Аннотация рабочей программы дисциплины **Б1.О.11** Физическая теория функционирования компьютера

Объем трудоемкости: 4 зачетных единицы

Цель дисциплины: изучение физических законов, положенных в основу функционирования базовых элементов современных ЭВМ, их устройство и взаимодействие.

Задачи дисциплины:

- усвоение основных идей, лежащих в основе построения современных ЭВМ;
- формирование представлений о направлениях развития компьютерной техники;
- углубление общего уровня профессиональных знаний.

Место дисциплины в структуре ООП ВО:

Место курса в подготовке выпускника определяется необходимостью развития современной компьютерной техники и новейших информационных технологий.

Данный курс наиболее тесно связан с дисциплиной архитектура вычислительных систем, микропроцессорная техника.

Результаты обучения (знания, умения, опыт, компетенции)

В результате освоения курса «Физическая теория функционирования компьютера» обучающийся овладевает следующей компетенцией:

ОПК-1	Способен применять фундаментальные знания, полученные в области					
	математических и (или) естественных наук, и использовать их в профессиональной					
	деятельности					
Знать	(40.011 А/02.5 Зн.2) Отечественный и международный опыт в методах математическог					
	анализа и моделирования, теоретического и экспериментального исследования,					
	использовать его в профессиональной деятельности					
Уметь	(06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны					
	проектирования программного обеспечения, применять естественно-научные и					
	общеинженерные знания, методы математического анализа и моделирования,					
	теоретического и экспериментального исследования в профессиональной деятельности					
Владеть	(40.011 А/02.5 Др.2) Деятельность, направленная на решение аналитических задач,					
	предполагающих выбор и многообразие актуальных способов решения задач, с					
	использованием естественно-научные и общеинженерных знаний, методов математического					
	анализа и моделирования, теоретического и экспериментального исследования в					
	профессиональной деятельности					

Структура дисциплины:

	Наименование разделов	Количество часов			
№		Всего	Аудиторная работа		Внеаудиторная работа
			Л	Лб	CPC
1	Введение (сведения из общего курса физики)	16	4	6	6
2	Основы теории электропроводимости металлов и полупроводников	16	6	4	6
3	Элементы физики полупроводников	14	6	4	4
4	Транзисторы	14	6	2	6
5	Элементная база современных ЭВМ, системный блок	10	4	2	4
6	Полупроводниковые запоминающие устройства	8	2	_	6
7	Внешняя память в ЭВМ.	8	4	_	4
8	Отображение информации в ЭВМ	6	2	_	4
9	Обзор изученного материала и проведение зачета	5,8	_	2	3,8
Контроль самостоятельной работы (КСР)		4	_	_	_
Промежуточная аттестация (ИКР)		0,2	_	_	_
Итого по дисциплине:			34	16	53,8

Курсовые проекты или работы: не предусмотрены

Интерактивные образовательные технологии, используемые в аудиторных занятиях: *слайд-лекции*

Вид аттестации: зачет

Автор – доцент кафедры математического моделирования, к.ф.-м.н. Рубцов С.Е.