Аннотация рабочей программы дисциплины **Б1.О.07** «Дополнительные главы уравнений математической физики»

Объем трудоемкости: 3 зачетных единицы.

Цель дисциплины: изучение методов построения математических моделей на основе уравнений математической физики, овладение аппаратом математической физики и выработку у будущих специалистов теоретических знаний и умений формулировать задачи прикладного исследования в области математической физики и оценивать средства, необходимые для его проведения, получение опыта эффективного применения математических методов в научной деятельности, формирование профессиональных навыков исследователя.

Задачи дисциплины:

- усвоение идей и методов математической физики, необходимых для решения теоретических и прикладных задач применения дисциплины;
- формирование навыков построения математических моделей, выбора адекватного математического аппарата их исследования, анализа и практической интерпретации полученных математических результатов исследования реальной задачи;
- формирование творческого подхода к моделированию различных процессов; привитие практических навыков использования методов математической физики при решении прикладных задач.

Место дисциплины в структуре ООП ВО

Дисциплина «Дополнительные главы уравнений математической физики» относится к дисциплинам обязательной части Блока 1 Дисциплины (модули).

Данная дисциплина тесно связана с такими дисциплинами, как «математический анализ», «дифференциальные уравнения», «уравнения математической физики».

Материал курса предназначен для использования в следующих дисциплинах: «Спецсеминар», «Современные методы обработки сигналов», «Модели тепломассопереноса», «Моделирование экологических процессов и систем». Результаты изучения курса также могут быть использованы при прохождении производственной практики и выполнении выпускной квалификационной работы.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК-1 (Способен решать актуальные задачи фундаментальной и прикладной математики); ОПК-2 (Способен совершенствовать и реализовывать новые математические методы решения прикладных задач.), ПК-1 (Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики).

Результаты обучения (владение знаниями, умениями, опытом, компетенциями):

Код компетенции	Формулировка компетенции							
ОПК-1	Способен решать актуальные задачи фундаментальной и прикладной математики							
и приемы фо при решении	01.6 Зн.1) Методы ормализации задач актуальных задач ной и прикладной (D/01.6 У.2) варианты требований при	Знает	 основные понятия и модели и методы математической физики; математические формулировки основных понятий и утверждений специфику задач решаемых с помощью уравнений математической физики 					

решении актуальных задач фундаментальной и прикладной математики ИОПК-1.5 (D/01.6 У.3) Проводить оценку и обоснование рекомендуемых решений задач фундаментальной и прикладной математики ИОПК-1.6 (A/01.6 У.1) Использовать методы и приемы	Умеет	 перевести задачу на язык дифференциальных уравнений с частными производными. выбирать и анализировать методы решения поставленной задачи и средства программного обеспечения (в том числе специализированного) для их реализации; формулировать и содержательно интерпретировать результаты решения задач
формализации задач фундаментальной и прикладной математики ИОПК-1.10 (D/01.6 Тд.4) Оценка и согласование сроков выполнения поставленных задач фундаментальной и прикладной математики	Владеет	 основной терминологией и понятийным аппаратом; основными аналитическими и численными методами решения уравнений в частных производных; навыками доказательства основных утверждений

ОПК-2	Способен соверш прикладных задач	енствовать	и реализовывать новые математические методы решения
контрольные	икладных задач:	Знает	 математические модели основных приложений теории дифференциальных уравнений основные методы решения задач математической физики основные прикладные пакеты, используемые для решения уравнений в частных производных.
и приемы поставленных ИОПК-2.8 Проводить оце	01.6 3н.1) Методы алгоритмизации прикладных задач (D/01.6 У.3) энку и обоснование	Умеет	 находить решения: общие для основных типов дифференциальных уравнений с частными производными второго порядка; использовать электронные тематические ресурсы для углубления знаний по изучаемой дисциплине
прикладных за ИОПК-2.9 Определение области кач необходимо выполнении ра	вать и новые не методы решения дач (D/29.7 Тд.1) стандартов в нества, которым следовать при абот по реализации тических методов	Владеет	 навыками решения задачи и интерпретации результатов в терминах прикладной области; научно-методическим аппаратом теории дифференциальных уравнений; навыками построения простейших моделей процессов методами исследования моделей процессов

ПК-1 Способен формули прикладной матема		шать актуальные и значимые задачи фундаментальной и
ИПК-1.1 (D/29.7 Зн.8) Современный отечественный и зарубежный опыт в решении актуальных и значимых задач фундаментальной и прикладной математики ИПК-1.2 (A/01.6 Зн.1) Методы и	Знает	 математические модели основных приложений теории дифференциальных уравнений основные методы решения задач математической физики основные прикладные пакеты, используемые для решения уравнений в частных производных.
приемы формализации задач фундаментальной и прикладной математики ИПК-1.3 (D/01.6 У.1) Проводить анализ исполнения требований при решении задач	Умеет	 находить решения: общие для основных типов дифференциальных уравнений с частными производными второго порядка; использовать электронные тематические ресурсы для углубления знаний по изучаемой дисциплине

Основные разделы дисциплины:

	Наименование разделов		Количество часов			
№			Аудиторная		Внеаудиторная	
			работа		работа	
			Л	ЛР	CP	
1	Некоторые модели, описываемые уравнениями в частных производных	3	2	_	1	
2	Обобщенные функции. Свертка и преобразование Фурье	10	2	2	6	
3	Пространства Соболева. Обобщенные решения задач Дирихле и Неймана	12	2	2	8	
4	Специальные функции в математической физике	16	2	4	10	
5	Интегральные уравнения. Источники возникновения и приложения интегральных уравнений.	14	2	2	10	
6	Вариационные задачи в математической физике	12	2	2	8	
7	Нелинейные уравнения. Методы исследования	14	2	2	10	
Контроль самостоятельной работы (КРП)		_	_	_	_	
Промежуточная аттестация (ИКР)		0,3			_	
Подготовка к текущему контролю		26,7	_	_	_	
	Общая трудоемкость по дисциплине:	108	14	14	53	

Курсовые проекты или работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Автор – профессор кафедры математического моделирования, д.ф.-м.н. Павлова А.В.