Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ:

Проректор по учебной работе,

качеству образования – первый

нроректор

Хагуров Т.А.

5 тадпись/

мая 2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.23 «МАТЕМАТИЧЕСКИЙ АНАЛИЗ II»

Направление подготовки 01.03.02 Прикладная математика и информатика

Направленность (профиль) <u>Математическое и информационное обеспечение</u> экономической деятельности;

Программирование и информационные технологии);

Математическое моделирование в естествознании и технологиях

Программа подготовки Академическая

Форма обучения Очная

Квалификация выпускника Бакалавр

Краснодар 2025

Рабочая программа дисциплины «Математический анализ II» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.03.02 Прикладная математика и информатика.

Программу составили:

Н.О.Чубырь, канд. физ.-мат. наук, доц

100

Рабочая программа дисциплины «Математический анализ II» утверждена на заседании кафедры прикладной математики протокол № 9 от 06.05.2025 г.

И.о. заведующего кафедрой (разработчика)
А.В. Письменский, к.ф.-м.н.

Рабочая программа дисциплины «Математический анализ II» обсуждена на заседании кафедр(ы):

прикладной математики, протокол № 09 от 06.05.2025 г.
 И.о. заведующего кафедрой (разработчика)
 А.В. Письменский, к.ф.-м.н.

математического моделирования, протокол № 11 от 22.05.2025 г.
 Заведующий кафедрой (выпускающей)
 акад. РАН, д.ф.-м.н., профессор В.А. Бабешко

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 от 23.05.2025 г.

Председатель УМК факультета компьютерных технологий и прикладной математики УМК факультета Коваленко А.В, д.т.н., доцент

Рецензенты:

Шапошникова Татьяна Леонидовна.

Доктор педагогических наук, кандидат физико-математических наук, профессор. Почетный работник высшего профессионального образования РФ. Директор института фундаментальных наук (ИФН) ФГБОУ ВО «КубГТУ».

Марков Виталий Николаевич.

Доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная математика и информатика», в рамках которой преподается дисциплина.

1.1 Цель освоения дисциплины.

Целью преподавания и изучения дисциплины «Математический анализ II» является формирование представлений об обобщениях понятиях математического анализа на случай многомерных пространств и функциональных последовательностей и рядов и роли этих обобщений в системе математических наук и приложениях в естественных науках.

1.2 Задачи дисциплины. В ходе изучения дисциплины ставятся задачи:

- **знать** основные понятия, положения и методы математического анализа в многомерных пространствах;
- **уметь** доказывать утверждения, специфичные для математического анализа в многомерных пространствах, применять методы многомерного математического анализа для решения математических задач;
- владеть методами обобщений математического анализа в многомерных пространствах для исследования различных прикладных задач.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Математический анализ II» относится к вариативной части учебного плана.

Для изучения дисциплины студент должен владеть знаниями, умениями и навыками по дисциплине «Математический анализ» базовой части цикла учебного плана.

Знания, получаемые при изучении дисциплины «Математический анализ II» используются при изучении всех дисциплин.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций

Индекс компе-	Содержание компетенции	В результате изучени	ия учебной дисципл должны	ины обучающиеся
тенции	(или её части)	знать	уметь	владеть
ПК-1	Способен решать актуальные и значимые задачи прикладной математики и информатики	• проблемы, постановки и обоснования задач математического и информационного обеспечения при исследовании прикладных систем • основные методы решения типовых задач математического анализа	• применять полученные знания для использования в практической деятельности анализа и решения прикладных задач.	• методами математического анализа для исследования различных прикладных задач и выбора эффективных алгоритмов для решения и исследования профессиональных задач.

Индекс компе-	Содержание компетенции	В результате изучени	ия учебной дисципл должны	ины обучающиеся
тенции	(или её части)	знать	уметь	владеть
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	• теоретические положения, лежащие в основе построения методов математического анализа • основные методы решения типовых задач математического анализа	• доказывать утверждения, специфичные для математического анализа, • выбрать метод для решения конкретной задачи математического анализа	• фундаментальными знаниями математического анализа для использования их в профессиональной деятельности

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 6 зач.ед. (216 часов), их распределение по видам работ представлено в таблице

	Вид работы	Трудоемкость, часов
	-	6 семестр
Контактная работа, в то	138,5	
Аудиторная работа:		144
Лекции (Л)		68
Практические занятия (ПЗ)	
Лабораторные работы ((ΠP)	68
Иная контактная работ	a:	
Контроль самостоятельно	ой работы (КСР)	2
Промежуточная аттестац	ия (ИКР)	0,5
Самостоятельная работ	41,8	
Курсовой проект (КП), к	урсовая работа (КР)	-
Самоподготовка (прорабо	7	
ала и материала учебнико		
бораторным и практиче		
Выполнение индивидуал	ьных заданий	30
Реферат		-
Подготовка к текущему в	контролю	4,8
Контроль:		
Подготовка и сдача экзам	иена	35,7
Общая трудоемкость час.		216
	в том числе контактная работа	138,5
	зач. ед	6
Вид итогового контроля	9	Зачет, экзамен

¹ При наличии экзамена по дисциплине

_

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

	Аудиторная							
№	Наименование разделов	в Всего работа		CP	K			
			Всего	Л	ЛР	КСР		
1	2	3	4	5	6	7	8	9
1.	Функции многих переменных. Предел, непрерывность	20	12	6	6		4	4
2.	Дифференцирование функций мно- гих переменных	43	30	16	14		5	8
3.	Исследование функций многих переменных	20	12	6	6		4	4
4	Функциональные последовательност Функциональные ряды	42	28	14	16		6	8
5	Двойные интегралы	30	18	10	10		6	6
6	Тройные интегралы	25	16	8	8		6	6
7	Криволинейные интегралы	21	12	6	6		6	6
8	Поверхностные интегралы	17,5	12	6	6	2	4,8	2,7
	Всего по разделам дисциплины	215,5	138	68	68	2	41,8	35,7
	Промежуточная аттестация (ИКР)	0,5	0,5					
	Итого	216	138,5	68	68	2	41,8	35,7

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СР — самостоятельная работа студента, КСР — контролируемая работа студента, ЭЗ-подготовка к сдаче зачета и экзамена, K - контроль.

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименование		Форма текущего
No	раздела	Содержание раздела	контроля
1	2	3	4
1.	Функции многих	Понятие евклидовой плоскости и евклидова про-	Опрос по резуль-
	переменных.	странства. Понятие функции 2-х и 3-х переменных,	татам индивиду-
	Предел, непре-	примеры. Понятие т-мерного координатного про-	ального задания
	рывность	странства и т-мерного евклидова пространства.	
	1	Множества в них.	
		Сходящиеся последовательности в Е ^ш . Лемма о по-	
		координатной сходимости. Фундаментальная после-	
		довательность в Е ^т . Критерий Коши. Ограниченная	
		последовательность в Е ^т . Теорема Больцано-	
		Вейерштрасса. Предельная точка множества. Лемма.	
		Понятие предела функции многих переменных (по	
		Гейне, по Коши). Эквивалентность определений.	
		Арифметические свойства пределов.	
		Повторные пределы. Примеры. Понятие. Теорема о	
		связи между двойными и повториыми пределами.	
		Определение функции многих переменных, непре-	
		рывной в точке. Примеры.	
		Теорема о непрерывности сложной функций многих	
		переменных. Теорема о сохранении знака непрерывной функции.	
		Теорема о сохранении знака непрерывной функции. Теорема о прохождении непрерывной функции мно-	
		гих переменных через промежуточные значения.	
		I -я теорема Вейерштрасса.	
		2-я теорема Вейерштрасса.	
2.	Дифференциро-	Частные производные. Понятие, примеры. Геомет-	Опрос по резуль-
	вание функций	рический смысл. Понятие дифференцируемости	татам индивиду-
	многих перемен-	функции многих переменных. Лемма об эквивалент-	ального задания
	ных	ности 2-х определений. Связь между дифференциру-	
		емостью и существованием частных производных,	
		между дифференцируемостью и непрерывностью.	
		Геометрический смысл дифференцируемости ф.м.п.	
		Достаточное условие дифференцируемости функции	
		многих переменных в точке. Теорема о дифферен-	
		цируемости сложной ф.м.п. Дифференциал ф.м.п.	
		Определение, геометрический смысл. Инвариант-	
		ность формы дифференциала 1-го порядка. Произ-	
		водная по направлению. Градиент. Частные произ-	
		водные высших порядков. Понятие. Достаточное	
		условие равенства смешанных производных. Дифференциалы высших порядков ф.м.п. Неинвари-	
		дифференциалы высших порядков ф.м.п. пеинвариантность их формы. Формула Тейлора для ф.м.п.	
		Теорема о дифференцируемости функции одной пе-	
		ременной, заданной неявно	
1	2	3	4
3.	Исследование	Понятие экстремума ф.м.п. Необходимое условие	1. Опрос по ре-
ے.	шине		i= empet no pe

	функций многих	локального экстремума.	зультатам инди-
		Достаточное условие локального экстремума ф.м.п.	видуального зада-
	переменных	Касательная плоскость и нормаль к поверхности.	ния
		Система функций, заданных неявно. Вычисление их	
		частных производных.	2. Контрольная работа
		÷	*
		Зависимость функций. Понятие. Достаточное усло-	3. Коллоквиум
		вие независимости.	
		Условный экстремум. Понятие, общий метод его	
		поиска.	
_	*	Метод множителей Лагранжа.	_
4.		Функциональная последовательность. Понятие,	1. Опрос по ре-
		примеры. Поточечная и равномерная сходимости	зультатам инди-
	сти	функциональной последовательности.	видуального зада-
	Функциональные	Непрерывность предела равномерно сходящейся	ния.
	ряды	функциональной последовательности.	2. Контрольная
		Функциональный ряд и его сходимость.	работа
		Равномерная сходимость функционального ряда.	
		Признак Вейерштрасса. Теорема о непрерывности	
		суммы равномерно сходящегося функционального	
		ряда. Следствие. Теорема о почленном интегрирова-	
		нии функциональных рядов. Теорема о почленном	
		дифференцировании функциональных рядов. Тео-	
		рема Абеля, следствие. Радиус сходимости степен-	
		ного ряда, его вычисление. Свойства степенных ря-	
		дов. Ряд Тейлора. Понятие. Критерий сходимости	
		ряда Тейлора. Достаточное условие сходимости ряда	
		Тейлора на промежутке. Разложение элементарных	
		функций в ряд Тейлора. Приложения рядов Тейлора.	
5.	Двойные инте-	Задача определения объёма цилиндрического бруса.	1. Опрос по ре-
	гралы	Определение двойного интеграла. Суммы Дарбу для	зультатам инди-
		двойного интеграла, их свойства. Условие суще-	видуального зада-
		ствования двойного интеграла. Основные свойства	Р ИН
		двойных интегралов. Приведение двойного интегра-	
		ла к повторному для случая прямоугольной области.	
		Приведение двойного интеграла к повторному для	
		случая криволинейной области. Вычисление двой-	
		ного интеграла в полярных координатах. Замена пе-	
		ременных в двойном интеграле. Приложения двой-	
		ного интеграла.	
6.	Тройные инте-	Задача нахождения массы тела. Определение трой-	1. Опрос по ре-
	гралы	ного интеграла. Свойства тройного интеграла. Све-	зультатам инди-
	1	дение тройного интеграла к повторному для случая	видуального зада-
		прямоугольного параллелепипеда. Вычисление	ния
		тройного интеграла по произвольному объёму.	2. Контрольная
		Вычисление тройного интеграла в цилиндрических	работа
		координатах. Вычисление тройного интеграла в	P
		сферических координатах. Приложения тройного	
		интеграла.	
1	2	3	4
1	<i>L</i>	J	+

7.	Криволинейные	Криволинейные интегралы 1-го рода. Сведение к	Опрос по резуль-
	интегралы	определенному интегралу. Криволинейный интеграл	татам индивиду-
		2-го рода. Существование и вычисление КИВР. Вы-	ального задания
		числение площадей при помощи КИВР. Условие не-	
		зависимости КИВР от пути интегрирования. При-	
		знак полного дифференциала и нахождение перво-	
		образной для случая прямоугольной области.	
8.	Поверхностные	Поверхностный интеграл 1-го рода.Понятие. Вычис-	1. Опрос по ре-
	интегралы	ление поверхностного интеграла. Расчетная форму-	зультатам инди-
		ла. Вычисление площади поверхности. Сторона по-	видуального зада-
		верхности. Ориентация поверхности и пространства.	ния
		Поверхностный интеграл второго рода для случаев	2. Контрольная
		явного и неявного задания поверхности. Вычисление	работа
		Поверхностных интегралов 2-го рода	3. Зачет
			4. Экзамен

Практические занятия, защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) – не предусмотрены.

2.3.2 Занятия семинарского типа Семинарские занятия не предусмотрены.

2.3.3 Лабораторные занятия

No	Наименование раз- дела/модуля		Наименование лабораторных работ	Форма текущего контроля
1	2		3	4
2.	Функции многих переменных. Предел. Непрерывность Дифференцирование функций многих переменных	1 2 3 4 5 6 7 8 9	Область определения фунций многих переменных. Линии и поверхности уровня Повторные пределы. Предел функции многих переменных Непрерывность функции многих переменных. Линии и поверхности разрыва Частные производные первого порядка Дифференциал функции многих переменных Градиент. Производная по направлению Дифференцирование сложных функций. Производные высших порядков Дифференциалы высших порядков Дифференцирование функций, заданных неявно Формула Тейлора	1. Выполнение практических заданий 2. Опрос по результатам практических заданий 1. Выполнение практических заданий 2. Опрос по результатам практических заданий ческих заданий
3.	Исследование функций многих переменных	11 12 13	Безусловный экстремум функции многих переменных Нахождение условных экстремумов Контрольная работа по темам 1-12	 Выполнение практических за- даний Опрос по ре-

				<u> </u>
				зультатам практи-
				ческих заданий
				3. Контрольная
_	_			работа
4.	Функциональные	14	Сходимость функциональных последова-	1. Выполнение
	последовательности.		тельностей	практических за-
	Функциональные	15	Равномерная сходимость функциональных	даний
	ряды		последовательностей	2. Опрос по ре-
		16	Сходимость и абсолютная сходимость	зультатам практи-
			функционального ряда	ческих заданий
		17	Равномерная сходимость функционального	
			ряда	3. Контрольная
		18	Сходимость степенных рядов	работа
		19	Разложение функций в ряд Тейлора	
		20	Операции над степенными рядами	
		21	Контрольная работа по темам 13-20	
5.	Двойные интегралы	22	Двойной интеграл. Сведение к повторному	1. Выполнение
			интегралу	практических за-
		23	Вычисление двойных интегралов	даний
		24	Вычисление двойных интегралов в поляр-	2. Опрос по ре-
			ных координатах	зультатам практи-
		25	Замена переменных в двойном интеграле	ческих заданий
		26	Приложения двойного интеграла	
			1	
6.	Тройные интегралы	27	Тройные интегралы. Сведение к повторно-	1. Выполнение
	1		My.	практических за-
		28	Вычисление тройных интегралов в цилин-	даний
			дрических координатах	2. Опрос по ре-
		29	Вычисление тройного интеграла в сфериче-	зультатам практи-
			ских координатах	ческих заданий
		30	Контрольная работа по темам 22-29	3. Контрольная
			1	работа
7.	Криволинейные ин-	31	Криволинейные интегралы первого рода	1. Выполнение
	тегралы	32	Криволинейные интегралы второго рода	практических за-
	_	33	Формула Грина, вычисление площадей,	даний
			нахождение первообразных	2. Опрос по ре-
			1	зультатам практи-
				ческих заданий
8.	Поверхностные ин-	34	Поверхностные интегралы 1-го рода	1. Выполнение
	тегралы	25	Парадина 2	практических за-
		35	Поверхностные интегралы 2-го рода	даний 2. Опрос по
		36	Контрольная работа по темам 31-35	результатам прак-
			1 - F 25	тических заданий
				3. Контрольная
				работа
_	<u> </u>		й работы (ПР) выполнение курсового проект	ь (КП) курсовой

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) – не предусмотрены.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы (КР) – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания полученные во время лабораторных занятий.

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка и повторение лекционного материала, материала учебной и научной литературы, подготовка к семинарским занятиям	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.
2	Подготовка к лабораторным занятиям	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.
3	Подготовка к решению задач и тестов	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.
4	Подготовка докладов	Методические указания для подготовки эссе, рефератов, курсовых работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.
5	Подготовка к решению расчетно-графических заданий (РГЗ)	Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.
6	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 18.05.2023 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

С точки зрения применяемых методов используются как традиционные информа-

ционно-объяснительные *лекции*, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематические обзоры теории оптимизации с подачей материала в виде презентаций.

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Оценка самостоятельной работы студентов происходит по средствам оценки индивидуальных ответов и дополнений на занятиях по рассмотренным тематикам.

Занятия, проводимые с использованием интерактивных технологий

		Количество часов			
№	Наименование разделов (тем)	всего ауд. часов	интерактив- ные часы		
1	2	3	4		
1.	Функции многих переменных. Предел, непрерывность	12	4		
2.	Дифференцирование функций многих переменных	30	6		
3.	Исследование функций многих переменных	12	4		
4.	Функциональные последовательности. Функциональные ряды	28	6		
5.	Двойные интегралы	20	6		
6.	Тройные интегралы	16	4		
7.	Криволинейные интегралы	12	4		
8.	Поверхностные интегралы	12	2		
	Итого по дисциплине:	138	36		

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной (зачетов) и итоговой аттестации (экзаменов).

Оценка успеваемости осуществляется по результатам:

выполнения лабораторных работ;

оценки, выставляемой при сдаче индивидуальных заданий;

оценок коллоквиумов;

ответа на экзамене.

Зачет выставляется по результатам выполненных контрольных работ, индивидуальных заданий, коллоквиумов и текущей работы на лабораторных занятиях.

4.1. Перечень примерных заданий для самостоятельной работы

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

4.1.1. Образцы контрольных заданий по лабораторным занятиям

- 1. Будут ли шары $\mathbf{B_1}[(0,1),1]$ и $\mathbf{B_2}[(1,5,2),1]$ пересекаться в пространстве $\mathbf{R^2}$ с нормой $\|\cdot\|_{\infty}$? А если рассмотреть норму $\|\cdot\|_{1}$?
- 2. Для шара B[(1,1),1] и точки X=(3,0) в пространстве \mathbf{R}^2 найти шары $\mathbf{B}_1[X,r_1]$ и $\mathbf{B}_2[X,r_2]$ такие, что $\mathbf{B} \cap \mathbf{B}_1 = \emptyset$ и $\mathbf{B} \subset \mathbf{B}_2$.
- 3. Исследовать последовательность

$$X_{m} = \left\{ \frac{m+1}{2m + \sqrt{m}}, \ln\left(2 + \frac{1}{m}\right), \sin\left(\frac{\pi m}{2}\right) \right\}$$

на покоординатную сходимость и на сходимость в пространстве ${f R}^3$.

4. Найти предел функции

$$f(x,y) = \frac{\arctan\left(\frac{1}{x^2}\right) + \exp(1+y)}{(1+2x) + (1-3y)}$$

при $x \rightarrow 0$, $y \rightarrow 0$.

5. Найти предел функции

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$

при $x \to 0$, $y \to 0$.

6.Существует ли предел функции

$$f(x,y) = \frac{x+y}{2x+3y}$$

при
$$x \rightarrow 0$$
, $y \rightarrow 0$?

7. Найти частные производные первого и второго порядков функции

$$\mathbf{u} = \mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}, 2\mathbf{z}\right).$$

8. Найти частные производные первого порядка функции

$$z = f(u, v) + u \cdot v,$$

если
$$\mathbf{u} = \mathbf{x} + \mathbf{y}^2$$
, $\mathbf{v} = \mathbf{x} \cdot \mathbf{y}$.

9. Найти частные производные первого порядка функции z(x,y), заданной неявно уравнением

$$\mathbf{F}\left(\mathbf{x}\cdot\mathbf{z}\,,\frac{\mathbf{y}}{\mathbf{z}}\right)=\mathbf{0}\,.$$

- 10. Выписать формулы Тейлора для функции $\mathbf{f}(\mathbf{x},\mathbf{y}) = \frac{\cos(\mathbf{x})}{\cos(\mathbf{y})}$ в точке (0,0) до членов второго порядка включительно.
- 11. Исследовать на экстремум функцию

$$z = xy(x + y + 3)$$

в точках
$$(0,0), (-1,-1), (-3,0), (-1,2).$$

12. Исследовать на экстремум функцию

$$z = \alpha x + \beta y - x^2 - y^2$$
.

если $\alpha > 0$, $\beta > 0$.

13. Исследовать на экстремум функцию

$$z = (2x^2 + y^2) \exp(-x^2 - y^2)$$

14. Исследовать на экстремум функцию

$$z = \frac{x}{2} + \frac{y}{3}$$

при условии $x^2 + y^2 = 1$.

15. Найти наибольшее и наименьшее значения функции

$$z = x^2 - y^2 + 4x + 2y - 1$$

в области, ограниченной прямыми x = -3, y = 2, -x + y = 1.

16. Используя линии уровня, найти наибольшее и наименьшее значения функции

$$z = x + y + 3$$

в области, ограниченной прямыми x = 0, y = 0, x - y = 1.

17. Используя линии уровня найти наибольшее и наименьшее значения функции

$$z = max\{(x+2), (y+2)\}$$

в области, заданной неравенством $x^2 + y^2 \le 1$.

18. Для интеграла $\iint_{\mathbf{D}} \mathbf{xydxdy}$, где $\mathbf{D} = [0\,,1] \times [0\,,1]$, вычислить суммы Дарбу, разбивая

D на четыре равные части.

19. Какой знак имеет интеграл $\iint_{\mathbf{D}} \sqrt[3]{1-x^2-y^2} dxdy$, где $\mathbf{D} = \left\{ (x,y) : x^2 + y^2 \le 4 \right\}$?

Вывод проверить вычислением.

- 20. Для интеграла $\iint_{\mathbf{D}} \mathbf{f}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$, где $\mathbf{D} = \left\{ (\mathbf{x}, \mathbf{y}) : \mathbf{x}^2 + \mathbf{y}^2 \leq \mathbf{y} \right\}$, выписать повторные интегралы.
- 21. Поменять порядок интегрирования в интеграле

$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{y} f(x,y) dx.$$

22. Поменять порядок интегрирования в интеграле

$$\int_{1}^{4} dx \int_{(x-2)^2}^{5} f(x,y) dx.$$

23 Перейти к полярным координатам в интеграле

$$\int_{-1}^{0} dx \int_{-1-x}^{\sqrt{1-x^2}} f(x,y) dx$$

24. Вычислить площадь области

$$D = \left\{ (x, y) : 2y \le x^2 + y^2 \le 6y, y \ge \frac{\sqrt{3}}{3} |x| \right\}$$

25. Доказать, что

$$\iint\limits_{D}x^{3}y^{2}dxdy=0,$$

где
$$D = \{(x,y): x^2 + y^2 \le 1\}.$$

26. Поменять порядок интегрирования в интеграле

$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x+y} f(x,y,z) dz.$$

27. Вычислить интеграл

$$\iiint\limits_{D} \sqrt{x^2 + y^2 + z^2} dx dy dz ,$$

где
$$D = \{(x, y, z) : x^2 + y^2 + z^2 \le z\}$$

28. Вычислить объем области

$$\mathbf{D} = \left\{ (x, y, z) : 0 \le z \le x^2 + y^2, y \ge 0, y \le 2x, y \le 6 - x \right\}.$$

29. Вычислить интеграл $\int \mathbf{y} \mathbf{dl}$,

где
$$L = \{(x,y): x = t - \sin t, y = 1 - \cos t, 0 \le t \le 2\pi\}.$$

30 Вычислить интеграл
$$\int_{\mathbf{L}} (xy+1) dx + (y^2x+2) dy ,$$

если:

- а) L отрезок прямой от точки $\left(-1,-1\right)$ до точки $\left(-2,3\right)$;
- б) ${f L}$ часть кривой ${f x}=\sqrt{{f y}}+{f y}^{f 2}$ от точки ${f (0\,,0)}$ до точки ${f (2\,,1)}$.
- 31. Вычислить интеграл $\int_{(1,-1)}^{(1,1)} (x-y)(dx-dy)$.
- 32. Найти функцию $\mathbf{z}(\mathbf{x}, \mathbf{y})$, если

$$dz = (x^{2} + 2xy - y^{2})dx + (x^{2} - 2xy - y^{2})dy.$$

33. Вычислить интеграл $\iint_{\mathbf{S}} \mathbf{xyds}$,

где S – часть конуса $z=\sqrt{x^2+y^2}$, вырезанного цилиндром $x^2+y^2=y$.

34. Вычислить интеграл
$$\iint_{\mathbf{S}} (\mathbf{z} + \mathbf{y}) d\mathbf{x} d\mathbf{z}$$
,

где S - внешняя сторона тетраэдра, ограниченного плоскостями $x=0\,,\;y=0\,,\;z=0\,,$ $x+y+z=1\,.$

4.1.2. Образцы вопросов к коллоквиуму

- 1. Понятие m-мерного координатного пространства и m-мерного евклидова пространства. Множества в них.
- 2. Сходящиеся последовательности в E^{III} . Лемма о покоординатной сходимости.
- 3. Φ ундаментальная последовательность в E^m . Критерий Коши.
- 4. Ограниченная последовательность в Е^т.
- 5. Теорема Больцано-Вейерштрасса.
- 6. Предельная точка множества. Лемма.
- 7. Понятие предела функции многих переменных (по Гейне, по Коши). Эквивалентность определений. Арифметические свойства пределов.
- 8. Повторные пределы. Примеры. Понятие. Теорема о связи между двойными и повториыми пределами.
- 9. Определение функции многих переменных, непрерывной в точке. Примеры.
- 10. Теорема о непрерывности сложной функций многих переменных.
- 11. Теорема о сохранении знака непрерывной функции.
- 12. Теорема о прохождении непрерывной функции многих переменных через промежуточные значения.
- 13. І -я георема Вейерштрасса.
- 14. 2-я георема Вейерштрасса.
- 15. Частные производные. Понятие, примеры. Геометрический смысл.
- 16. Понятие дифференцируемости функции многих переменных. Лемма об эквивалентности 2-х определений.
- 17. Связь между дифференцируемостью и существованием частных производных, между дифференцируемостью и непрерывностью.
- 18. Геометрический смысл дифференцируемости ф.м.п.
- 19. Достаточное условие дифференцируемости функции многих переменных в точке.
- 20. Теорема о дифференцируемости сложной ф.м.п.
- 21. Дифференциал ф.м.п. Определение, геометрический смысл.
- 22. Инвариантность формы дифференциала 1-го порядка.
- 23. Производная по направлению. Градиент.
- 24. Частные производные высших порядков. Понятие. Достаточное условие равенства смешанных производных.
- 25. Дифференциалы высших порядков ф.м.п. Неинвариантность их формы.
- 26. Формула Тейлора для ф.м.п.
- 27. Понятие экстремума ф.м.п. Необходимое условие локального экстремума.
- 28. Достаточное условие локального экстремума ф.м.п.
- 29. Георема о дифференцируемости функции одной переменной, заданной неявно.
- 30. Касательная плоскость и нормаль к поверхности.
- 31. Система функций, заданных неявно. Вычисление их частных производных.
- 32. Зависимость функций. Понятие. Достаточное условие независимости.

- 33. Условный экстремум. Понятие, общий метод его поиска.
- 34. Метод множителей Лагранжа.

4.1.3. Перечень вопросов, которые выносятся на экзамен

- 1. Понятие евклидовой плоскости и евклидова пространства. Некоторые множества в E₂ и E₃.
- 2. Понятие функции 2-х и 3-х переменных. Линии и поверхности уровня. Примеры.
- 3. Понятие m-мерного координатного пространства и m-мерного евклидова пространства. Множества в них.
- 4. Сходящиеся последовательности в E^{III} . Лемма о покоординатной сходимости.
- 5. Фундаментальная последовательность в E^m. Критерий Коши.
- 6. Ограниченная последовательность в E^{m} .
- 7. Теорема Больцано-Вейерштрасса.
- 8. Предельная точка множества. Лемма.
- 9. Понятие предела функции многих переменных (по Гейне, по Коши). Эквивалентность определений. Арифметические свойства пределов.
- 10. Повторные пределы. Примеры. Понятие. Теорема о связи между двойными и повторными пределами.
- 11. Определение функции многих переменных, непрерывной в точке. Примеры.
- 12. Теорема о непрерывности сложной функций многих переменных.
- 13. Теорема о сохранении знака непрерывной функции.
- 14. Теорема о прохождении непрерывной функции многих переменных через промежуточные значения.
- 15. І -я теорема Вейерштрасса.
- 16. 2-я теорема Вейерштрасса.
- 17. Частные производные. Понятие, примеры. Геометрический смысл.
- 18. Понятие дифференцируемости функции многих переменных. Лемма об эквивалентности 2-х определений.
- 19. Связь между дифференцируемостью и существованием частных производных, между дифференцируемостью и непрерывностью.
- 20. Геометрический смысл дифференцируемости ф.м.п.
- 21. Достаточное условие дифференцируемости функции многих переменных в точке.
- 22. Теорема о дифференцируемости сложной ф.м.п.
- 23. Дифференциал ф.м.п. Определение, геометрический смысл.
- 24. Инвариантность формы дифференциала 1-го порядка.
- 25. Производная по направлению. Градиент.
- 26. Частные производные высших порядков. Понятие. Достаточное условие равенства смешанных производных.
- 27. Дифференциалы высших порядков ф.м.п. Неинвариантность их формы.
- 28. Формула Тейлора для ф.м.п.
- 29. Понятие экстремума ф.м.п. Необходимое условие локального экстремума.
- 30. Достаточное условие локального экстремума ф.м.п.
- 31. Теорема о дифференцируемости функции одной переменной, заданной неявно.
- 32. Касательная плоскость и нормаль к поверхности.
- 33. Система функций, заданных неявно. Вычисление их частных производных.
- 34. Зависимость функций. Понятие. Достаточное условие независимости.
- 35. Условный экстремум. Понятие, общий метод его поиска.
- 36. Метод множителей Лагранжа.
- 37. Функциональная последовательность. Понятие, примеры. Поточечная и равномерная сходимости функциональной последовательности.

- 38. Непрерывность предела равномерно сходящейся функциональной последовательности.
- 39. Функциональный ряд и его сходимость.
- 40. Равномерная сходимость функционального ряда. Признак Вейерштрасса.
- 41. Теорема о непрерывности суммы равномерно сходящегося функционального ряда. Следствие.
- 42. Теорема о почленном интегрировании функциональных рядов.
- 43. Теорема о почленном дифференцировании функциональных рядов.
- 44. Теорема Абеля, следствие.
- 45. Радиус сходимости степенного ряда, его вычисление.
- 46. Свойства степенных рядов.
- 47. Ряд Тейлора. Понятие. Критерий сходимости. Достаточное условие сходимости на промежутке. Необходимое условие сходимости.
- 48. Разложение элементарных функций в ряд Тейлора.
- 49. Приложения рядов Тейлора.
- 50. Задача определения объёма цилиндрического бруса. Определение двойного интеграла.
- 51. Суммы Дарбу для двойного интеграла, их свойства. Условие существования двойного интеграла.
- 52. Основные свойства двойных интегралов.
- 53. Приведение двойного интеграла к повторному для случая прямоугольной области.
- 54. Приведение двойного интеграла к повторному для случая криволинейной области.
- 55. Вычисление двойного интеграла в полярных координатах.
- 56. Замена переменных в двойном интеграле.
- 57. Приложения двойного интеграла.
- 58. Задача нахождения массы тела. Определение тройного интеграла.
- 59. Свойства тройного интеграла.
- 60. Сведение тройного интеграла к повторному для случая прямоугольного параллелепипеда.
- 61. Вычисление тройного интеграла по произвольному объёму.
- 62. Вычисление тройного интеграла в цилиндрических координатах.
- 63. Вычисление тройного интеграла в сферических координатах.
- 64. Приложения тройного интеграла.
- 65. Криволинейный интеграл 1-го рода.
- 66. Сведение криволинейного интеграла 1-го рода к определенному интегралу.
- 67. Криволинейный интеграл 2-го рода.
- 68. Существование и вычисление криволинейного интеграла 2-го рода.
- 69. Формула Грина. Вычисление площадей при помощи криволинейного интеграла 2-го рода.
- 70. Условие независимости криволинейного интеграла второго рода от пути интегрирования.
- 71. Признак полного дифференциала и нахождение первообразной для случая прямоугольной области.
- 72. Поверхностный интеграл первого рода. Понятие.
- 73. Вычисление поверхностного интеграла 1-го рода. Расчетная формула.
- 74. Вычисление площадей поверхностей.
- 75. Сторона поверхности. Ориентация поверхности и пространства.
- 76. Поверхностный интеграл второго рода.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 1 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2024. 703 с. https://urait.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-2-v-2-knigah-kniga-1-537699
- 2. Кудрявцев, Лев Дмитриевич. Курс математического анализа: учебник для бакалавров: учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям. Т. 1 / Кудрявцев, Лев Дмитриевич; Л. Д. Кудрявцев; Моск. физико-техн. ин-т (Гос. ун-т). 6-е изд. Москва: Юрайт, 2019. 703 с. (Бакалавр. Базовый курс). ISBN 9785991618076. 50 шт.
- 3. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 2, кн. 2 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2024. 323 с. https://biblio-online.ru/book/085ABC9E-507F-4FC7-BCD7-661681AA3382. 4. Кудрявцев, Л. Д. Курс математического анализа [Электронный ресурс] : учебник для бакалавров : в 3 т. Т. 2, кн. 1 / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М. : Юрайт, 2024. 396 с. https://urait.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-1-509733 Кудрявцев, Лев Дмитриевич. Курс математического анализа : учебник для бакалавров : учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям. Т. 2 / Кудрявцев, Лев Дмитриевич ; Л. Д. Кудрявцев ; Моск. физикотехн. ин-т (Гос. ун-т). 6-е изд. Москва : Юрайт, 2019. 720 с. (Бакалавр. Базовый
- 5. Калайдина, Галина Вениаминовна (КубГУ). Математический анализ. Пределы. Непрерывность: учебное пособие / Г. В. Калайдина, Н. М. Сеидова; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2018. 114 с.: ил. Библиогр.: с. 113. ISBN 978-5-8209-1495-9:70 шт.

5.2 Дополнительная литература:

курс). - ISBN 9785991618939. 50 шт.

- 1. Сборник задач по математическому анализу [Электронный ресурс] : учебное пособие. Т. 1 : Предел. Непрерывность. Дифференцируемость / Л. Д. Кудрявцев [и др.]. М. : ФИЗМАТЛИТ, 2010. 496 с. https://e.lanbook.com/book/2226#book_name.
- 2. Сборник задач по математическому анализу [Электронный ресурс] : учебное пособие. Том 2 : Интегралы. Ряды / Л.Д. Кудрявцев [и др.]. Москва : Физматлит, 2009. 504 с. https://e.lanbook.com/book/2227#book_name.
- 3. Сборник задач по математическому анализу [Электронный ресурс] : учебное пособие. Том 3 : Функции нескольких переменных / Л.Д. Кудрявцев [и др.]. Москва : Физматлит, 2003. 472 с. https://e.lanbook.com/book/2220#book_name.
- 4. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Электронный ресурс] : учебник : в 3 т. Т. 1 / Фихтенгольц Г. М. СПб. : Лань, 2018. 608 с. https://e.lanbook.com/book/100938#authors.
- 5. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Электронный ресурс]: учебник: в 3 т. Т. 2 / Фихтенгольц Г. М. СПб.: Лань, 2018. 800 с. https://e.lanbook.com/book/104963#authors.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», в том числе современные профессиональные базы данных и информационные справочные системы, необходимые для освоения дисциплины.

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Портал открытых данных Российской Федерерации https://data.gov.ru
- 3. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 4. База данных Научной электронный библиотеки eLIBRARY.RU https://elibrary.ru/
- 5. База данных Всероссийского института научной и технической информации (ВИНИ-ТИ) РАН http://www2.viniti.ru/
- 6. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных www.rusnano.com
- 7. Базы данных и аналитические публикации «Университетская информационная система РОССИЯ» https://uisrussia.msu.ru/
- 8. Википедия, свободная энциклопедия. [Электронный ресурс]. Wikipedia http://ru.wikipedia.org

7. Методические указания для обучающихся по освоению дисциплины

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса

8.1 Перечень информационных технологий.

Использование электронных презентаций при проведении лекционных и практических занятий.

8.2 Перечень необходимого программного обеспечения.

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.

3. Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет.

8.3 Перечень необходимых информационных справочных систем

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/
- 2. Электронная библиотека КубГУ

http://212.192.128.113/MarcWeb/Work.asp?ValueDB=41&DisplayDB=Электронный

- 3. Электронная библиотечная система «Университетская библиотека ONLINE» (http://www.biblioclub.ru)
 - 4. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
 - 5. ЭБС Издательства «Лань» http://e.lanbook.com/ ООО Издательство «Лань»
 - 6. ЭБС «Университетская библиотека онлайн» www.biblioclub.ru OOO «Директ-Медиа»
 - 7. ЭБС «BOOK.ru» https://www.book.ru OOO «КноРус медиа»
 - 8. ЭБС «ZNANIUM.COM» www.znanium.com ООО «ЗНАНИУМ»

Переч	Перечень договоров ЭБС (за период, соответствующий сроку получения образования по ООП)							
Учебный	Наименование документа с указанием реквизитов	Срок действия доку-						
год		мента						
2024/2025	ЭБС Издательства «Лань» http://e.lanbook.com/ ООО Издательство	С 01.01.24 по 31.12.24						
	«Лань» Договор № 99 от 30 ноября 2017 г.							
	ЭБС «Университетская библиотека онлайн» www.biblioclub.ru	С 01.01.24 по 31.12.24						
	OOO «Директ-Медиа» Договор № 0811/2017/3 от 08 ноября 2017 г.							
	ЭБС «Юрайт» http://www.biblio-online.ru ООО Электронное изда-	С 20.01.24 по 19.01.25						
	тельство «Юрайт» Договор №0811/2017/2 от 08 ноября 2017 г.							
	ЭБС «BOOK.ru» https://www.book.ru_ООО «КноРус медиа» Дого-	С 09.01.24 по 31.12.24						
	вор № 61/223-Ф3 от 09 января 2018 г.							
	ЭБС «ZNANIUM.COM» <u>www.znanium.com</u> ООО «ЗНАНИУМ»	С 01.01.24 по 31.12.24						
	Договор № 1812/2017 от 18 декабря 2017 г.							

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска Ауд. 129, 131, A3016, A305, A307
	Лабораторные занятия	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Групповые (индивидуальные) консультации	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133
	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационнообразовательную среду университета. Ауд. 102-А и читальный зал

Методические указания по выполнению лабораторных работ по лиспиплине "Математический анализ"

Настоящие методические указания предназначены для выполнения лабораторных работ по математическому анализу и направлены на формирование общепрофессиональных и профессиональных компетенций студентов.

Для успешного выполнения лабораторной работы обучающемуся следует ознакомиться с теоретической частью дисциплины по теме лабораторной работы, изложенной в лекциях,. С целью более полного и углубленного понимания теоретического материала могут быть использованы источники, указанные в списке основной литературы [1-6], дополнительной [1-5], а также перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины, указанный в п.6.

Критерием должной подготовки студентов к выполнению лабораторных работ являются приобретенные знания, позволяющие безошибочно ответить на вопросы, сформулированные по каждой теме лабораторных работ. Для приобретения должных навыков к решению задач предполагается решение задач на лабораторных занятиях в учебных аудиториях под руководством преподавателя. Закрепление приобретенных навыков осуществляется внеаудиторным самостоятельным решением студентом задач. Номера задач для решения в аудитории и дома указаны к каждой лабораторной работе и списка дополнительной литературы.

Для лабораторных работ используются литературные источники из списка дополнительной литературы [1] и [2].

Введение в анализ

<u>Лабораторная работа 1.</u> Метод математической индукции. В аудитории: [1], гл. 1, § 2, №№ 25 (1, 3, 5, 7, 9), 26 (1, 3), 28 (1, 3). Дома: [1], гл. 1, § 2, №№ 25 (2, 4, 6, 8), 26 (2, 4), 28 (2).

<u>Лабораторная работа 2.</u> Модуль числа, сигнум. Целая и дробная часть числа. Графики.

В аудитории: [1], гл. 1, § 3, №№ 21, 23, 25, 27. Дома: [1], гл. 1, § 3, №№ 22, 24, 26.

<u>Лабораторная работа 3.</u> Область определения, область значений функции. Нижняя и верхняя грани. Четность, нечетность функции, периодичность.

В аудитории: [1], гл. 1, § 7, №№ 89–95 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 1, § 7, №№ 89–95 (четные).

<u>Лабораторная работа 4.</u> Элементарные операции над графиками функций В аудитории: [1], гл. 1, § 7, №№ 217-219 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 1, § 7, №№ 217-219 (четные).

<u>Лабораторная работа 5.</u> Монотонность функций. Графики сложных функций В аудитории: [1], гл. 1, § 7, №№ 221-225 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 1, § 7, №№ 221-225 (четные).

<u>Лабораторная работа 6.</u> Периодические функции. Графики сложных функций В аудитории: [1], гл. 1, § 7, №№ 248-249 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 1, § 7, №№ 248-249 (четные).

Лабораторная работа 7. Сложение графиков. Умножение графиков

В аудитории: [1], гл. 1, § 7, №№ 234-235 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 1, § 7, №№ 234-235 (четные).

<u>Лабораторная работа 8.</u> Обратная функция. Обратимость функций. Графики обратных функций

В аудитории: [1], гл. 1, § 7, №№ 256-257 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 1, § 7, №№ 256-257 (четные).

Лабораторная работа 9. Графики функций в полярных координатах

В аудитории: [1], гл. 1, § 7, №№ 114-116 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 1, § 7, №№ 114-116 (четные).

Лабораторная работа 10. Контрольная работа по пройденной теме

Предел числовой последовательности.

<u>Лабораторная работа 1.</u> Ограниченные и неограниченные последовательности. Монотонные последовательности

В аудитории: [1], гл. 1, § 7, №№ 314, 315, 317 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 1, § 7, №№ 314, 315, 317 (четные).

<u>Лабораторная работа 2.</u> Предел последовательности. Расходящиеся последовательности

В аудитории: [1], гл. 2, § 8, №№ 2, 5, 8, 12, 13, 69, 95, 99, 100, 106, 108, 110, 111, 124, 125, 129, 174, 212, 220 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 8, №№ 2, 5, 8, 12, 13, 69, 95, 99, 100, 106, 108, 110, 111, 124, 125, 129, 174, 212, 220 (четные).

<u>Лабораторная работа 3.</u> Предельный переход в неравенствах. Эталонные пределы последовательностей

В аудитории: [1], гл. 2, § 8, №№ 24-28 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 8, №№ 24-28 (четные).

<u>Лабораторная работа 4.</u> Сходимость монотонных ограниченных последовательностей. Критерий Коши сходимости фундаментальной последовательности

В аудитории: [1], гл. 2, § 8, №№ 58, 60 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 8, №№ 58, 60 (четные).

Лабораторная работа 5. Подпоследовательности.

В аудитории: [1], гл. 2, § 8, №№ 58, 60 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 8, №№ 58, 60 (четные).

<u>Лабораторная работа 6. (2 занятия)</u> Сходимость рекуррентно заданных последовательностей.

В аудитории: [1], гл. 2, § 8, №№ 234, 240, 247 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 8, №№ 234, 240, 247 (четные).

Лабораторная работа 7. Контрольная работа по пройденной теме

Предел функции

<u>Лабораторная работа 1.</u> Предел функции в точке. Односторонние пределы функции, пределы на бесконечности.

```
В аудитории: [1], гл. 2, § 9, \mathbb{N}_{\mathbb{N}} 1, 2,. 20 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, \mathbb{N}_{\mathbb{N}} 1, 2, 20 (четные).
```

<u>Лабораторная работа 2.</u> Пределы рациональных функций. В аудитории: [1], гл. 2, § 9, №№ 21-24 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 21-24 (четные).

<u>Лабораторная работа 3.</u> Пределы иррациональных функций В аудитории: [1], гл. 2, § 9, №№ 25-27 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 25-27 (четные).

<u>Лабораторная работа 4.</u> Первый замечательный предел. Пределы тригонометрических выражений

В аудитории: [1], гл. 2, § 9, №№ 29-31 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 29-31 (четные).

<u>Лабораторная работа 5.</u> Второй замечательный предел. Следствия из него. Предел показательно-степенных выражений

В аудитории: [1], гл. 2, § 9, №№ 33-36 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 33-36 (четные).

<u>Лабораторная работа 6.</u> О-символика. Использование асимптотических формул при вычислении предела функции

В аудитории: [1], гл. 2, § 9, №№ 44-46 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 44-46 (четные).

<u>Лабораторная работа 7.</u> Частичные пределы функции. В аудитории: [1], гл. 2, § 9, №№ 40, 41, 65, 66 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 9, №№ 40, 41, 65, 66 (четные).

Лабораторная работа 8. Контрольная работа по пройденной теме

Непрерывность функции.

<u>Лабораторная работа 1.</u> Непрерывность функции в точке В аудитории: [1], гл. 2, § 10, №№ 5, 11, 17 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 10, №№ 5, 11, 17 (четные).

<u>Лабораторная работа 2.</u> Непрерывность функции на множестве. Непрерывность элементарных функций

В аудитории: [1], гл. 2, § 33-35 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 2, § 10, №№ 33-35 (четные).

<u>Лабораторная работа 3.</u> Точки разрыва, их классификация В аудитории: [1], гл. 2, § 10, №№ 18, 19, (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 10, №№ 18, 19 (четные).

<u>Лабораторная работа 4.</u> Исследование непрерывности функций и построение графиков

В аудитории: [1], гл. 2, § 10, №№ 57-60 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 10, №№ 57-60 (четные).

Лабораторная работа 5. Исследование непрерывности сложных функций

В аудитории: [1], гл. 2, § 10, №№ 56, 62, 64 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 10, №№ 56, 62, 64 (четные).

<u>Лабораторная работа 6.</u> Равномерная непрерывность функций В аудитории: [1], гл. 2, § 12, №№ 3-4 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 12, №№ 3-4 (четные).

Лабораторная работа 7. Контрольная работа по пройденной теме

Дифференцируемость функции

<u>Лабораторная работа 1.</u> Определение производной. Табличное дифференцирование В аудитории: [1], гл. 3, § 13, №№ 1-2 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 3, § 13, №№ 1-2 (четные).

<u>Лабораторная работа</u> 2. Производная суммы, произведения, частного. Производная сложной функции

В аудитории: [1], гл. 3, § 13, №№ 3-51 (нечетные).

Дома: [1], гл. 3, § 13, №№ 3-51 (четные).

Лабораторная работа 3. Производная сложной функции.

В аудитории: [1], гл. 3, § 13, №№ 52-100 (нечетные).

Дома: [1], гл. 3, § 13, №№ 52-100 (четные).

<u>Лабораторная работа 4.</u> Логарифмическая производная. Односторонние производные

В аудитории: [1], гл. 3, § 13, №№ 141-152, 191-193 (нечетные).

Дома: [1], гл. 3, § 13, №№ 141-152, 191-193 (четные).

<u>Лабораторная работа 5.</u> Производная обратной функции. Производная функции, заданной параметрически. Производная неявной функции

В аудитории: [1], гл. 3, § 13, №№ 197, 201, 207 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 3, § 13, №№ 197, 201, 207 (четные).

<u>Лабораторная работа 6.</u> Геометрический смысл производной. Уравнение касательной и нормали

В аудитории: [1], гл. 3, § 14, $\mathbb{N}_{2}\mathbb{N}_{2}$ 16, 17 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 3, § 14, №№ 16, 17 (четные).

<u>Лабораторная работа 7.</u> Дифференциал функции. Его применение в приближенных вычислениях

В аудитории: [1], гл. 3, § 13, №№ 213, 214, 216, 219 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 3, § 13, №№ 213, 214, 216, 219 (четные).

<u>Лабораторная работа 8.</u> Производные высших порядков. Формула Ньютона-Лейбница

В аудитории: [1], гл. 3, § 15, №№ 1, 2 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 3, § 15, №№ 1, 2 (четные).

Лабораторная работа 9. Дифференциалы высших порядков

В аудитории: [1], гл. 3, § 15, №№ 22, 28 (1 3, 5, 7, 9, т. е. нечетные).

Дома: [1], гл. 3, § 15, №№ 22, 28 (четные).

<u>Лабораторная работа 10.</u> Теоремы Ролля, Лагранжа, Коши В аудитории: [1], гл. 4, § 17, №№ 2, 3, 7, 17-27, 42-52 (нечетные). Дома: [1], гл. 4, § 17, №№ 2, 3, 7, 17-27, 42-52 (четные).

<u>Лабораторная работа 11.</u> Разложения элементарных функций по формуле Тейлора В аудитории: [1], гл. 4, § 17, №№ 12-15, 20 (нечетные). Дома: [1], гл. 4, § 17, №№ 12-15, 20 (четные).

<u>Лабораторная работа 12.</u> Приближенные вычисления и вычисление пределов при помощи формулы Тейлора

В аудитории: [1], гл. 4, § 17, №№ 1-5 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [1], гл. 4, § 17, №№ 1-5 (четные).

Лабораторная работа 13. Контрольная работа по пройденной теме

Исследование функций

<u>Лабораторная работа 1.</u> Вычисление пределов по правилу Лопиталя В аудитории: [1], гл. 4, § 17, №№ 2, 3, 7, 17-27, 42-52 (нечетные). Дома: [1], гл. 4, § 17, №№ 2, 3, 7, 17-27, 42-52 (четные).

<u>Лабораторная работа 2.</u> Исследование функции на монотонность. Экстремумы В аудитории: [1], гл. 4, § 20, №№ 16-21 (нечетные). Дома: [1], гл. 4, § 20, №№ 16-21 (четные).

<u>Лабораторная работа 3.</u> Исследование функции на выпуклость. Точки перегиба В аудитории: [1], гл. 4, § 20, №№ 49-54 (нечетные). Дома: [1], гл. 4, § 20, №№ 49-54 (четные).

<u>Лабораторная работа 4.</u> Нахождение асимптот графиков функции В аудитории: [1], гл. 2, § 11, №№ 1-4 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 11, №№ 1-4 (четные).

<u>Лабораторная работа 5</u>. Полное исследование функций и построение графиков В аудитории: [1], гл. 2, § 21, №№ 3-6 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 21, №№ 3-6 (четные).

Лабораторная работа 6. Построение графиков функций В аудитории: [1], гл. 2, § 22, №№ 7-10 (1 3, 5, 7, 9, т. е. нечетные). Дома: [1], гл. 2, § 21, №№ 7-10 (четные).

<u>Лабораторная работа 7</u>. Решение практических задач на нахождение экстремумов В аудитории: [1], гл. 2, § 22, №№ 12-22 (нечетные). Дома: [1], гл. 2, § 21, №№ 12-22 (четные).

Лабораторная работа 8. Контрольная работа

Неопределенный интеграл

<u>Лабораторная работа 1.</u> Первообразная. Неопределенный интеграл. Непосредственное интегрирование

В аудитории: [2], гл. 1, § 1, №№ 2 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 1, №№ 2 (четные).

<u>Лабораторная работа 2.</u> Метод замены переменной в неопределенном интеграле В аудитории: [2], гл. 1, § 1, №№ 11-16 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 1, №№ 10-16 (четные).

<u>Лабораторная работа 3</u> Метод интегрирования по частям В аудитории: [2], гл. 1, § 1, №№ 19-21, 23, 24 (1, 3, 5, 7, 9, т. е. нечетные). Дома: [2], гл. 1, § 1, №№ 19-21, 23, 24 (четные).

<u>Лабораторная работа 4.</u> Интегрирование элементарных дробей. В аудитории: [2], гл. 1, § 2, №№ 1 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 2, №№ 1 (четные).

<u>Лабораторная работа 5.</u> Интегрирование выражений, содержащих квадратный трехчлен

В аудитории: [2], гл. 1, § 1, №№ 8, 10 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 1, №№ 10-16 (четные).

<u>Лабораторная работа 6.</u> Интегрирование рациональных выражений. Метод неопределенных коэффициентов

В аудитории: [2], гл. 1, § 2, $\mathbb{N}_{\mathbb{N}}$ 2-5 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 2, $\mathbb{N}_{\mathbb{N}}$ 2-4 (четные).

<u>Лабораторная работа 7.</u> Интегрирование рациональных функций В аудитории: [2], гл. 1, § 2, №№ 6-7 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 2, №№ 6-7 (четные).

<u>Лабораторная работа 8.</u> Интегрирование иррациональностей. В аудитории: [2], гл. 1, § 3, №№ 1, 2, 4, 5, 8 (1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 3, №№ 1, 2 4, 5, 8 (четные).

<u>Лабораторная работа 9.</u> Интегрирование иррациональностей. В аудитории: [2], гл. 1, § 3, №№ 9, 10, 11(1, 3, 5, 7, 9, 11, 13, 15, 17, т. е. нечетные). Дома: [2], гл. 1, § 3, №№ 9, 10, 11 (четные).

<u>Лабораторная работа 10.</u> Подстановки Чебышева и Эйлера В аудитории: [2], гл. 1, § 3, №№ 13, 14, 17-19 (1, 3, 5, 7, т. е. нечетные). Дома: [2], гл. 1, § 3, №№ 13, 14, 17-19 (четные).

<u>Лабораторная работа 11.</u> Интегрирование тригонометрических выражений. В аудитории: [2], гл. 1, § 4, №№ 1-6,9-13 (1, 3, 5, , т. е. нечетные). Дома: [2], гл. 1, § 4, №№ 13, 14, 17-19 (четные).

Лабораторная работа 12. Контрольная работа

Определенный интеграл

<u>Лабораторная работа 1.</u> Определенный интеграл. Интегральные суммы В аудитории: [2], гл. 2, § 6, №№ 4-6 (1, 3, т. е. нечетные). Дома: [2], гл. 2, § 6, №№ 4-6 (четные).

<u>Лабораторная работа 2.</u> Формула Ньютона-Лейбница В аудитории: [2], гл. 2, § 6, №№ 69-106 (нечетные).

Дома: [2], гл. 2, § 6, №№ 69-106 (четные).

<u>Лабораторная работа 3.</u> Интегрирование по частям в определенном интеграле В аудитории: [2], гл. 2, § 6, №№ 127-160 (нечетные).

Дома: [2], гл. 2, § 6, №№ 127-160 (четные).

Лабораторная работа 4. Площадь квадрируемой плоской фигуры

В аудитории: [2], гл. 2, § 7, №№ 1-6 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 2, § 7, №№ 1-6 (четные).

Лабораторная работа 5. Длина дуги плоской кривой

В аудитории: [2], гл. 2, § 7, №№ 61, 63, 65, 69, (1, 3, 5, 7, 9, т. е. нечетные.

Дома: [2], гл. 2, § 7, №№ 61, 63, 65, 69, (четные).

<u>Лабораторная работа 6.</u> Кубируемость некоторых классов тел, вычисление их объемов

В аудитории: [2], гл. 2, § 8, №№ 1-4 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 2, § 8, №№ 1-4 (четные).

Лабораторная работа 7. Площадь поверхности вращения

В аудитории: [2], гл. 2, § 8, №№ 81-82 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 2, § 8, №№ 81-82 (четные).

Лабораторная работа 8. Приближенные вычисления определенных интегралов.

В аудитории: [2], гл. 2, § 10, №№ 7, 8, 9 (1, 3, 5, т. е. нечетные).

Дома: [2], гл. 2, § 10, №№ 81-82 (четные).

Лабораторная работа 9. Контрольная работа

Несобственные интегралы

<u>Лабораторная работа 1.</u> Несобственные интегралы 1-го рода, их вычисление В аудитории: [2], гл. 3, § 11, №№ 3-15, 19-22 (нечетные).

Дома: [2], гл. 3, § 11, №№ 3-15, 19-22 (четные).

<u>Лабораторная работа 2.</u> Несобственные интегралы 2-го рода, их вычисление

В аудитории: [2], гл. 3, § 11, $\mathbb{N}_{2}\mathbb{N}_{2}$ 57-72 (нечетные).

Дома: [2], гл. 3, § 11, №№ 57-72 (четные).

<u>Лабораторная работа 3.</u> Сходимость несобственных интегралов 1-го рода от неотрицательных функций

В аудитории: [2], гл. 3, § 12, №№ 15-30 (нечетные).

Дома: [2], гл. 3, § 12, №№ 15-30 (четные).

<u>Лабораторная работа 4.</u> Сходимость несобственных интегралов второго рода от неотрицательных функций

В аудитории: [2], гл. 3, § 12, №№ 64-81 (нечетные).

Дома: [2], гл. 3, § 12, №№ 64-81 (четные).

<u>Лабораторная работа 5.</u> Главное значение по Коши несобственных интегралов В аудитории: [2], гл. 3, § 11, №№ 125-128, (нечетные), § 12, №№ 192-195 (нечетные). Дома: [2], гл. 3, § 11, №№ 125-128 (четные), § 12, №№ 192-195 (четные).

Лабораторная работа 6. Самостоятельная работа

Числовые ряды

<u>Лабораторная работа 1.</u> Понятие числового ряда и его сходимости. Критерий Коши. В аудитории: [2], гл. 4, § 13, №№ 11-14 (1, 3, 5, 7, 9, т. е. нечетные). Дома: [2], гл. 4, § 13, №№ 81-82 (четные).

<u>Лабораторная работа 2.</u> Свойства сходящихся рядов. Ряды с неотрицательными членами.

В аудитории: [2], гл. 4, § 14, №№ 2-4 (1, 3, 5, 7, 9, т. е. нечетные). Дома: [2], гл. 4, § 14, №№ 2-4 (четные).

<u>Лабораторная работа 3.</u> Признаки сравнения. Признаки Даламбера и Коши. Интегральный признак.

В аудитории: [2], гл. 4, § 14, №№ 18, 19, 21, 22 (1, 3, 5, 7, 9, т. е. нечетные). Дома: [2], гл. 4, § 14, №№ 18, 19, 21, 22 (четные).

<u>Лабораторная работа 4.</u> Знакопеременные ряды. Признак Лейбница.

В аудитории: [2], гл. 4, § 15, №№ 3, 4 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 4, § 15, №№ 3, 4 (четные).

<u>Лабораторная работа 5.</u> Абсолютно сходящиеся ряды. Признаки Абеля и Дирихле. Теорема Римана.

В аудитории: [2], гл. 4, § 15, №№ 5-8 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 4, § 15, №№ 5-8 (четные).

<u>Лабораторная работа 6.</u> Суммируемость числовых рядов. Понятие о бесконечном произведении.

В аудитории: [2], гл. 4, § 16, №№ 1, 2 (1, 3, 5, 7, 9, т. е. нечетные).

Дома: [2], гл. 4, § 16, №№ 1, 2 (четные).

Лабораторная работа 7. Контрольная работа