министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.13 Численные методы

Направление

подготовки/специальность 01.03.02 Прикладная математика и информатика

Направленность (профиль) / специализация Математическое моделирование в естествознании и технологиях

Форма обучения Очная

Квалификация Бакалавр

Рабочая программа дисциплины «Численные методы» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки / специальности 01.03.02 Прикладная математика и информатика.

Программу составил:

А.Д. Колотий, доцент кафедры прикладной математики, кандидат физ.-мат. наук

Рабочая программа дисциплины «Численные методы» утверждена на заседании кафедры прикладной математики протокол №9 от 06.05.2025

И.о. заведующего кафедрой (разработчика)

А.В. Письменский

подпись

Рабочая программа обсуждена на заседании кафедры математического моделирования протокол № 11 от 22.05.2025 Заведующий кафедрой (выпускающей) В.А. Бабешко

полинсь

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от 23.05.2025

Председатель УМК факультета

А. В. Коваленко

подпись

Рецензенты:

Бегларян М. Е., зав. кафедрой социально-гуманитарных и естественнонаучных дисциплин СКФ ФГБОУВО «Российский государственный университет правосудия», канд. физ.-мат. наук, доцент

Рубцов Сергей Евгеньевич, кандидат физико-математических наук, доцент кафедры математического моделирования ФГБГОУ «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Развитие профессиональных компетенций по приобретению практических навыков использования численных методов для решения различных физико-математических задач.

1.2 Задачи дисциплины

- актуализация и развитие знаний в области программирования численных методов;
- овладение математической и алгоритмической составляющей численных методов, применяемых при решении научно-технических задач;
- формирование устойчивых навыков применения компьютерных технологий для реализации численных методов, в научном анализе ситуаций, возникающих в ходе создания новой техники и новых технологий;
- умение отбирать наиболее эффективные численные методы решения конкретной задачи, учитывая такие факторы, как алгоритмическую простоту метода, точность вычислений, быстроту сходимости, наличие дополнительных условий для применения метода, устойчивость метода;

умение интерпретировать результаты расчетов, полученных численными методами.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Численные методы» относится к «Обязательная часть» Блока 1 «Дисциплины (модули)» учебного плана.

Данная дисциплина тесно связана с дисциплинами базовой части Блока 1: математический анализ, алгебра и аналитическая геометрия, основы программирования, дифференциальные уравнения, методы оптимизации, практикум по численным методам.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ОПК-2 Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач

Знать ИОПК-2.2 (40.001 A/02.5 Зн.2) Отечественный и международный опыт в соответствующей области исследований, методы адаптации существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

ИОПК-2.3 (40.001 A/02.5 Зн.4) Методы проведения экспериментов и наблюдений, обобщения и обработки информации, методы использования и адаптации существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

Уметь ИОПК-2.6 (40.001 A/02.5 У.3) Применять методы проведения экспериментов, использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач

Владеть

ИОПК-2.9 (40.001 A/02.5 Тд.1) Проведение экспериментов с использованием и адаптацией существующих математических методов в соответствии с установленными полномочиями

ИОПК-2.11 (40.001 A/02.5 Др.2 Тд.) Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач, использование и адаптирование существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 6 зач. ед. (216часов), их распределение по видам работ представлено в таблице

Вид учебной работы		Всего			стры сы)	
			5	6		
Контактная работа, в то		90,6	38,3	52,3		
Аудиторные занятия (всего):		82	34	48		
Занятия лекционного типа		82	34	48		
Лабораторные занятия						
Занятия семинарского тип	а (семинары,					
практические занятия)						
Иная контактная работа	•	8,6	4,3	4,3		
Контроль самостоятельной работы (КСР)		8	4	4		
Промежуточная аттестация (ИКР)		0,6	0,3	0,3		
Самостоятельная работа, в том числе:		45	34	11		
Самостоятельное изучение разделов,						
самоподготовка (проработ	ка и повторение					
лекционного материала и	материала учебников	27	20	7		
и учебных пособий, подго	говка к	21	20	/		
лабораторным и практичес	ским занятиям,					
коллоквиумам и т.д.)						
Подготовка к текущему ко	нтролю	18	14	4		
Контроль:			35,7	44,7		
Подготовка к экзамену		80,4	35,7	44,7		
	час.	216	108	108		
	в том числе					
Общая трудоемкость	контактная	90,6	38,3	52,3		
	работа					
	зач. ед	6	3	3		

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре

			Кол	ичество ч	асов	
Nº	Наименование разделов (тем)		Аудиторная работа			Внеауд иторна я работа
1	2	2	Л	П3	ЛР	CPC
1		3	4	5	6	7
1.	Обусловленность математической модели и линейных систем. Понятие и примеры.	6	3			3
2.	Прямые методы решения СЛАУ.	9	5			4
3.			4			4
4.	4. Итерационные методы решения СЛАУ. Сходимость, оценка погрешности.		4			4
5.	Интерполяция. Интерполяционные		4			4
6.	Многочлены Чебышева. Интерполяция сплайнами. Метод наименьших квадратов.	8	4			4
7.	Численное дифференцирование. Оценка погрешности.	6	3			3
8.	Вычисление корней нелинейных уравнений. Сходимость, оценка погрешности.	7	3			4
9.	Решение систем нелинейных уравнений. Теоремы о сходимости.	8	4			4
ИТС	ИТОГО по разделам дисциплины		34			34
Контроль самостоятельной работы (КСР)		4				
Пром	Промежуточная аттестация (ИКР)					
Подг	отовка к текущему контролю	35,7				
Обш	ая трудоемкость по дисциплине	108				

Разделы (темы) дисциплины, изучаемые в 6 семестре

			Кол	ичество ч	асов	
№	Наименование разделов (тем)		Аудиторная работа			Внеауд иторна я работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	1. Квадратурные формулы. Правило Рунге оценки погрешности.		6			2
2.	2. Квадратурные формулы наивысшей алгебраической точности.		6			2
3.	3. Полная и частичная алгебраическая проблема собственных значений.		6			2
4.	Итерационные методы решения проблемы собственных значений.		6			1
5.	5. Решение задачи Коши для ОДУ и систем ОДУ.		7			1
6.	6. Решение краевых задач для дифференциальных и линейных уравнений.		7			1
7. Разностные схемы для уравнений математической физики.		12	10			2
ИТОГО по разделам дисциплины		59	48			11
Конт	роль самостоятельной работы (КСР)	4				

			Количество часов				
Nº	Наименование разделов (тем)	Всего	Аудиторная работа		пбота	Внеауд иторна я работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
Промежуточная аттестация (ИКР)		0,3					
Подготовка к текущему контролю		44,7					
Обш	ая трудоемкость по дисциплине	108					

Примечание: Π – лекции, Π 3 – практические занятия/семинары, Π P – лабораторные занятия, CPC – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1.	Обусловленность математической модели и линейных систем. Понятие и примеры.	Основные этапы математического моделирования. Классификация погрешностей. Особенности машинной арифметики. Примеры устойчивых и неустойчивых математических задач. Обусловленность СЛАУ, примеры.	T
2.	прогонки, корректность и устойчивость.		Т
3.	Ортогональные преобразования матрицы для решения СЛАУ.	Поведение числа обусловленности при матричных преобразованиях. Метод вращений. Метод отражений.	T
4.	Итерационные методы решения СЛАУ. Сходимость, оценка погрешности.	Метод простой итерации, сходимость, апостериорная оценка погрешности. Метод Якоби. Метод Зейделя, сходимость, апостериорная оценка погрешности. Метод релаксации, сходимость.	T
5.	Интерполяция. Интерполяционные многочлены. Оценка погрешности интерполяции.	Интерполяционные многочлены Лагранжа и Ньютона. Оценка остаточного члена интерполяционного многочлена. Интерполяция с кратными узлами.	T
6.	Многочлены Чебышева. Интерполяция сплайнами. Метод наименьших квадратов.	Минимизация оценки остаточного члена интерполяционной формулы. Сходимость итерационного процесса. Теорема Фабера. Интерполяционный кубический сплайн, построение, оценка погрешности. Локальный сплайн. Метод наименьших квадратов.	Т
7.	Численное дифференцирование. Оценка погрешности.	Метод неопределенных коэффициентов. Оценка погрешности аппроксимации формул численного дифференцирования с помощью формулы Тейлора. Вычислительная погрешность.	К
8.	Вычисление корней нелинейных уравнений. Сходимость, оценка погрешности.	Метод дихотомии. Метод простой итерации, сходимость, оценка погрешности. Метод Ньютона, геометрическая интерпретация, сходимость, оценка погрешности. Метод секущих, сходимость, геометрическая интерпретация. Метод обратной квадратичной интерполяции. Метод парабол.	T

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
9.	Решение систем нелинейных уравнений. Теоремы о сходимости.	Метод простой итерации, сходимость. Метод Зейделя. Метод Ньютона, сходимость, модификации. Метод секущих. Метод продолжения по параметру. Сведение задачи решения системы нелинейных уравнений к задаче минимизации.	Т
10.	Квадратурные формулы. Правило Рунге оценки погрешности.	Каноническая и составная формулы прямоугольников, трапеций и Симсона. Порядок точности и обусловленность квадратурной формулы. Квадратурные формулы интерполяционного типа.	Т
11.	Квадратурные формулы наивысшей алгебраической точности.	Квадратурные формулы Гаусса. Апостериорная оценка погрешности. Адаптивные квадратурные алгоритмы. Метод Филона.	Т
12.	Полная и частичная алгебраическая проблема собственных значений.	Свойства собственных значений и собственных векторов. Обусловленность задачи на собственные значения. Метод интерполяции. Степенной метод. Метод исчерпывания.	Т
13.	Итерационные методы решения проблемы собственных значений.	Нахождение собственных векторов обратными итерациями. Метод итерационного вращения Якоби для симметричной матрицы, сходимость. Метод вращений с выбором оптимального элемента. QR-алгоритм, сходимость. Нахождение QR разложения с помощью вращений.	К
14.	Решение задачи Коши для ОДУ и систем ОДУ.	Метод Эйлера. Метод Рунге-Кутта, оценка погрешности по правилу двойного пересчета. Методы Адамса. Численное интегрирование жестких систем ОДУ.	Т
15.	Решение краевых задач для дифференциальных и линейных уравнений.	Метод стрельбы. Метод конечных разностей, условие устойчивости. Метод линеаризации. Утверждение о сходимости решения разностной задачи к решению простейшей краевой задачи.	Т
16.	Разностные схемы для уравнений математической физики.	Разностные схемы для уравнений теплопроводности, Пуассона и волнового уравнения.	Т

Примечание: ЛP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, $P\Gamma 3$ - расчетно-графического задания, P - написание реферата, P - эссе, P - коллоквиум, P - тестирование, P - решение задач.

2.3.2 Занятия семинарского типа

Не предусмотрены.

Примечание: $\mathit{ЛP}$ – отчет/защита лабораторной работы, $\mathit{K\Pi}$ - выполнение курсового проекта, KP - курсовой работы, $\mathit{PF3}$ - расчетно-графического задания, P - написание реферата, P - эссе, K - коллоквиум, T – тестирование, $\mathit{P3}$ – решение задач.

2.3.3 Лабораторные занятия

Не предусмотрены.

Примечание: ЛP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, $P\Gamma 3$ - расчетно-графического задания, P - написание реферата, P - эссе, P - коллоквиум, P - тестирование, P - решение задач.

2.3.4 Примерная тематика курсовых работ (проектов)

Не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В соответствии с требованиями $\Phi \Gamma O C$ в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал. Создание и использование диагностических тестов является неотъемлемой частью данной технологии.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.

- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:
- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Семестр	Вид занятия	Используемые интерактивные образовательные технологии	количество интерактивных часов
5	Л, ЛР, СРС	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	68
6	Л, ЛР, СРС	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	59
Итого			127

Примечание: Π – лекции, Π 3 – практические занятия/семинары, Π P – лабораторные занятия, CPC – самостоятельная работа студента

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название лисциплины».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме опроса, разноуровневых заданий и **промежуточной аттестации** в форме вопросов и заданий к экзамену, зачету.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

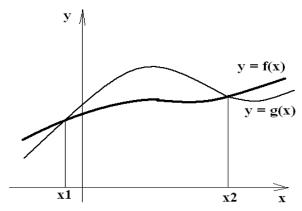
Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

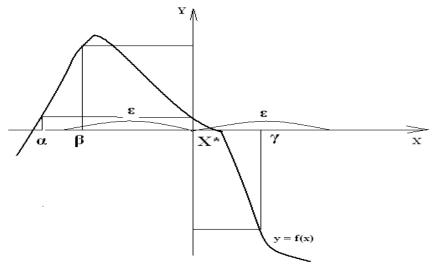
Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

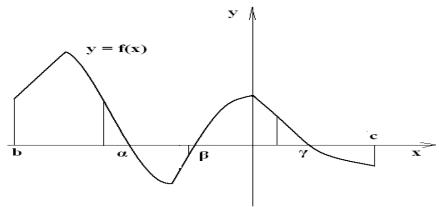
N.C.	IC	I	Наименование оценочного средства	
№ п/п	Контролируемые разделы (темы) дисциплины*	Код контролируемой компетенции (или ее части)	Текущий	
11/11	(темы) дисциплины	части)	контроль	Промежуточная аттестация
	Обусловленность	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный У	Вопрос на
	математической модели и	(40.001 A/02.5 3н.4) ИОПК-2.6. (40.001	опрос	экзамене 1-3
1	линейных систем.	А/02.5 У.З) ИОПК-2.9. (40.001 А/02.5 Тд.1)	onpoc	JKSamene 1-3
	Понятие и примеры.	ИОПК-2.11. (40.001 A/02.5 Др.2 Тд.)		
	Прямые методы решения	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
	СЛАУ.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 4-9
2	Con 10.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)	опрос	JK3aMene 4-7
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Ортогональные	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
	преобразования матрицы	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 10-12
3	для решения СЛАУ.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)	1	oksamene 10 12
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Итерационные методы	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
	решения СЛАУ.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 13-17
4	Сходимость, оценка	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)	1	
	погрешности.	ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Интерполяция.	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
	Интерполяционные	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 18-21
5	многочлены. Оценка	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
	погрешности	ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	интерполяции.			
	Многочлены Чебышева.	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
6	Интерполяция	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 22-26
O	сплайнами. Метод	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
	наименьших квадратов.	ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Численное	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
7	дифференцирование.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 27-29
,	Оценка погрешности.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Вычисление корней	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
8	нелинейных уравнений.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 30-35
O	Сходимость, оценка	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
	погрешности.	ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Решение систем	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
9	нелинейных уравнений.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 36-39
	Теоремы о сходимости.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		


	•			
	Квадратурные формулы.	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
10	Правило Рунге оценки	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 40-43
10	погрешности.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Квадратурные формулы	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
11	наивысшей	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 44-47
11	алгебраической точности.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Полная и частичная	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
12	алгебраическая проблема	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 48-51
12	собственных значений.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Итерационные методы	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
13	решения проблемы	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 52-57
13	собственных значений.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Решение задачи Коши	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
14	для ОДУ и систем ОДУ.	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 58-63
14		А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Решение краевых задач	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
15	для дифференциальных и	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 64-68
13	линейных уравнений.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		
	Разностные схемы для	ИОПК-2.2 (40.001 А/02.5 Зн.2) ИОПК-2.3	Устный	Вопрос на
16	уравнений	(40.001 А/02.5 Зн.4) ИОПК-2.6. (40.001	опрос	экзамене 69-74
10	математической физики.	А/02.5 У.3) ИОПК-2.9. (40.001 А/02.5 Тд.1)		
		ИОПК-2.11. (40.001 А/02.5 Др.2 Тд.)		

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы


Вопросы для коллоквиумов, тестирования

- 1. Какое требование обязательно при построении интерполяционного многочлена Лагранжа?
 - а. узлы интерполяции располагаются на равном расстоянии друг от друга;
 - b. крайние узлы интерполяции совпадают с концами отрезка интерполирования;
 - с. количество точек интерполяции равно степени интерполяционного многочлена:
 - d. интерполяционный многочлен в узлах интерполяции принимает значения интерполируемой функции.
- 2. Пусть точное значение A = 500, а приближенное а = 500,5. Относительная погрешность приближенного числа равна:
 - a. 0,001;
 - b. 0,01;
 - c. 0.1:
 - d. 0,5.
- 3. Пусть дана система линейных алгебраических уравнений, у которой существует единственное решение. При использовании метода простой итерации для её решения в промежуточных вычислениях допущена ошибка. Тогда приближенное решение системы:
 - а. найти невозможно;
 - b. найти можно только если задано достаточно близкое к точному решению начальное приближение;
 - с. найти можно только в случае, когда в матрице системы нет нулевых элементов;


- d. найти можно.
- 4. Какое из условий не является обязательным в определении интерполяционного кубического сплайна?
 - а. первая производная на каждом частичном отрезке является полиномом степени не выше второй;
 - b. вторая производная непрерывна на всем отрезке;
 - с. третья производная непрерывна в точках «склейки»;
 - d. значения сплайна заданы в нескольких точках.
 - 5. Какое из следующих утверждений верно?

- а. функция y = g'(x) приближает функцию y = f'(x) в точке x_1 лучше, чем в точке x_2 ;
- b. функция y = g'(x) приближает функцию y = f'(x) в точке x_1 так же хорошо, как и в точке x_2 ;
- с. функция y = g'(x) приближает функцию y = f'(x) в точке x_1 хуже, чем в точке x_2 .
- 6. Пусть A точное значение некоторой величины. Абсолютной погрешностью приближенного числа а называется:
 - а. наименьшее доступное число Δa , не превосходящее |A a|;
 - b. наименьшее доступное число Δa , не меньшее |A a|;
 - с. наибольшее доступное число Δa , не меньшее |A a|;
 - d. наибольшее доступное число Δa , не превосходящее |A-a|.
- 7. Какой из методов не относится к точным методам решения систем линейных уравнений?
 - а. метод Гаусса;
 - b. метод Зейделя;
 - с. метод Крамера;
 - d. метод прогонки.
- 8. Пусть x^* точный, а α , β , γ приближённые корн уравнения f(x) = 0. По рисунку определите, какая из точек является лучшим приближением к корню?

- a. α;
- b. β;
- c. γ.
- 9. Уравнение f(x) = 0 на отрезке [b; c] имеет три корня α , β , γ . Пользуясь рисунком, определите, какой корень получится в результате применения метода половинного деления?

- a. α;
- b. β;
- c. γ;
- d. ответить нельзя.
- 10. При замене краевой задачи сеточной используются формулы:
- 11. Является ли матрица $\begin{pmatrix} 2 & -0.2 & 0.3 & 0.4 \\ 0.3 & -3 & 1 & -1.4 \\ 0.7 & -0.8 & 4 & 2.6 \\ -0.5 & 1.2 & -2.5 & -5 \end{pmatrix}$ матрицей с преобладающей

главной диагональю?

- а. является;
- b. нет, т.к. в 1-ой строке нарушается условие преобладания главной диагонали;
- с. нет, т.к. во 2-ой строке нарушается условие преобладания главной диагонали;
- d. нет, т.к. в 3-ой строке нарушается условие преобладания главной диагонали;
- е. нет, т.к. в 4-ой строке нарушается условие преобладания главной диагонали.
- 12. Какое из чисел имеет такой же порядок, как и число $2.5*10^{-3}$?
 - a. 0,008;
 - b. 10^{-2} ;
 - c. $0.56*10^{-4}$;
 - d. 0,00025.

13. Пусть задана квадратичная функция y(x) и точки: x_0 , $x_1 = x_0 + h$, $x_2 = x_1 + h$. Какая из формул даёт точное значение?

a.
$$y'(x_1) = \frac{y(x_1) - y(x_0)}{h}$$
;
b. $y'(x_1) = \frac{y(x_2) - y(x_0)}{2h}$;
c. $y'(x_0) = \frac{y(x_1) - y(x_0)}{h}$;
d. $y'(x_1) = \frac{y(x_2) - y(x_1)}{h}$.

- 14. Интерполяционный многочлен Ньютона задан формулой N = 1 2*(x 1) + 3*(x 1)*(x 3). Какое число является значением заданной функции в одной из точек интерполяции?
 - a. -4;
 - b. 12;
 - c. 17;
 - d. 29.
- 15. Для какого из приближённых методов отыскания корня уравнения достаточно задать одно начальное приближение?
 - а. метод хорд;
 - b. метод секущих;
 - с. метод касательных;
 - d. метод половинного деления.
- 16. Какое из утверждений о методе Эйлера решения задачи Коши не является верным?
 - а. метод Эйлера имеет второй порядок точности;
 - b. метод Эйлера является частным случаем метода Рунге-Кутты;
 - с. метод Эйлера является частным случаем метода разложения решения в ряд Тейлора;
 - d. в вычислениях значений приближённого решения при переходе к следующей точке допускается менять шаг.
- 17. Интерполяционный многочлен какой степени используется для построения квадратуры Симпсона численного интегрирования?

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Вопросы для подготовки к экзамену

- 1. Основные этапы математического моделирования. Классификация погрешностей. Особенности машинной арифметики.
- 2. Корректность математической модели. Примеры устойчивых и неустойчивых математических задач. Обусловленность математической модели. Обусловленность вычислительного алгоритма.
 - 3. Обусловленность линейных алгебраических систем. Примеры.
- 4. Метод исключения Гаусса решения линейных алгебраических систем, вычисления определителя и нахождения обратной матрицы.
 - 5. LU-разложение матрицы. Условия существования LU-разложения.
- 6. Решение линейных систем с помощью LU-разложения. Метод Гаусса с выбором ведущего элемента.
 - 7. Метод квадратного корня.
 - 8. Метод прогонки.
 - 9. Условия корректности и устойчивости метода прогонки.
 - 10. Поведение числа обусловленности при матричных преобразованиях.

- 11. Метод вращений.
- 12. Метод отражений.
- 13. Метод простой итерации для систем линейных алгебраических уравнений. Достаточное условие сходимости.
- 14. Метод Якоби решения систем линейных уравнений. Апостериорная оценка погрешности для метода простой итерации. Необходимое и достаточное условие сходимости метода простой итерации (без док-ва).
- 15. Метод Зейделя для систем вида x=Bx+C, достаточное условие сходимости (без док-ва). Метод Зейделя для систем вида Ax=b. Теорема о сходимости.
- 16. Апостериорная оценка погрешности в методе Зейделя. Теорема о сходимости метода Зейделя для случая симметричной матрицы (без док-ва).
- 17. Метод релаксации, теорема о сходимости (без док-ва). О других итерационных методах решения СЛАУ.
 - 18. Интерполяционный многочлен Лагранжа.
 - 19. Интерполяционный многочлен Ньютона.
 - 20. Оценка остаточного члена интерполяционного многочлена.
 - 21. Интерполяция с кратными узлами. Пример.
 - 22. Многочлены Чебышева П. Л.
- 23. Минимизация оценки остаточного члена интерполяционной формулы. О сходимости интерполяционного процесса. Теорема Фабера (без док- ва).
- 24. Интерполяция сплайнами. Интерполяционный кубический сплайн. Локальный сплайн.
- 25. Глобальные способы построения кубических сплайнов. Оценка погрешности кубического сплайна.
 - 26. Метод наименьших квадратов.
- 27. Численное дифференцирование. Метод неопределенных коэффициентов. Примеры построения формул численного дифференцирования.
- 28. Оценка погрешности аппроксимации формул численного дифференцирования с помощью формулы Тейлора.
 - 29. О вычислительной погрешности формул численного дифференцирования.
- 30. Решение нелинейных уравнений. Метод дихотомии. Метод простой итерации, достаточное условие сходимости.
- 31. Определение итерационного процесса р-ого порядка. Получение оценок для контроля погрешности в методе простой итерации.
 - 32. Метод Ньютона, геометрическая интерпретация.
 - 33. Теорема о сходимости метода Ньютона. Критерий оценки погрешности.
- 34. Метод секущих, геометрическая интерпретация. Теорема о сходимости метода секущих (без док-ва).
 - 35. Метод обратной квадратичной интерполяции. Метод парабол.
- 36. Системы нелинейных уравнений. Метод простой итерации. Теорема о сходимости метода простой итерации. Метод Зейделя.
 - 37. Метод Ньютона решения систем нелинейных уравнений. Теорема о сходимости.
- 38. Модификации метода Ньютона. Метод секущих. Сведение задачи решения системы нелинейных уравнений к задаче минимизации.
 - 39. Метод продолжения по параметру.
- 40. Численное интегрирование. Формула прямоугольников каноническая и составная.
 - 41. Формула трапеций каноническая и составная.
 - 42. Формула Симсона каноническая и составная.
- 43. Порядок точности квадратурной формулы. Квадратурные формулы интерполяционного типа. Обусловленность квадратурных формул.
 - 44. Квадратурные формулы Гаусса.

- 45. Апостериорная оценка погрешности.
- 46. Адаптивные квадратурные алгоритмы.
- 47. Метод Филона.
- 48. Алгебраическая проблема собственных значений. Свойства собственных значений и собственных векторов. Обусловленность задачи на собственные значения.
- 49. Метод интерполяции. Нахождение собственных значений трехдиагональной матрицы.
 - 50. Степенной метод.
 - 51. Метод исчерпывания.
 - 52. Нахождение собственных векторов обратными итерациями.
- 53. Метод итерационного вращения Якоби для нахождения собственных значений и собственных векторов симметричной матрицы с выбором максимального элемента.
 - 54. Доказательство сходимости итерационного метода вращений
- 55. Нахождение собственных векторов итерационным методом вращения. Метод вращений с выбором оптимального элемента.
 - 56. QR-алгоритм. Утверждение о сходимости QR-алгоритма.
- 57. Приведение матрицы к правой почти треугольной матрице Хессенберга. Нахождение QR разложения с помощью вращений.
- 58. Метод Эйлера решения задачи Коши для обыкновенных дифференциальных уравнений.
- 59. Метод Рунге-Кутта. Получение расчетных формул второго порядка аппроксимации.
 - 60. Метод Рунге-Кутта для систем дифференциальных уравнений.
 - 61. Оценка погрешности метода Рунге-Кутта по правилу двойного пересчета.
 - 62. Методы Адамса.
- 63. Численное интегрирование жестких систем обыкновенных дифференциальных уравнений.
- 64. Метод стрельбы решения краевой задачи для дифференциального уравнения второго порядка.
 - 65. Метод стрельбы для краевой задачи общего вида.
- 66. Метод конечных разностей решения краевой задачи для линейного уравнения второго порядка. Условие устойчивости метода прогонки для полученной разностной схемы.
- 67. Утверждение о сходимости решения разностной задачи к решению простейшей краевой задачи.
- 68. Метод линеаризации. Разностный метод решения краевой задачи для нелинейного уравнения второго порядка.
- 69. Явная разностная схема для одномерного уравнения теплопроводности, получение условия устойчивости методом гармоник.
- 70. Чисто неявная разностная схема для одномерного уравнения теплопроводности. Исследование устойчивости.
- 71. Семейство разностных схем для одномерного уравнения теплопроводности, исследование погрешности аппроксимации, условие устойчивости.
 - 72. Разностные схемы для волнового уравнения. Условие устойчивости.
 - 73. Разностные схемы для двумерного уравнения теплопроводности.
 - 74. Разностная аппроксимация задач Дирихле для уравнения Пуассона.

Критерии оценивания результатов обучения

г		
	Оценка	Критерии оценивания по экзамену
Ī	Высокий	оценку «отлично» заслуживает студент, освоивший знания, умения,
	уровень «5»	компетенции и теоретический материал без пробелов; выполнивший
	(отлично)	все задания, предусмотренные учебным планом на высоком

	качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.
Средний	оценку «хорошо» заслуживает студент, практически полностью
уровень «4»	освоивший знания, умения, компетенции и теоретический материал,
(хорошо)	учебные задания не оценены максимальным числом баллов, в
	основном сформировал практические навыки.
Пороговый	оценку «удовлетворительно» заслуживает студент, частично с
уровень «3»	пробелами освоивший знания, умения, компетенции и
(удовлетворите	теоретический материал, многие учебные задания либо не
льно)	выполнил, либо они оценены числом баллов близким к
	минимальному, некоторые практические навыки не сформированы.
Минимальный	оценку «неудовлетворительно» заслуживает студент, не освоивший
уровень «2»	знания, умения, компетенции и теоретический материал, учебные
(неудовлетвори	задания не выполнил, практические навыки не сформированы.
тельно)	

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по данному разделу, допускает незначительные ошибки, справляется с материалом без видимых затруднений; студент умеет правильно объяснять материал, подкрепляя его примерами, и, применяя полученные знания при решении практических задач.

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести примеры, решает задачи с видимыми затруднениями; довольно ограниченный объем знаний теоретического материала.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Бахвалов, Н. С. Численные методы : учебное пособие / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 9-е изд. Москва : Лаборатория знаний, 2020. 639 с. URL: https://e.lanbook.com/book/126099. ISBN 978-5-00101-836-0.
- 2. Галанин, Михаил Павлович. Методы численного анализа математических моделей / М. П. Галанин, Е. Б. Савенков. 2-е изд., испр. М.: Изд-во МГТУ им. Н. Э. Баумана, 2019. 590 с.: ил. (Математическое моделирование в технике и в технологии). Библиогр.: с. 561-575.
- 3. Самарский, Александр Андреевич. Численные методы решения задач конвекции-диффузии: [учебное пособие] / А. А. Самарский, П. Н. Вабищевич. Изд. 4-е. М.: URSS: ЛИБРОКОМ, 2019. 246 с. Библиогр.: с. 238-244.
- 4. Волков, Е.А. Численные методы: учебное пособие для вузов / Е.А. Волков. 6-е изд., стер. Санкт-Петербург: Лань, 2021. 252 с. URL: https://e.lanbook.com/book/167179. ISBN 978-5-8114-7899-6.
- 5. Гулин, Алексей Владимирович. Устойчивость нелокальных разностных систем / А. В. Гулин, Н. И. Ионкин, В. А. Морозова; Моск. гос. ун-т им. М. В. Ломоносова, Фак. вычислительной математики и кибернетики. М.: URSS: [Изд-во ЛКИ], 2019. 320 С. ISBN 9785382018874.
- 6. Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. 5-е изд., стер. Санкт-Петербург: Лань, 2022. 400 с. https://e.lanbook.com/book/210437?category=915. ISBN 978-5-8114-7899-6.
- 7. Гулин, Алексей Владимирович. Устойчивость нелокальных разностных систем / А. В. Гулин, Н. И. Ионкин, В. А. Морозова; Моск. гос. ун-т им. М. В. Ломоносова, Фак. вычислительной математики и кибернетики. М.: URSS: [Изд-во ЛКИ], 2019. 320 С. ISBN 9785382018874.
- 8. Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения : учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. 5-е изд., стер. Санкт-Петербург : Лань, 2022. 400 с. https://e.lanbook.com/book/210437?category=915. ISBN 978-5-8114-7899-6.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect <u>www.sciencedirect.com</u>

- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 11. Служба тематических толковых словарей http://www.glossary.ru/;
- 12. Словари и энциклопедии http://dic.academic.ru/;
- 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, лабораторных занятий, позволяющих студентам в полной мере ознакомиться с понятием дифференциальных уравнений и освоиться в решении практических задач.

Важнейшим этапом курса является самостоятельная работа по дисциплине «Дифференциальные уравнения».

Целью самостоятельной работы бакалавра является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

Самостоятельная работа студентов в ходе изучения дисциплины состоит в выполнении индивидуальных заданий, задаваемых преподавателем, ведущим лабораторные занятия, подготовки теоретического материала к лабораторным занятиям, на основе конспектов лекций и учебной литературы, согласно календарному плану и подготовки теоретического материала к тестовому опросу, зачету и экзамену, согласно вопросам к экзамену.

Указания по оформлению работ:

- работа на лабораторных занятиях и конспекты лекций могут выполняться на отдельных листах либо непосредственно в рабочей тетради;
 - оформление индивидуальных заданий желательно на отдельных листах.

Проверка индивидуальных заданий по темам, разобранным на лабораторных занятиях, осуществляется через неделю на текущем лабораторном занятии, либо в течение недели после этого занятия на консультации.

Для разъяснения непонятных вопросов лектором и ассистентом еженедельно проводятся консультации, о времени которых группы извещаются заранее.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

No॒	Вид работ	Наименование учебной аудитории, ее оснащенность
		оборудованием и техническими средствами обучения
1.	Лекционные занятия	Аудитория, укомплектованная специализированной
		мебелью и техническими средствами обучения
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной
		мебелью и техническими средствами обучения,
		компьютерами, проектором, программным обеспечением
3.	Практические занятия	Аудитория, укомплектованная специализированной
		мебелью и техническими средствами обучения
4.	Групповые	Аудитория, укомплектованная специализированной
	(индивидуальные)	мебелью и техническими средствами обучения,
	консультации	компьютерами, программным обеспечением

5.	Текущий контроль,	Аудитория, укомплектованная специализированной
	промежуточная	мебелью и техническими средствами обучения,
	аттестация	компьютерами, программным обеспечением
6.	Самостоятельная	Кабинет для самостоятельной работы, оснащенный
	работа	компьютерной техникой с возможностью подключения к
		сети «Интернет», программой экранного увеличения и
		обеспеченный доступом в электронную информационно-
		образовательную среду университета.

Примечание: Конкретизация аудиторий и их оснащение определяется ОПОП.

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную

информационно-образовательную среду университета. Наименование помещений для Оснащенность помещений для Перечень лицензионного самостоятельной работы самостоятельной работы программного обеспечения обучающихся обучающихся Помещение для самостоятельной Мебель: учебная мебель Операционная система Windows работы обучающихся (читальный 10/11, пакет Microsoft Office Комплект специализированной зал Научной библиотеки) мебели: компьютерные столы Оборудование: компьютерная техника с подключением информационнокоммуникационной сети «Интернет» доступом электронную информационнообразовательную образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ К сети интернет (проводное соединение И беспроводное соединение технологии Wi-Fi) Операционная система Windows Помещение для самостоятельной Мебель: учебная мебель работы обучающихся (ауд 102а) Комплект специализированной 10/11, пакет Microsoft Office мебели: компьютерные столы Оборудование: компьютерная техника с подключением информационнокоммуникационной «Интернет» доступом электронную информационнообразовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ сети интернет К (проводное соединение И беспроводное соединение по технологии Wi-Fi)