Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.12 «МЕТОДЫ ОПТИМИЗАЦИИ»

Направление подготовки_	01.03.02 Прикладная математика и информатика
Направленность (профиль)	Математические и информационные технологии в цифровой экономике; Программирование и информационные
	<u>Математическое моделирование в</u> естествознании и технологиях
Форма обучения	очная
Квалификация	бакалавр

Рабочая программа дисциплины «Методы оптимизации» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.03.02 Прикладная математика и информатика.

Программу составила:

В.А. Акиньшина, канд. пед. наук, доцент

подпись

Рабочая программа дисциплины утверждена на заседании кафедры прикладной математики протокол № 9 от 06.05.2025 г.

И.о. заведующего кафедрой (разработчика)

А.В. Письменский, к.ф.-м.н.

подпись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2025 г.

Председатель УМК факультета

А. В. Коваленко

полпись

Рецензенты:

Бегларян М. Е., зав. кафедрой социально-гуманитарных и естественнонаучных дисциплин СКФ ФГБОУВО «Российский государственный университет правосудия», канд. физ.-мат. наук, доцент

Рубцов Сергей Евгеньевич, кандидат физико-математических наук, доцент кафедры математического моделирования ФГБГОУ «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная математика и информатика», в рамках которой преподается дисциплина.

1.1 Цель освоения дисциплины

Целью освоения учебной дисциплины «Методы оптимизации» является формирование у студентов знаний по основам теории оптимизации и знаний об основных подходах к практическому решению оптимизационных задач, что позволит развить компетентности способности понимать и применять в исследовательской и прикладной деятельности современный математический аппарат, а также способности работы с информацией из различных источников, включая сетевые ресурсы сети Интернет, для решения задач профессиональной деятельности в составе научно-исследовательского и производственного коллектива.

- **1.2. Задачи дисциплины.** В ходе изучения дисциплины ставятся задачи научить студентов:
 - 1) знать содержание программы курса, формулировки задач, методы их исследования:
 - 2) выбирать подходящие методы для решения экстремальных задач;
 - 3) уметь применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач;
 - 4) изучать самостоятельно научную и учебно-методическую литературу по профилю из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач.

1.3. Место учебной дисциплины в структуре ООП ВО

Дисциплина «Методы оптимизации» относится к относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана.

Данная дисциплина («Методы оптимизации») тесно связана с дисциплинами математического и естественнонаучного цикла: «Математический анализ», «Алгебра и аналитическая геометрия», «Численные методы». Знания, полученные при освоении дисциплины «Методы оптимизации», используются при изучении дисциплины «Математические методы и модели исследования операций», «Теория риска и моделирование рисковых ситуаций», «Теория оптимального портфеля ценных бумаг». В совокупности изучение этой дисциплины готовит обучаемых как к различным видам практической экономической деятельности, так и к научно-теоретической и исследовательской деятельности.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ОПК-3 Способен применять и модифицировать математические модели для решения задач в обла-			
сти профессиональной деятельности			
ИД-1.ОПК-3 Цели и задачи проводимых исследо-	Знать		
ваний и разработок, методы математического моде-	• иметь представление о месте и роли изучае-		
лирования для решения задач в области профессио-	мой дисциплины среди других наук;		

нальной деятельности

ИД-2.ОПК-3 Цели и задачи проводимых исследований и разработок, методы математического моделирования для решения задач в области профессиональной деятельности

ИД-3.ОПК-3 Отечественный и международный опыт в соответствующей области исследований, методы математического моделирования для решения задач в области профессиональной деятельности ИД-5.ОПК-3

Анализировать входные данные, способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности

ИД-9.ОПК-3

Проведение экспериментов с использованием методов математического моделирования в соответствии с установленными полномочиями

ИД-10.ОПК-3 Проведение наблюдений и измерений, составление их описаний и формулировка выводов, с применением математических моделей

ИД-11.ОПК-3 Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач на основе методов математического моделирования

 знать содержание программы курса, формулировки задач, методы их исследования

Уметь

• применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач

Владеть

• способностью определять круг задач в рамках конкретных задач оптимизации и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

ОПК-2 Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач

ИД-1.ОПК-2 Цели и задачи проводимых исследований и разработок, методы адаптации существующих математических методов и систем программирования для раз-работки и реализации алгоритмов решения прикладных задач

ИД-2.ОПК-2 Отечественный и международный опыт в соответствующей области исследований, методы адаптации существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

ИД-3.ОПК-2 Методы проведения экспериментов и наблюдений, обобщения и обработки информации, методы использования и адаптации существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

ИД-6.ОПК-2 Применять методы проведения экспериментов, использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач

ИД-9.ОПК-2 Проведение экспериментов с использованием и адаптацией существующих математических методов в соответствии с установленными полномочиями

ИД-11.ОПК-2 Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач, использование и адаптирование существующих математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

Знать

 основы системного подхода для анализа предметной области и выявлению требований к информационной системе;

Уметь

- применять на практике конкретные вычислительные методы для решения оптимизационных задач в соответствии с требованиями ИС;
- Владеть
- способностью применять системный подход и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений ИС

Результаты обучения по дисциплине «Методы оптимизации» достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределе-

ние по видам работ представлено в таблице.

ние по видам работ предст	Вид работы	Всего	Форма обу-
	~1	часов	чения
			очная
			6 семестр
Контактная работа, в то	ом числе:	68,3	68,3
Аудиторная работа:		64	64
занятия лекционного тин	na	32	32
лабораторные занятия		32	32
Иная контактная работ	a:		
Контроль самостоятельно	ой работы (КСР)	4	4
Промежуточная аттестац	ия (ИКР)	0,3	0,3
Самостоятельная работ	4	4	
Курсовой проект (КП), к	урсовая работа (КР)	-	-
	отка и повторение лекционного матери-	2	2
ала и материала учебнико	ов и учебных пособий, подготовка к ла-		
бораторным и практиче			
Выполнение индивидуал	1	1	
Реферат		-	-
Подготовка к текущему в	1	1	
Контроль:			
Подготовка и сдача экзам	35,7	35,7	
Общая трудоемкость	час.	108	108
	в том числе контактная работа	68,3	68,3
	зач. ед	3	3

-

¹ При наличии экзамена по дисциплине

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 6 семестре на 3 курсе ОФО

	газделы (темы) дисциплины, изучаемые в о семес		Количество часов				
№	Наименование разделов (тем)	Всего	Аудиторная		ная	Внеауди- торная работа	
			Л	П3	ЛР	CPC	
	1 Безусловная одномерная оптимизация						
1.	Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации	6	2		4		
2.	Численные методы решения задач одномерной оптимизации	10	6		4		
	2 Безусловная многомерная оптимизация	0					
3.	Классические методы решения задач многомерной оптимизации.	2	2		0		
4.	Классификация и обзор методов безусловной оптимизации	2	2		0		
5.	Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.	10	4		6		
6.	Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	12	4		8		
	3 Нелинейное программирование	0					
7.	Классификация задач нелинейного программирования.	6	6		0		
8.	Задачи линейного программирования	6	2		4		
	4 Специальные методы оптимизации	0					
9.	Задача целочисленного линейного программирования	6	2		4		
10.	Задачи линейного программирования в условиях неопределенности	8	2		2	4	
	ИТОГО по разделам дисциплины	68	32		32	4	
	Контроль самостоятельной работы (КСР)	4					
	Промежуточная аттестация (ИКР)	0,3					
	Подготовка к текущему контролю	35,7					
	Общая трудоемкость по дисциплине	108					

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3.Содержание разделов дисциплины

1 Безусловная одномерная оптимизация

Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации.

Теорема Мак-Лорена. Классический метод нахождения экстремума функции одного переменного. Унимодальные функции. Свойства унимодальных функций.

Тема 2. Численные методы решения задач одномерной оптимизации.

Методы нулевого порядка. Метод перебора. Метод дихотомии. Метод золотого сечения. Метод Фибоначчи. Метод Розенброка. Метод деформируемого многоугольника. Метод тяжелого шарика.

2 Безусловная многомерная оптимизация

Тема 1 Классические методы решения задач многомерной оптимизации.

Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм. Леммы о направлениях спуска. Классический метод нахождения экстремума функции нескольких переменных.

Тема 2 Классификация и обзор методов безусловной оптимизации.

Tema 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Метод градиентного спуска. Метод наискорейшего спуска. Метод Флетчера-Ривса. Метод Давидона-Флетчера-Пауэлла.

Tema 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Метод Ньютона. Метод Ньютона-Равсона. Метод Маркварда.

3 Нелинейное программирование

Тема 1. Классификация задач нелинейного программирования. Теорема Куна-Таккера. Методы поиска условного экстремума.

Метод множителей Лагранжа. Метод штрафных функций. Метод барьерных функций. Метод проекции градиента.

Тема 2. Задачи линейного программирования.

Симплекс метод. Транспортные задачи.

4 Специальные методы оптимизации

Тема 1. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП. Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

Тема 2. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности. ЗЛП и теория игр.

2.3.1 Занятия лекционного типа

	Наименование		
№	раздела (те- мы)	Содержание раздела (темы)	Форма текущего контроля
1	Безуслов- ная одно- мерная оп- тимизация	Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации Тема 2. Численные методы решения задач одномерной оптимизации	Т
2	Безуслов- ная много- мерная оп- тимизация	Тема 1. Классические методы решения задач многомерной оптимизации. Тема 2. Классификация и обзор методов безусловной оптимизации Тема 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.	Т
		Тема 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	
3	Нелиней- ное про- граммиро- вание	Тема 1. Классификация задач нелинейного программирования.Тема 2. Задачи нелинейного программирования	Т
4	Специальные методы оптимизации	Тема 1. Задача целочисленного линейного программирования Тема 2. Задачи линейного программирования в условиях неопределенности.	Т
№	Наименование раздела (те- мы)	Содержание раздела (темы)	Форма текущего контроля
1	Безуслов- ная одно- мерная оп- тимизация	Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации Тема 2. Численные методы решения задач одномерной оптимизации	Т
2	Безуслов- ная много- мерная оп- тимизация	Тема 1. Классические методы решения задач многомерной оптимизации. Тема 2. Классификация и обзор методов безусловной оптимизации Тема 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка. Тема 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	T
3	Нелиней- ное про-	Тема 1. Классификация задач нелинейного программирования.	Т

	граммиро- вание	Тема 2. Задачи нелинейного программирования	
4	Специальные методы оптимизации	Тема 1. Задача целочисленного линейного программированияТема 2. Задачи линейного программирования в условиях неопределенности.	T

Практические занятия, защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) – не предусмотрены.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/рабор	Форма текущего контроля
1	Численные методы решения задач одномерной оптимизации	1. Выполнение практических заданий по методам одномерной оптимизации 2. Отчет по результатам индивидуального задания.	ЛР
2	Численные методы безусловной опти- 1 Выполнение практических заданий по методам многомерной оптимизации пер-		ЛР
3	Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	1. Выполнение практических заданий по методам многомерной оптимизации второго порядка 2. Отчет по результатам индивидуального задания.	ЛР
4	Задачи нелинейного программирования	1. Выполнение практических заданий по методам многомерной оптимизации условной оптимизации 2. Отчет по результатам индивидуального задания.	ЛР
5	Задача целочисленного линейного программирования	1. Выполнение практических заданий для решения экономических задач 2. Отчет по результатам индивидуального задания.	ЛР
6	Задачи линейного программирования в условиях неопределенности.	1. Выполнение практических заданий 2. Отчет по результатам индивидуального задания.	ЛР

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

СОДЕРЖАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Тема 1. Численные методы решения задач одномерной оптимизации.

Постановка задачи методов нулевого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод перебора, метод дихотомии, метод золотого сечения, метод Фибоначчи, метод Розенброка, метод деформируемого многоугольника, метод тяжелого шарика).

Тема 2. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Постановка задачи методов первого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод градиентного спуска, метод наискорейшего спуска, метод Флетчера-Ривса, метод Давидона-Флетчера-Пауэлла).

Tema 3. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Постановка задачи методов второго порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод Ньютона, метод Ньютона-Равсона, метод Маркварда).

Тема 4. Задачи нелинейного программирования.

Метод множителей Лагранжа. Метод штрафных функций. Метод барьерных функций. Метод проекции градиента.

Тема 5. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

Тема 6. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы (КР) – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающегося по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка и повторение лекционного материала, материала учебной и научной литературы, подготовка к семинарским занятиям	методические указания по выполнению самостоятельнои раооты, утвер-

2	Подготовка к лаборатор- ным занятиям	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры анализа данных и искусственного интеллекта факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 22.03.2023 г.
3	Подготовка к решению задач и тестов	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры анализа данных и искусственного интеллекта факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 22.03.2023 г.
4	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры анализа данных и искусственного интеллекта факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 22.03.2023 г.
5	Подготовка докладов	Методические указания для подготовки эссе, рефератов, курсовых работ, утвержденные на заседании кафедры анализа данных и искусственного интеллекта факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 22.03.2023 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

С точки зрения применяемых методов используются как традиционные информационно-объяснительные *пекции*, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематические обзоры теории оптимизации с подачей материала в виде презентаций.

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Оценка самостоятельной работы студентов происходит по средствам оценки индивидуальных ответов и дополнений на занятиях по рассмотренным тематикам.

Занятия, проводимые с использованием интерактивных технологий

|--|

		всего ауд. часов	интерактив- ные часы
1.	Безусловная одномерная оптимизация	16	6
2.	Безусловная многомерная оптимизация	24	10
3.	Нелинейное программирование	12	4
4.	Специальные методы оптимизации	12	4
	Итого по дисциплине:	64	24

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Методы оптимизации».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме индивидуальных самостоятельных заданий, тестовых заданий и **промежуточной аттестации** в форме вопросов к экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями.
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

		1 0 0 1		1 /	1
	No	Код и наименова-		Наименование оце	ночного средства
	п/п	, ,	Результаты обучения	Текущий кон-	Промежуточная
	11/11	ние индикатора		троль	аттестация
Ī		ОПК-2	ИОПК-2.1	Раздел 1 и 2	Вопрос на экза-
	1	Способен исполь-	(40.001 А/02.5 Зн.1) Цели и задачи прово-	Задание 1, 3 Ин-	мене
		зовать и адаптиро-	димых исследований и разработок, методы	дивидуальная	1-12

	вать существую-	адаптации существующих математических		
	щие математиче-	методов и систем программирования для		
	ские методы и	разработки и реализации алгоритмов реше-		
	системы програм-	ния прикладных задач		
	мирования для	ИОПК-2.2 (40.001 A/02 5 3н 2) Отанастранный и маук		
	разработки и реа-	(40.001 A/02.5 3н.2) Отечественный и международный опыт в соответствующей обла-		
	лизации алгорит- мов решения при-	сти исследований, методы адаптации суще-		
	кладных задач	ствующх математических методов и систем		
	кладпых задач	программирования для разработки и реали-		
		зации алгоритмов решения прикладных		
		задач		
		ИОПК-2.3		
		(40.001 А/02.5 Зн.4) Методы проведения		
		экспериментов и наблюдений, обобщения и		
		обработки информации, методы использо-		
		вания и адаптации существующх матема-		
		тических методов и систем программиро-		
		вания для разработки и реализации алго-		
		ритмов решения прикладных задач		
		ИОПК-2.6		
		(40.001 А/02.5 У.3) Применять методы		
		проведения экспериментов, использовать и		
		адаптировать существующие математиче-		
		ские методы и системы программирования		
		для разработки и реализации алгоритмов		
		решения прикладных задач		
		ИОПК-2.9		
		(40.001 А/02.5 Тд.1) Проведение экспери-		
		ментов с использованием и адаптацией		
		существующих математических методов в		
		соответствии с установленными полномочиями		
		ИОПК-2.11		
		(40.001 А/02.5 Др.2 Тд.) Деятельность		
		направленная на решение задач аналитиче-		
		ского характера, предполагающих выбор и		
		многообразие актуальных способов реше-		
		ния задач, использование и адаптирование		
		существующих математических методов и		
		систем программирования для разработки и		
		реализации алгоритмов решения приклад-		
		ных задач		
		ИОПК-3.1 (06.016 А/30.6 Зн.3)	Раздел 3	Вопрос на экза-
		Цели и задачи проводимых исследований и	Задание 5 Инди-	мене
		разработок, методы математического моде-	видуальная задача	13-23
		лирования для решения задач в области	3	
		профессиональной деятельности		
	ОПК-3	HOTTL 2 2 (40 001 A/02 5 2 1)		
	Способен приме-	ИОПК-3.2 (40.001 A/02.5 3н.1) Цели и задачи проводимых исследований и		
	нять и модифици-	разработок, методы математического моде-		
	ровать математи-	лирования для решения задач в области		
2	ческие модели для	профессиональной деятельности		
	решения задач в			
	области профес-	ИОПК-3.3 (40.001 А/02.5 Зн.2)		
	сиональной дея-	Отечественный и международный опыт в		
	тельности	соответствующей области исследований		
		методы математического моделирования		
		для решения задач в области профессио-		
		нальной деятельности		
		HOTHS 2.5 (0.5 01.5 + /2.2 5.3)		
		ИОПК-3.5 (06.016 А/30.6 У.1)		

 ·	
Анализировать входные данные, способен	
применять и модифицировать математиче-	
ские модели для решения задач в области	
профессиональной деятельности	
ИОПК-3.9 (40.001 А/02.5 Тд.1)	
Проведение экспериментов с использова-	
нием методов математического моделиро-	
вания в соответствии с установленными	
полномочиями	
ИОПК-3.10 (40.001 А/02.5 Тд.2)	
Проведение наблюдений и измерений, со-	
ставление их описаний и формулировка	
выводов, с применением математических	
моделей	
ИОПК-3.11 (40.001 А/02.5 Др.2 Тд.)	
Деятельность, направленная на решение	
задач аналитического характера, предпола-	
гающих выбор и многообразие актуальных	
способов решения задач на основе методов	
математического моделирования	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень индивидуальных самостоятельных заданий для текущего контроля

- Задание 1. Доказать свойства унимодальных функций. Используя классический метод, решить задачу (Индивидуальная задача 1) нахождения экстремума функции одного.
- Задание 2. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 1</u>) нахождения минимума функции одного переменного, используя метод дихотомии, метод золотого сечения, метод Фибоначчи.
- Задание 3. Используя классический метод, решить задачу (<u>Индивидуальная задача 2</u>) нахождения экстремума функции многих переменных.
- Задание 4. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 2</u>) нахождения минимума функции многих переменных, используя метод наискорейшего спуска, метод Ньютона, метод Ньютона-Равсона и метод Флетчера-Ривса.
- Задание 5. Используя метод множителей Лагранжа, решить задачу (Индивидуальная задача <u>ча 3</u>) нахождения условного минимума функции многих переменных.
- Задание 6. Написать и отладить программу численного решения задачи (<u>Индивидуальная задача 3</u>) нахождения условного минимума функции многих переменных, используя метод штрафных функций.

<u>Индивидуальная задача 1.</u> Найти минимум функции одного переменного f(x) ($\delta = 0.2$; $\varepsilon = 0.5$)

1.
$$f(x) = x^2 - 2x + 3$$
, $[-2; 8]$ 11. $f(x) = x^2 - 6x + 13$, $[0; 10]$

2. $f(x) = x^2 - 2x + 5$, $[-2; 8]$	12. $f(x) = 2x^2 - 12x + 19$, [0;10]
3. $f(x) = 2x^2 - 2x + 3/2$, $[-2; 8]$	13. $f(x) = x^2 - 4x + 6$, [0;10]
4. $f(x) = x^2 + 6x + 13$, $[-6; 4]$	14. $f(x) = x^2 + 2$, $[-3; 7]$
5. $f(x) = x^2 - 4x + 7$, [0;10]	15. $f(x) = x^2 + 2x + 4$, $[-3, 7]$
6. $f(x) = x^2 + 4x + 5$, $[-4; 6]$	16. $f(x) = 2x^2 + 2x + 5/2$, $[-3, 7]$
7. $f(x) = 2x^2 + 2x + 7/2$, $[-3; 7]$	17. $f(x) = 3x^2 - x + 4$, $[-4; 6]$
8. $f(x) = x^2 - 6x + 12$, [1;11]	18. $f(x) = x^2 + 4x - 1/4$, $[-2; 8]$
9. $f(x) = x^2 + 4x + 6$, $[-4; 6]$	19. $f(x) = x^2 + 3x - 10$, $[-2; 8]$
10. $f(x) = 2x^2 - 2x + 5/2$, $[-1; 9]$	20. $f(x) = x^2 + 6x + 2$, $[-4; 6]$

<u>Индивидуальная задача 2.</u> Найти минимум функции двух переменных $f(x_1, x_2)$ в $(x_1^{(0)}, x_2^{(0)})$

2	2	2 2
$\int_{1.}^{1} f(x) = x_1^2 + 5x$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1,$
$x_0 = (-1,2;1)$		$x_0 = (1; 3)$
$f(x) = x_1^2 + 4x$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,$
$x_0 = (3;1)$		$x_0 = (2; 1,5)$
$\int_{3}^{6} f(x) = x_1^2 + 7x$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1,$
$x_0 = (1,1;1,1)$		$x_0 = (1; 1)$
$\int_{4.}^{4} f(x) = x_1^2 + 8x$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1,$
$x_0 = (1,5;0,1)$		$x_0 = (3; 1)$
$f(x) = 2x_1^2 + 3$	$x_2^2 - x_1 x_2 + x_1,$	15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1$,
$x_0 = (2; 2)$		$x_0 = (1,5;1,1)$
$f(x) = 3x_1^2 + x_2^2 + x_3^2 + x_3^$	$x_2^2 - x_1 x_2 + x_1,$	16. $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1$,
$x_0 = (1,5;1,5)$		$x_0 = (1,1;1,1)$
$f(x) = 5x_1^2 + 3$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1,$
$x_0 = (1,5;1)$		$x_0 = (1,5;0,5)$
$f(x) = 6x_1^2 + 3$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1,$
$x_0 = (2;1)$		$x_0 = (2; 2)$
$f(x) = 7x_1^2 + 3$	$x_2^2 - x_1 x_2 + x_1,$	$f(x) = 3x_1^2 + x_2^2 + x_1x_2 + x_1,$
$x_0 = (1; 2)$		$x_0 = (1,5;1,5)$

10.
$$f(x) = 8x_1^2 + x_2^2 - x_1 x_2 + x_1,$$
 $x_0 = (2; 2)$ 20. $f(x) = 5x_1^2 + x_2^2 + x_1 x_2 + x_1,$ $x_0 = (1,5; 1)$

<u>Индивидуальная задача 3.</u> Найти условный минимум функции многих переменных $f(x_1, x_2)$.

	·
1. $f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1$	$f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1,$
$x_1 + x_2 = 1$	$x_1 + 2x_2 = 1$
$f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1,$	$f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,$
$2x_1 + x_2 = 1$	$x_1 + x_2 = 1$
$\int_{3.} f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,$	$f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1,$
$x_1 + x_2 = 2$	$2x_1 + 3x_2 = 1$
$f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1,$	$f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1,$
$2x_1 + 3x_2 = 1$	$x_1 + x_2 = 2$
$f(x) = 2x_1^2 + x_2^2 - x_1 x_2 + x_1,$	$f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1,$
$x_1 + x_2 = 3$	$x_1 + 3x_2 = 1$
$f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1,$	$f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1,$
$2x_1 + x_2 = 1$	$x_1 + x_2 = 1$
$f(x) = 5x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1,$
$x_1 + x_2 = 1$	$3x_1 + x_2 = 2$
$f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1,$
$2x_1 + 3x_2 = 1$	$x_1 + x_2 = 5$
$f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = 3x_1^2 + x_2^2 + x_1x_2 + x_1,$
$x_1 + x_2 = 2$	$2x_1 + x_2 = 1$
$f(x) = 8x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = 5x_1^2 + x_2^2 + x_1x_2 + x_1,$
$2x_1 + x_2 = 3$	$x_1 + x_2 = 1$

Фонд оценочных средств для проведения промежуточной аттестации ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЁТУ/ЭКЗАМЕНУ

- 1. Одномерный поиск. Теорема Мак-Лорена.
- 2. Унимодальные функции. Свойства унимодальных функций.
- 3. Метод дихотомии.
- 4. Метод Фибоначчи.
- 5. Метод золотого сечения.
- 6. Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм.
- 7. Леммы о направлениях спуска (безусловная оптимизация).

- 8. Градиентный метод.
- 9. Обобщенный метод Ньютона.
- 10. Метод тяжелого шарика.
- 11. Метод сопряженных градиентов.
- 12. Классификация и обзор методов безусловной оптимизации.
- 13. Классификация задач нелинейного программирования. Леммы 1 и 2 о возможных направлениях (условная оптимизация).
- 14. Теорема 1 о необходимом условии условного минимума.
- 15. Теорема Фаркаша. Теорема 2 о необходимом условии условного минимума.
- 16. Правило множителей Лагранжа для задач с ограничениями типа равенства.
- 17. Правило множителей Лагранжа для задач с ограничениями типа неравенства.
- 18. Выпуклые функции.
- 19. Теорема Куна-Таккера.
- 20. Теория двойственности. Теорема двойственности. Двойственные методы.
- 21. Метод проекций.
- 22. Метод внутренних и внешних штрафных функций.
- 23. Метод возможных направлений.
- 24. Постановки транспортной задачи. Методы решения транспортной задачи.
- 25. Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП.
- 26. Метод ветвей и границ решения ЗЦЛП.
- 27. Решение задачи коммивояжера методом ветвей и границ.
- 28. Постановки задачи линейного программирования ЗЛП в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.
- 29. ЗЛП и теория игр.

Критерии оценивания результатов обучения

тритерии оденивании резуньтатов обутении			
Оценка	Критерии оценивания по экзамену		
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.		
Средний уро- вень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки.		
Пороговый уровень «3» (удовлетворительно)	оценку «удовлетворительно» заслуживает студент, частично с про- белами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы.		
Минимальный уровень «2» (неудовлетворительно)	оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы.		

5. Перечень учебной литературы, информационных ресурсов и технологий 5.1.1 Учебная литература

1. Кундышева, Е. С. Математические методы и модели в экономике : учебник / Е. С. Кундышева ; под науч. ред. Б. А. Суслакова. – 3-е изд. – Москва : Дашков и К°, 2022. – 286

- с.: ил., табл., граф. (Учебные издания для бакалавров). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=684490 (дата обращения: 01.12.2024). ISBN 978-5-394-04621-6. Текст: электронный.
- 2. Поляков, В. М. Методы оптимизации : учебное пособие / В. М. Поляков, З. С. Агаларов. 3-е изд. Москва : Дашков и К $^{\circ}$, 2024. 86 с. : ил., табл. (Учебные издания для вузов). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=720347 (дата обращения: 01.12.2024). Библиогр. в кн. ISBN 978-5-394-05718-2. Текст : электронный.
- 3. Количественные методы и модели в теории управлении : учебник для магистратуры : [16+]/ Л. А. Каргина, О. Е. Михненко, А. И. Фроловичев [и др.] ; под ред. Л. А. Каргиной ; Российский университет транспорта (РУТ (МИИТ)). Москва : Прометей, 2022. 274 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=690752 (дата обращения: 01.12.2024). Библиогр. в кн. ISBN 978-5-00172-299-1. Текст : электронный.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.1.2 Дополнительная литература:

- 1. Сеидова, Наталья Михайловна Численные методы решения задач одномерной безусловной оптимизации / Сеидова, Наталья Михайловна, Калайдина, Галина Вениаминовна; Н. М. Сеидова, Г. В. Калайдина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2012. 37 с.
- 2. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев. М.: Логос, 2011. 424 с. (Новая университетская библиотека). ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс]. URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018).
- 3. Сухарев, А. Г. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. 3-е изд., испр. и доп. М. : Юрайт, 2017. 367 с. https://biblio-online.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.
- 4. Островский, Геннадий Маркович. Оптимизация технических систем / Островский, Геннадий Маркович, Зиятдинов, Надир Низамович, Лаптева, Татьяна Владимировна; Г. М. Островский, Н. Н. Зиятдинов, Т. В. Лаптева. Москва: КНОРУС, 2012. 422 с.: ил. Библиогр.: с. 404-411. ISBN 9785406010945.
- 5. Засядко, Ольга Владимировна. Исследование операций: [практикум] / Засядко, Ольга Владимировна, Усатиков, Сергей Васильевич; О. В. Засядко, С. В. Усатиков; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2014. 194 с.: ил. Библиогр.: с. 15-16.
- 6. Зайцев, Михаил Григорьевич. Методы оптимизации управления и принятия решений: примеры, задачи, кейсы/ Зайцев, Михаил Григорьевич, С. Е. Варюхин; М. Г. Зайцев, С. Е. Варюхин; Рос. акад. народного хоз-ва и гос. службы при Президенте Рос. Федерации. [3-е изд., испр. и доп.]. М.: Дело, 2011. 639 с.: ил. (Учебники Президентской Академии). ISBN 9785774904921.

- 4. Далингер, В. А. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple [Электронный ресурс] : учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. М. : Юрайт, 2018. 161 с. https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1.
- 5. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / Ф. П. Васильев, М. М. Потапов, Б. А. Будак, Л. А. Артемьева ; под ред. Ф. П. Васильева. М. : Юрайт, 2018. 375 с. https://biblio-online.ru/book/CAA9AF22-E3BB-454A-BE5C-BB243EAAE72A.

5.2. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. ЭБС «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 10. Springer Journals https://link.springer.com/
 - 11. Nature Journals https://www.nature.com/siteindex/index.html
 - 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОС-

СИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Россий-

ской Федерации https://www.minobrnauki.gov.ru/;

- 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресусы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных по- мещений	Оснащенность специальных по- мещений	Перечень лицензионного программного обеспечения	
Учебные аудитории для проведения занятий лекционного типа Ауд. 129, 131, 3016, 305, 307	Мебель: учебная мебель Технические средства обучения: презентационная техника (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска	 Операционная система MS Windows. Интегрированное офисное приложение MS Office. Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет. 	
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер Оборудование:	 Языки программирования: Руthon, JavaScript, C++, Java Фреймворки: PyTorch, TensorFlow. Google Colab – облачная среда для выполнения ко- да на Python с GPU/TPU Кaggle – платформа для работы с датасетами и со- ревнований по ML 	
Лаборатория, укомплектованная техническими средствами обучения — компьютерами с соответствующим программным обеспечением, маркерная доска. Ауд. 101, 106, 106а	Мебель: учебная мебель Технические средства обучения: презентационная техника (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска	 Языки программирования: Python, JavaScript, C++, Java Фреймворки: PyTorch, TensorFlow. Google Colab – облачная среда для выполнения кода на Python с GPU/TPU Каggle – платформа для работы с датасетами и соревнований по ML 	
Аудитория, укомплектованная маркерной доской и оснащенная компьютером. Ауд. 129	Мебель: учебная мебель Технические средства обучения: презентационная техника (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска	 Операционная система MS Windows. Интегрированное офисное приложение MS Office. Программное обеспечение для организации управля- емого коллективного и безопасного доступа в Ин- тернет. 	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную инфор-

Мационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучающихся

Помещение для самостоятельной работы обучающихся (читальный Комплект специализированной

Наименование помещений для самостоятельной работы обуча- ющихся	Оснащенность помещений для самостоятельной работы обуча- ющихся	Перечень лицензионного про- граммного обеспечения
зал Научной библиотеки)	мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, вебкамеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	
Помещение для самостоятельной работы обучающихся (ауд. 102-а и читальный зал)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, вебкамеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	