АННОТАЦИЯ

Дисциплины Б1. В.ОД.5. «Химия функциональных материалов» Направление подготовки/специальность 04.04.01 — «Химия» код и наименование направления подготовки/специальности

Направленность (профиль) «Неорганическая химия» Магистр

Объем трудоемкости: 4 зачетных единицы (144,0 часов, из них — 72,5 контактная работа: лекционных 18 ч., лабораторных работ 54 ч., UKP - 0.5 часа; контроль 26,7 часа. Самостоятельная работа 44,8 часа.)

Цель дисциплины:

Химия функциональных материалов - один из разделов современного естествознания, представляет собой раздел химии, изучающий взаимосвязь между структурой, составом и их функциональными свойствами веществ с учетом современных воззрений. Целью изучения данной дисциплины является:

- освещение теоретических физико-химических подходов к описанию различных свойств твердофазных веществ и соединений и материалов на их основе;
- освещение основных типов материалов в разрезе их функциональных характеристик, методов их получения и анализа свойств;
- формирование умений и навыков применения студентами полученных знаний для решения профессиональных задач.

Задачи дисциплины:

- формирование системных представлений о особенностях строения и свойств различных типов функциональных материалов;
- формирование системных знаний, позволяющих владеть методами направленного получения веществ, соединений и материалов на их основе в полидисперсном, микрокристаллическом состоянии, в виде пленок и композитов;
- формирование знаний, позволяющих студенту самостоятельно проводить поиск новых материалов с заданными свойствами и ориентироваться в современных тенденциях в этой области.

Место дисциплины в структуре ООП ВО

Дисциплина «Химия функциональных материалов» относится к вариативной части Блока 1 учебного плана подготовки специалиста по профилю.

Для изучения дисциплины «Химия функциональных материалов» необходимы знания по таким дисциплинам как кристаллохимия, квантовая химия, неорганическая и органическая химия, физика.

Курс необходим для выполнения научно-исследовательских работ в рамках учебного процесса и при выполнении курсовых и магистерских работ по направлению «Неорганическая химия».

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных и профессиональных компетенций ($O\Pi K/\Pi K$)

	II.	Communication	D торууу тото	изучения учебной д	***************************************	
$N_{\underline{0}}$	Индекс	Содержание				
П.П.	компет	компетенции (или её	обучающиеся должны			
1	енции	части)	знать	уметь	владеть	
1.		способностью к	– особенности	– использовать	- навыками	
	OK-1	абстрактному	химического,	знания о составе,	применения	
		мышлению, анализу,	фазового	структуре и	современных	
		синтезу	состава и	функциональной	концепций и	
			структуры	способности	воззрений, а	
			материалов,	известных типов	также	
2.	ОПК-1	способностью	влияющие на	материалов для	методов	
		использовать и	ИХ	получения	химии в	
		развивать	макроскопичес	систем с	практической	
		теоретические	кие функции;	заданными	И	
		основы	функциональн	свойствами;	эксперимента	
		традиционных и	ые (по типам)	–прогнозировать	льной работе;	
		новых разделов	свойства	физическо-	- современ-	
		химии при решении	обусловливаю	химические	ными мето-	
		профессиональных	щие их сферы	свойства и	дами иссле-	
		задач	применения;	реакционную	дования и	
3.	ПК-1	способностью	– методы	способность	способами	
		проводить научные	получения	материалов на	синтеза и	
		исследования по	материалов с	основе знания их	анализа	
		сформулированной	заданными	химического,	материалов	
		тематике,	структурой и	фазового	различного	
		самостоятельно	свойствами.	состава,	фазового	
		составлять план		структуры и	состава	
		исследования и		особенностей		
		получать новые		проявления тех		
		научные и		или иных		
		прикладные		свойств		
		результаты				

Основные разделы дисциплины:

	основные раздены днециини	Количество часов					
№ разд ела	Наименование разделов	Всего	Аудиторная работа			Самостоятельная работа	
			Л	П3	ЛР	1	
1	2	3	4	5	6	7	
1.	Современные представления о строении и физико-химических факторах, влияющих на конечные свойства материалов. Современные проблемы химии материалов	37	1	-	24	12	
2.	Типы функциональных твердофазных материалов, связь их строения и свойств	60	7	-	24	29	
3.	Типы функциональных газо-, и жидкофазных материалов, связь их строения и свойств	10.8	1	-	6	3.8	
	Итого по дисциплине:		18,0	0,0	54,0	45,0	

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: зачет, экзамен

Основная литература:

- 1.Третьяков Ю.Л., Путляев В.И., Введение в химию твердофазных материалов. Учебное пособие. М.: Наука, 2006, 402 с.
- 2. Раков Э.Г. Неорганические наноматериалы. Учебное пособие. М.: Бином, 2013, -320 с.
- 3. Пахомов Н.А. Научные основы приготовления катализаторов. Новосибирск, Сиб отд. РАН, $2011-255\ c.$

Автор РПД <u>канд. хим. наук Петров Н.Н.</u> $_{\Phi.И.О.}$