Аннотация программы по дисциплине

Б1.В.05 «ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» 1 курс 01.04.02, семестр 1, количество з.е. 2

Цель дисциплины: изучение методов построения математических моделей на основе уравнений математической физики, овладение аппаратом математической физики и выработку у будущих специалистов теоретических знаний и умений формулировать задачи прикладного исследования в области математической физики и оценивать средства, необходимые для его проведения, получение опыта эффективного применения математических методов в научной деятельности, формирование профессиональных навыков исследователя.

Задачи дисциплины:

- усвоение идей и методов математической физики, необходимых для решения теоретических и прикладных задач применения дисциплины;
- формирование навыков построения математических моделей, выбора адекватного математического аппарата их исследования, анализа и практической интерпретации полученных математических результатов исследования реальной задачи;
- формирование творческого подхода к моделированию различных процессов; привитие практических навыков использования методов математической физики при решении прикладных задач.

Место дисциплины в структуре ООП ВО:

Курсы обязательные для предварительного изучения: математический анализ, дифференциальные уравнения, уравнения математической физики, теория функций комплексного переменного.

материал Дисциплины, которых используется данной дисциплины: в математические методы представления И анализа моделей, модели механики деформируемого твердого тела, математические модели механики разрушения, модели тепломассопереноса, интегральные уравнения, моделирование экологических процессов и систем, электрохимическая гидродинамика.

Результаты обучения (владение знаниями, умениями, опытом, компетенциями):

Код компетенции	Формулировка компетенции						
ОК-1	способностью к абстрактному мышлению, анализу, синтезу						
Знать	 понятия и концепции математической физики; подходы к исследованию уравнений математической физики, лежащие в основе построения эффективных аналитико-численных методов решения задач 						
Уметь	 перевести конкретную прикладную задачу на язык дифференциальных уравнений с частными производными или интегральных уравнений и определить пути ее решения; использовать современные теории для решения научно-исследовательских и прикладных задач. 						
Владеть	 методологией формулирования и решения прикладных задач математической физики; навыками анализа, сопоставления и обобщения результатов теоретических и практических исследований в предметной области; навыками построения математических моделей физических процессов. 						
ОПК-4	способностью использовать и применять углубленные знания в области прикладной математики и информатики						
Знать	 современные тенденции развития фундаментальных и прикладных исследований в области математической физики; способы использования современных методов для решения научных и практических задач 						

Уметь	 применять методы математической физики к исследованию математической 						
	модели и оценки ее адекватности;						
	 содержательно интерпретировать результаты. 						
Владеть	математической культурой;						
	- основными методами исследования и решения линейных и нелинейных						
	дифференциальных уравнений в частных производных и интегральных уравнений						
ПК-3	способностью разрабатывать и применять математические методы, системное и						
	прикладное программное обеспечение для решения задач научной и проектно-						
	технологической деятельности						
Знать	 принципы выбора методов и средств изучения математической модели 						
Уметь	– использовать тематические информационные ресурсы о результатах						
	современных исследований в области математической физики						
Владеть	- навыками использования пакетов прикладных программ для обеспечения процесса						
	моделирования на основе математической физики						

Содержание и структура дисциплины

	Наименование разделов	Количество часов				
№		Всего	Аудиторная		Внеаудиторная	
			работа		работа	
			Л	ЛР	контроль	CP
1	Некоторые модели, описываемые уравнениями в частных производных	4	2	_	2	_
2	Обобщенные функции. Свертка и преобразование Фурье		2	2	4	2
3	Пространства Соболева. Обобщенные решения задач Дирихле и Неймана	10	2	2	4	2
4	Специальные функции в математической физике	12	2	4	4	2
5	Интегральные уравнения. Источники возникновения и приложения интегральных уравнений.	14	4	4	4	2
6	Вариационные задачи в математической физике	10	2	2	4	2
7	Нелинейные уравнения. Методы исследования	11,4	2	2	4,7	3
Промежуточная аттестация (ИКР)		0,3	_	_	_	_
Итого:		72	16	16	26,7	13

Курсовые проекты или работы: не предусмотрены

Интерактивные образовательные технологии, используемые в аудиторных занятиях: слайд-лекции, разбор конкретных ситуаций

Вид аттестации: экзамен

Основная литература

- 1. Жибер, А.В. Уравнения математической физики. Нелинейные интегрируемые уравнения / А.В. Жибер, Р.Д. Муртазина, И.Т. Хабибуллин, А.Б. Шабат. М: Юрайт, 2017. 375 с. [Электронный ресурс]. Режим доступа: https://biblio-online.ru/book/771C984F-6865-4C58-975B-8020A14E00FF.
- 2. Сабитов К.Б. Уравнения математической физики. М.: Физматлит, 2013. 352 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/59660.
- 3. Сабитов К.Б. К теории уравнений смешанного типа / К.Б. Сабитов. М.: Физматлит, 2014. 304 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/59713.
- 4. Треногин В.А. Уравнения в частных производных / В.А. Треногин, И.С. Недосекина. М.: Физматлит, 2013. 228 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/59744.

Автор – профессор кафедры математического моделирования, д.ф.-м.н. Павлова А.В.