt{x^2+y^2}$, вырезанного цилиндром $x^2+y^2=y$.

34. Вычислить интеграл $\iint_{S} (z + y) dx dz$,

где S - внешняя сторона тетраэдра, ограниченного плоскостями $x=0\,,\;y=0\,,\;z=0\,,\;x+y+z=1\,.$

4.1.2. Образцы вопросов к коллоквиуму

- 1. Понятие m-мерного координатного пространства и m-мерного евклидова пространства. Множества в них.
- 2. Сходящиеся последовательности в E^{m} . Лемма о покоординатной сходимости.
- 3. Фундаментальная последовательность в E^m. Критерий Коши.
- 4. Ограниченная последовательность в Е^m.
- 5. Теорема Больцано-Вейерштрасса.
- 6. Предельная точка множества. Лемма.
- 7. Понятие предела функции многих переменных (по Гейне, по Коши). Эквивалентность определений. Арифметические свойства пределов.
- 8. Повторные пределы. Примеры. Понятие. Теорема о связи между двойными и повториыми пределами.
- 9. Определение функции многих переменных, непрерывной в точке. Примеры.
- 10. Теорема о непрерывности сложной функций многих переменных.
- 11. Теорема о сохранении знака непрерывной функции.
- 12. Теорема о прохождении непрерывной функции многих переменных через промежуточные значения.
- 13. І -я георема Вейерштрасса.
- 14. 2-я георема Вейерштрасса.
- 15. Частные производные. Понятие, примеры. Геометрический смысл.
- 16. Понятие дифференцируемости функции многих переменных. Лемма об эквивалентности 2-х определений.
- 17. Связь между дифференцируемостью и существованием частных производных, между дифференцируемостью и непрерывностью.
- 18. Геометрический смысл дифференцируемости ф.м.п.
- 19. Достаточное условие дифференцируемости функции многих переменных в точке.
- 20. Теорема о дифференцируемости сложной ф.м.п.
- 21. Дифференциал ф.м.п. Определение, геометрический смысл.

- 22. Инвариантность формы дифференциала 1-го порядка.
- 23. Производная по направлению. Градиент.
- 24. Частные производные высших порядков. Понятие. Достаточное условие равенства смешанных производных.
- 25. Дифференциалы высших порядков ф.м.п. Неинвариантность их формы.
- 26. Формула Тейлора для ф.м.п.
- 27. Понятие экстремума ф.м.п. Необходимое условие локального экстремума.
- 28. Достаточное условие локального экстремума ф.м.п.
- 29. Георема о дифференцируемости функции одной переменной, заданной неявно.
- 30. Касательная плоскость и нормаль к поверхности.
- 31. Система функций, заданных неявно. Вычисление их частных производных.
- 32. Зависимость функций. Понятие. Достаточное условие независимости.
- 33. Условный экстремум. Понятие, общий метод его поиска.
- 34. Метод множителей Лагранжа.

4.1.3. Перечень вопросов, которые выносятся на экзамен

- 1. Понятие евклидовой плоскости и евклидова пространства. Некоторые множества в Е2 и Е3.
- 2. Понятие функции 2-х и 3-х переменных. Линии и поверхности уровня. Примеры.
- 3. Понятие m-мерного координатного пространства и m-мерного евклидова пространства. Множества в них.
- 4. Сходящиеся последовательности в E^{III} . Лемма о покоординатной сходимости.
- 5. Фундаментальная последовательность в E^m. Критерий Коши.
- 6. Ограниченная последовательность в E^m.
- 7. Теорема Больцано-Вейерштрасса.
- 8. Предельная точка множества. Лемма.
- 9. Понятие предела функции многих переменных (по Гейне, по Коши). Эквивалентность определений. Арифметические свойства пределов.
- 10. Повторные пределы. Примеры. Понятие. Теорема о связи между двойными и повториыми пределами.
- 11. Определение функции многих переменных, непрерывной в точке. Примеры.
- 12. Теорема о непрерывности сложной функций многих переменных.
- 13. Теорема о сохранении знака непрерывной функции.
- 14. Теорема о прохождении непрерывной функции многих переменных через промежуточные значения.
- 15. І -я георема Вейерштрасса.
- 16. 2-я георема Вейерштрасса.
- 17. Частные производные. Понятие, примеры. Геометрический смысл.
- 18. Понятие дифференцируемости функции многих переменных. Лемма об эквивалентности 2-х определений.
- 19. Связь между дифференцируемостью и существованием частных производных, между дифференцируемостью и непрерывностью.
- 20. Геометрический смысл дифференцируемости ф.м.п.
- 21. Достаточное условие дифференцируемости функции многих переменных в точке.
- 22. Теорема о дифференцируемости сложной ф.м.п.
- 23. Дифференциал ф.м.п. Определение, геометрический смысл.
- 24. Инвариантность формы дифференциала 1-го порядка.
- 25. Производная по направлению. Градиент.
- 26. Частные производные высших порядков. Понятие. Достаточное условие равенства смешанных производных.
- 27. Дифференциалы высших порядков ф.м.п. Неинвариантность их формы.

- 28. Формула Тейлора для ф.м.п.
- 29. Понятие экстремума ф.м.п. Необходимое условие локального экстремума.
- 30. Достаточное условие локального экстремума ф.м.п.
- 31. Георема о дифференцируемости функции одной переменной, заданной неявно.
- 32. Касательная плоскость и нормаль к поверхности.
- 33. Система функций, заданных неявно. Вычисление их частных производных.
- 34. Зависимость функций. Понятие. Достаточное условие независимости.
- 35. Условный экстремум. Понятие, общий метод его поиска.
- 36. Метод множителей Лагранжа.
- 37. Функциональная последовательность. Понятие, примеры. Поточечная и равномерная сходимости функциональной последовательности.
- 38. Непрерывность предела равномерно сходящейся функциональной последовательности.
- 39. Функциональный ряд и его сходимость.
- 40. Равномерная сходимость функционального ряда. Признак Вейерштрасса.
- 41. Теорема о непрерывности суммы равномерно сходящегося функционального ряда. Следствие.
- 42. Теорема о почленном интегрировании функциональных рядов.
- 43. Теорема о почленном дифференцировании функциональных рядов.
- 44. Теорема Абеля, следствие.
- 45. Радиус сходимости степенного ряда, его вычисление.
- 46. Свойства степенных рядов.
- 47. Ряд Тейлора. Понятие. Критерий сходимости. Достаточное условие сходимости на промежутке. Необходимое условие сходимости.
- 48. Разложение элементарных функций в ряд Тейлора.
- 49. Приложения рядов Тейлора.
- 50. Задача определения объёма цилиндрического бруса. Определение двойного интеграла.
- 51. Суммы Дарбу для двойного интеграла, их свойства. Условие существования двойного интеграла.
- 52. Основные свойства двойных интегралов.
- 53. Приведение двойного интеграла к повторному для случая прямоугольной области.
- 54. Приведение двойного интеграла к повторному для случая криволинейной области.
- 55. Вычисление двойного интеграла в полярных координатах.
- 56. Замена переменных в двойном интеграле.
- 57. Приложения двойного интеграла.
- 58. Задача нахождения массы тела. Определение тройного интеграла.
- 59. Свойства тройного интеграла.
- 60. Сведение тройного интеграла к повторному для случая прямоугольного параллелепипеда.
- 61. Вычисление тройного интеграла по произвольному объёму.
- 62. Вычисление тройного интеграла в цилиндрических координатах.
- 63. Вычисление тройного интеграла в сферических координатах.
- 64. Приложения тройного интеграла.
- 65. Криволинейный интеграл 1-го рода.
- 66. Сведение криволинейного интеграла 1-го рода к определенному интегралу.
- 67. Криволинейный интеграл 2-го рода.
- 68. Существование и вычисление криволинейного интеграла 2-го рода.
- 69. Формула Грина. Вычисление площадей при помощи криволинейного интеграла 2-го рода.
- 70. Условие независимости криволинейного интеграла второго рода от пути интегрирования.
- 71. Признак полного дифференциала и нахождение первообразной для случая прямоугольной области.
- 72. Поверхностный интеграл первого рода. Понятие.
- 73. Вычисление поверхностного интеграла 1-го рода. Расчетная формула.
- 74. Вычисление площадей поверхностей.
- 75. Сторона поверхности. Ориентация поверхности и пространства.
- 76. Поверхностный интеграл второго рода.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 1 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2017. 703 с. https://biblio-online.ru/book/7C2C72EF-CCB8-46A9-8933-E57E32874DC0.
- 2. Кудрявцев, Лев Дмитриевич. Курс математического анализа: учебник для бакалавров: учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям. Т. 1 / Кудрявцев, Лев Дмитриевич; Л. Д. Кудрявцев; Моск. физико-техн. ин-т (Гос. ун-т). 6-е изд. Москва: Юрайт, 2012. 703 с. (Бакалавр. Базовый курс). ISBN 9785991618076. 50 шт.
- 3. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 2, кн. 2 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2017. 323 с. https://biblio-online.ru/book/085ABC9E-507F-4FC7-BCD7-661681AA3382.
- 4. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 2, кн. 1 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2017. 396 с. https://biblio-online.ru/book/7D271B58-9EC1-4580-8A72-3004490773F2.
- 5. Кудрявцев, Лев Дмитриевич. Курс математического анализа: учебник для бакалавров: учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям. Т. 2 / Кудрявцев, Лев Дмитриевич; Л. Д. Кудряв-

цев ; Моск. физико-техн. ин-т (Гос. ун-т). - 6-е изд. - Москва : Юрайт, 2012. - 720 с. - (Бакалавр. Базовый курс). - ISBN 9785991618939. 50 шт.

6. Калайдина, Галина Вениаминовна (КубГУ). Математический анализ. Пределы. Непрерывность: учебное пособие / Г. В. Калайдина, Н. М. Сеидова; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. - Краснодар: [Кубанский государственный университет], 2018. - 114 с.: ил. - Библиогр.: с. 113. - ISBN 978-5-8209-1495-9:70 шт.

5.2 Дополнительная литература:

- 1. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Электронный ресурс] : учебник : в 3 т. Т. 1 / Фихтенгольц Г. М. СПб. : Лань, 2018. 608 с. https://e.lanbook.com/book/100938#authors.
- 2. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Электронный ресурс]: учебник: в 3 т. Т. 2 / Фихтенгольц Г. М. СПб.: Лань, 2018. 800 с. https://e.lanbook.com/book/104963#authors.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Википедия, свободная энциклопедия. [Электронный ресурс]. Wikipedia http://ru.wikipedia.org
- 2. http://www.nsu.ru/icen/grants/cmet/node22.html (Методы оптимизации. Минимизация функционала)
 - 3. http://allmath.ru (Вся математика в одном месте)

7. Методические указания для обучающихся по освоению дисциплины

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса

8.1 Перечень информационных технологий.

Использование электронных презентаций при проведении лекционных и практических занятий.

8.2 Перечень необходимого программного обеспечения.

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.

3. Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска Ауд. 129, 131, A3016, A305, A307
	Лабораторные занятия	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Групповые (индивиду- альные) консультации	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета. 102-А и читальный зал