Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

30 мая 2025 г.

подпись

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФТД.01 Математические модели механики жидкости и газа

Направление подготовки 01.04.02 Прикладная математика и информатика

Направленность (профиль) Математическое моделирование в естествознании и технологиях

Форма обучения очная

Квалификация магистр

Рабочая программа дисциплины «Математические модели механики жидкости и газа» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.04.02 Прикладная математика и информатика

Программу составил:

Зарецкая М.В., д-р физ.-мат. наук, доцент, проф. кафедры математического моделирования КубГУ

Рабочая программа дисциплины «Математические модели механики жидкости и газа» утверждена на заседании кафедры математического моделирования

протокол №11 от «22» мая 2025 г.

Заведующий кафедрой (разработчика) акад РАН, д-р физ.-мат. наук, проф. Бабешко В.А.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 от «23» мая 2025 г.

Председатель УМК факультета д-р. техн. наук, доцент Коваленко А.В.

Рецензенты:

Лебедев К.А., д-р физ.-мат. зав. кафедрой теоретической физики и компьютерных технологий КубГУ

Трофимов В.М., д-р физ.-мат. наук, с.н.с., профессор кафедры информационных систем и программирования ФГБОУ ВО «КубГТУ»

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Цель учебной дисциплины «Математические модели механики жидкости и газа»: углубленное освоение студентами теоретических знаний по моделям механики жидкостей и газов, получение представления о модели сплошной среды, методах изучения движения жидкостей, методах решения задач механики жидкости для оценки состояния гидротехнических систем и инженерных сетей и сооружений в научно-исследовательской деятельности.

Процесс освоения данной дисциплины направлен на получения необходимого объема теоретических знаний, отвечающих требованиям ФГОС ВО и обеспечивающих успешное проведение магистром профессиональной деятельности, владение методологией формулирования и решения прикладных задач, а также на выработку умений применять методы механики сплошной среды. Цели дисциплины соответствуют следующим формируемых компетенций.

1.2 Задачи дисциплины

Основные задачи дисциплины:

- приобретение теоретических знаний по механике жидкостей и газов, необходимых для изучения дисциплин профильной подготовки;
 - приобретение студентами навыков решения прикладных гидравлических задач;
- выработка навыков практического использования справочной, нормативной, патентной и научно-технической литературы для решения конкретных инженерных гидравлических задач.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Математические модели механики жидкости и газа» относится к факультативным дисциплинам Блока 3 учебного плана подготовки магистра, базируется на знаниях, полученных по стандарту высшего образования, и является дополнительной дисциплиной в подготовке магистров по программе «Математическое и информационное обеспечение экономической деятельности».

Введение факультативного курса в профессиональную подготовку магистра определяется ролью механики жидкости и газа в формировании высококвалифицированного специалиста в области математического моделирования. Данная дисциплина призвана обеспечить магистра знаниями, позволяющими прикладнику успешно вести профессиональную деятельность в сфере разработки математических моделей решаемых задач, а также обеспечивать полный цикл процесса моделирования..

Необходимым требованием к «входным» знаниям, умениям и опыту деятельности обучающегося при освоении данной дисциплины, приобретенным в результате освоения предшествующих дисциплин является уверенное владение материалом следующих курсов: уравнения математической физики, дифференциальные уравнения, математический анализ, теория функций комплексного переменного.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения курса «Математические модели механики жидкости и газа» обучающийся должен овладеть:

ОПК-1 Способен решать актуальные задачи фундаментальной и прикладной математики

Знать ИОПК-1.2 (А/01.6 Зн.1) Методы и приемы формализации задач при решении актуальных задач фундаментальной и прикладной математики

Уметь ИОПК-1.4 (D/01.6 У.2) Вырабатывать варианты реализации требований при

решении актуальных задач фундаментальной и прикладной математики

ИОПК-1.5 (D/01.6 У.3) Проводить оценку и обоснование рекомендуемых решений задач фундаментальной и прикладной математики

ИОПК-1.6 (A/01.6 У.1) Использовать методы и приемы формализации задач фундаментальной и прикладной математики

Владеть ИОПК-1.10 (D/01.6 Тд.4) Оценка и согласование сроков выполнения поставленных адач фундаментальной и прикладной математики

ОПК-3 Способен разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности

Знать ИОПК-3.4 (А/01.6 Зн.1) Методы и приемы формализации задач, методы разработки математических моделей и их анализа

ИОПК-3.5 (A/01.6 Зн.2) Методы и приемы алгоритмизации поставленных задач, их анализ при решении задач в области профессиональной деятельности

ИОПК-3.6 (A/01.6 Зн.4) Стандартные алгоритмы и области их применения, методы разработки математических моделей и их анализа

ИОПК-3.7 (A/01.6 Зн.7) Методологии разработки программного обеспечения, математического моделирования

Уметь ИОПК-3.11 (A/01.6 У.2) Использовать методы и приемы алгоритмизации поставленных задач, разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности

Владеть ИОПК-3.14 (A/01.6 Тд.3) Анализ и оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики

Знать ИПК-1.1 (D/29.7 Зн.8) Современный отечественный и зарубежный опыт в решении актуальных и значимых задач фундаментальной и прикладной математики ИПК-1.2 (A/01.6 Зн.1) Методы и приемы формализации задач фундаментальной и прикладной математики

Уметь ИПК-1.3 (D/01.6 У.1) Проводить анализ исполнения требований при решении задач фундаментальной и прикладной математики ИПК-1.4 (A/01.6 У.1) Использовать методы и приемы формализации актуальных и

значимых задач фундаментальной и прикладной математики

Владеть ИПК-1.11 (D/04.7 Тд.5) Ответы на вопросы и предложения участников аналитической группы проекта при решении задач фундаментальной и прикладной математики

ПК-6 Способен эффективно определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением, осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения

Знать ИПК-6.5 (D/29.7 Зн.1) Стандарты в области качества, применимые к предметной области, методы выбора современных оптимальных технологий и средств его разработки и сопровождения

Уметь ИПК-6.20 (А/01.6 У.2) Использовать методы и приемы алгоритмизации поставленных задач, эффективно определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением, осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения

Владеть ИПК-6.25 (D/01.6 Тд.1) Анализ возможностей реализации требований к программному обеспечению, определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением

Код			Формулировка компетенции			
компетенции						
ОПК-1	Способен решать а	ктуальные	задачи фундаментальной и прикладной математики			
приемы формал решении ак фундаментально математики ИОПК-1.4 Вырабатывать в требований актуальных зада	1.6 Зн.1) Методы и пизации задач при туальных задач й и прикладной (D/01.6 У.2) арианты реализации при решении ч фундаментальной	Знает	 основные понятия и модели и методы механики жидкости и газа; математические формулировки основных понятий и основополагающих утверждений 			
оценку и рекомендуемых фундаментально математики ИОПК-1.6 (A/01 методы и при	1.6 У.3) Проводить обоснование решений задач й и прикладной .6 У.1) Использовать емы формализации	Умеет	 выбирать и анализировать методы решения поставленной задачи и средства программного обеспечения (в том числе специализированного) для их реализации; формулировать и содержательно интерпретировать результаты решения задач 			
задач фундаментальной и прикладной математики ИОПК-1.10 (D/01.6 Тд.4) Оценка и согласование сроков выполнения поставленных задач фундаментальной и прикладной математики		Владеет	 основной терминологией и понятийным аппаратом; основными аналитическими и численными методами решения уравнений в частных производных; навыками доказательства основных утверждений 			
ОПК-3	Способен разрабат области профессио		матические модели и проводить их анализ при решении задач в ятельности			

области профессио	энальной де	ятельности
ИОПК-3.4 (А/01.6 Зн.1) Методы и приемы формализации задач, методы разработки математических моделей и их анализа ИОПК-3.5 (А/01.6 Зн.2) Методы и приемы алгоритмизации поставленных задач, их анализ при решении задач в области профессиональной деятельности	Знает	 основные понятия и концепции механики жидкости и газа; подходы к исследованию уравнений механики жидкости и газа, лежащие в основе построения эффективных аналитических и численных методов решения задач. современные тенденции развития научных и прикладных достижений в области механики жидкости и газа.
ИОПК-3.6 (А/01.6 Зн.4) Стандартные алгоритмы и области их применения, методы разработки математических моделей и их анализа ИОПК-3.7 (А/01.6 Зн.7) Методологии разработки программного обеспечения, математического моделирования ИОПК-3.11 (А/01.6 У.2) Использовать методы и приемы	Умеет	 описать конкретную прикладную задачу из области механики жидкости и газа в виде краевой задачи для дифференциальных уравнений с частными производными или интегральных уравнений и определить пути ее решения. использовать современные теории для решения научно-исследовательских и прикладных задач.
алгоритмизации поставленных задач, разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности ИОПК-3.14 (А/01.6 Тд.3) Анализ и оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов	Владеет	 методологией формулирования и решения прикладных задач механики жидкости и газа; навыками построения математических моделей механики жидкости и газа. навыками анализа, сопоставления и обобщения результатов теоретических и практических исследований в предметной области.

ПК-1	Способен	формулировать	и ре	ешать	актуальные	И	значимые	задачи	фундаментальной	И
11IX-1	прикладно	ой математики								

ИПК-1.1 (D/29.7 3н.8) Современный отечественный и зарубежный опыт в решении актуальных и значимых задач фундаментальной и прикладной математики ИПК-1.2 (A/01.6 3н.1) Методы и приемы формализации задач фундаментальной и прикладной	Знает	 положения статики, кинематики и динамики жидкости и газа, составляющие основу моделей расчета гидротехнических систем и инженерных сетей и сооружений
математики ИПК-1.3 (D/01.6 У.1) Проводить анализ исполнения требований при решении задач фундаментальной и прикладной математики ИПК-1.4 (A/01.6 У.1) Использовать методы и приемы формализации	Умеет	 применять основные законы статики, кинематики и динамики жидкости и газов, различать режимы течения жидкости и методы решения задач по движению жидкости в теоретических и практических целях своей профессиональной деятельности; использовать электронные тематические ресурсы для углубления знаний по изучаемой дисциплине
актуальных и значимых задач фундаментальной и прикладной математики ИПК-1.11 (D/04.7 Тд.5) Ответы на вопросы и предложения участников аналитической группы проекта при решении задач фундаментальной и прикладной математики	Владеет	 навыками решения задачи и интерпретации результатов в терминах прикладной области; научно-методическим аппаратом; навыками построения простейших моделей процессов методами исследования моделей процессов

ПК-6

Способен эффективно определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением, осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения

сопровождения		
ИПК-6.5 (D/29.7 Зн.1) Стандарты в области качества, применимые к предметной области, методы выбора современных оптимальных технологий и средств его разработки и сопровождения ИПК-6.20 (A/01.6 У.2) Использовать	Знает	 основные прикладные пакеты, используемые для решения уравнений механик жидкости и газа. программное обеспечение для реализации процесса моделирования
методы и приемы алгоритмизации поставленных задач, эффективно определять компонентный состав и архитектуру программного обеспечения или программноаппаратного комплекса в соответствии с его назначением, осуществлять выбор современных	Умеет	 использовать современные программные решения и среды для реализации процесса моделирования
оптимальных технологий и средств его разработки и сопровождения ИПК-6.25 (D/01.6 Тд.1) Анализ возможностей реализации требований к программному обеспечению, определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением	Владеет	 приемами постановки инженерных задач для решения их коллективом специалистов различных направлений

Процесс освоения дисциплины «Математические модели механики жидкости и газа» направлен на получения необходимого объема теоретических знаний, обеспечивающих успешное ведение магистром научно-исследовательской деятельности, владение методологией формулирования и решения прикладных задач, а также на выработку умений применять на практике методы прикладной математики и информатики.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 2 зач. ед., (72 часа), их распределение по видам работ представлено в таблице

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 академических часов (из них 30 аудиторных). Курс «Математические модели механики жидкости и газа» состоит из лекционных и лабораторных занятий, сопровождаемых регулярной индивидуальной работой преподавателя со студентами в процессе самостоятельной работы. В конце семестра проводится зачет. Программой дисциплины предусмотрены 10 часов лекционных и 20 часа лабораторных занятий.

Вид учебн	Всего часов	Семестр 2 (часы)	
	Контактная работа, в том ч	исле:	
Аудиторные занятия (всего)		30	30
В том числе:			
Занятия лекционного типа		10	10
Занятия семинарского типа (со занятия)	еминары, практические	_	_
Лабораторные занятия		20	20
	Иная контактная работ	a:	
Промежуточная аттестация (И	(KP)	0,2	0,2
	Самостоятельная работ	a	
Самостоятельная работа (вс	его)	41,8	41,8
В том числе:			
Проработка учебного (теорети	ческого) материала	26	26
Подготовка к текущему контр	олю	7,8	7,8
Подготовка к промежуточной	аттестации	8	8
Контроль:	зачет		
Общая трудоемкость	час.	72	72
	в том числе контактная работа	30,2	30,2
	зач. ед	2	2

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые во 2 семестре

			Количество часов				
№	Наименование разделов		Аудиторная		Внеаудиторна		
110	таименование разделов	Всего	работа		я работа		
			Л	ЛР	CPC		
1	Введение	6	2		4		
2	Кинематика жидкости	14	2	4	8		
3	Динамика невязкой жидкости.	20	2	6	12		
4	Потенциальные течения несжимаемой	14	2	4	8		
4	жидкости						
5	Динамика вязкой жидкости	14	2	4	8		
6	Обзор пройденного материала и прием зачета	3,8	l	2	1,8		
	Промежуточная аттестация (ИКР)	0,2	_	_	_		
	Итого:	72	10	20	41,8		

Примечание: Л - лекции, ЛР - лабораторные занятия, СРС - самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование	Содержание раздела	Форма текущего
1	раздела 2	3	контроля Δ
1.	Введение.	Понятие сплошной среды. Важнейшие механические свойства жидкости. Силы, действующие в жидкости.	Текущий опрос. Защита результатов лабораторных работ.
2.	Кинематика жидкости	Методы исследования движения жидкости. Метод Лагранжа и метод Эйлера. Траектории движения и линии тока. Установившееся движение. Понятия трубки тока и расхода жидкости. Уравнение неразрывности в переменных Эйлера в декартовой системе координат. Уравнение неразрывности в переменных Лагранжа. Уравнение неразрывности в переменных Эйлера в цилиндрической и сферической системах координат. Теорема Коши-Гельмгольца. Плоское движение, функции тока. Угловые скорости сдвига и вращения частицы жидкости. Понятие вихря. Теорема Коши-Гельмгольца о разложении движения. Вихревое и безвихревое движение. Скорость деформации, главные оси деформации	Текущий опрос. Защита результатов лабораторных работ.
3.	Динамика невязкой жидкости.	Уравнение Эйлера движения невязкой жидкости. Невязкая жидкость и силы, действующие на невязкую жидкость. Уравнения цвижения невязкой жидкости. Уравнения состояния жидкости (газа). Уравнение Эйлера движения невязкой жидкости в цилиндрических и сферических координатах. Различные формы уравнения движения невязкой жидкости в форме Лемба-Громеко. Уравнение Гельмгольца. Уравнение Лагранжа. Теорема об изменении количества движения и интегралы уравнения движения. Теорема об изменении количества движения количества движения и интегралы уравнения движения. Теорема об изменении количества движения невязкой жидкости. Интеграл Бернулли. Уравнения Бернулли для несжимаемой тяжелой жидкости и идеального газа. Интегралы Эйлера и Лагранжа. Общая схема решения задач динамики невязкой жидкости. Начальные и граничные условия. Движение твердого тела в невязкой жидкости. Задача об обтекании твердой сферы безграничным потоком идеальной жидкости. Задача о движении твердой сферы в неподвижной идеальной жидкости. Парадокс Даламбера.	Текущий опрос. Защита результатов лабораторных работ.
4.	Потенциальные течения несжимаемой жидкости	Движение цилиндра и эллипсоида в жидкости. Потенциал скорости, уравнения для потенциала скорости. Основные уравнения, определяющие потенциальные течения и методы их решения. Связь потенциала скорости с функцией тока. Сетка течения плоского потока. Простейшие случаи потенциальных течений и значения потенциалов скоростей этих течений.	Защита результатов лабораторных работ.
5.	Динамика вязкой жидкости	Вязкая жидкость. Напряжения в вязкой жидкости. Уравнение движение сплошной среды в напряжениях. Ньютоновы законы внутреннего трения в вязких	Текущий опрос. Защита результатов

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
		жидкостях. Значения касательных и нормальных напряжений в вязкой жидкости. Гидродинамическое давление в вязкой жидкости. Дифференциальные уравнения движения вязкой жидкости. Уравнения Громеко-Стокса. Начальные и граничные условия. Интеграл Бернулли для вязкой жидкости. Диссипация механической энергии. Точные решения дифференциальных уравнений движения. Основы теории размерностей	работ.

2.3.2 Занятия семинарского типа

Учебный план не предусматривает занятий семинарского типа по дисциплине «Математические модели механики жидкости и газа»

2.3.3 Лабораторные занятия

		Форма
No	Наименование лабораторных работ	текущего
		контроля
1	3	4
1	Физические свойства жидкостей	Отчет по ЛР
2	Модели гидростатики	Отчет по ЛР
3	Модели гидродинамики	Отчет по ЛР
4	Насосы	Отчет по ЛР

2.3.4 Примерная тематика курсовых работ (проектов)

Учебный план не предусматривает курсовых работ по дисциплине «Математические модели механики жидкости и газа».

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Подготовка	к текущему контролю, подготовка к промежуточному контролю
1.	Введение.	Методические указания по организации и выполнению самостоятельной работы, утвержденные на заседании кафедры математического моделирования факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол № 10 от 30.03.2018 Измайлова М.А. Организация внеаудиторной самостоятельной работы студентов: методическое пособие / М. А. Измайлова. — М.: Дашков и К°, 2009. — 62 с. Рыков В.Т. Механика сплошных сред: учебное пособие студентов вузов/ Ч.2.— 2-е изд. — Краснодар: Изд-во КубГУ, 2008. — 103 с.
2.	Кинематика жидкости	Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники сред [Электронный ресурс]. – М.: Лань, 2014. – 352 с. http://e.lanbook.com/books/element.php?pl1_id=39146 Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах

		Перечень учебно-методического обеспечения дисциплины по
№	Вид СРС	выполнению самостоятельной работы
1	2	3
		механики жидкости и газа [Электронный ресурс] — М.: Физматлит, 2012. — 468 с. http://e.lanbook.com/books/element.php?pl1_id=59637 Андреев, В.К. Математические модели механики сплошных сред [Электронный ресурс]. — Санкт-Петербург: Лань, 2015. — 240 с. — Режим доступа: https://e.lanbook.com/book/67464. http://biblioclub.ru/index.php?page=book&id=330600&sr=1 Кудинов В.А., Карташов Э.М. Гидравлика: учебное пособие для студентов вузов — М.: Высшая школа, 2008. — 199 с.
3.		Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и
	Динамика невязкой жидкости.	теплотехники. — М.: Лань, 2014. — 352 с. http://e.lanbook.com/books/element.php?pl1_id=39146 Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа — М.: Физматлит, 2012. — 468 с. http://e.lanbook.com/books/element.php?pl1_id=59637 Удовин В. Г., Оденба И. А. Гидравлика: учебное пособие. — Оренбург: ОГУ, 2014. — 132 с. http://biblioclub.ru/index.php?page=book&id=330600&sr=1 Кудинов В.А., Карташов Э.М. Гидравлика: учебное пособие для студентов вузов — М.: Высшая школа, 2008. — 199 с. Давыдов, А.П. Основы механики жидкости и газа: современные проблемы техники, технологий и инженерных расчетов: монография / А.П. Давыдов, М.А. Валиуллин, О.Р. Каратаев. Казанский национальный исследовательский технологический университет. — Казань: Издательство КНИТУ, 2014. — 109 с. [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=427856
4.	Потенциальные течения несжимаемой жидкости	Механика жидкости и газа. «Нижегородский государственный архитектурно-строительный университет», сост. В.В. Жизняков Нижний Новгород: ННГАСУ, 2011 24 с. [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=427404 Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники. — М.: Лань, 2014. — 352 с. http://e.lanbook.com/books/element.php?pl1_id=39146 Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа — М.: Физматлит, 2012. — 468 с. http://e.lanbook.com/books/element.php?pl1_id=59637 Рыков В.Т. Механика сплошных сред: учебное пособие студентов вузов/ Ч.2.— 2-е изд. — Краснодар: Изд-во КубГУ, 2008. — 103 с.
5.	Динамика вязкой жидкости	Механика жидкости и газа : методические указания / Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет», 2011. — 24 с. [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=427404. Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа — М.: Физматлит, 2012. — 468 с. http://e.lanbook.com/books/element.php?pl1_id=59637 Рыков В.Т. Механика сплошных сред: учебное пособие студентов вузов/ Ч.2.— 2-е изд. — Краснодар: Изд-во КубГУ, 2008. — 103 с. Давыдов, А.П. Основы механики жидкости и газа: современные проблемы техники, технологий и инженерных расчетов: монография / А.П. Давыдов, М.А. Валиуллин, О.Р. Каратаев. Казанский национальный исследовательский технологический университет. — Казань: Издательство КНИТУ, 2014. — 109 с. [Электронный ресурс]

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
		URL: http://biblioclub.ru/index.php?page=book&id=427856

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

- В преподавании курса преподаватель использует следующие образовательные технологии.
- лекционно-лабораторная система обучения (традиционное проведение части лекционных и лабораторных занятий);
- *обучение в малых группах* (выполнение лабораторных работ, требующих обратной связи, в группах из двух или трёх человек);
- *метод проектного обучения* (разработка и реализация на лабораторных занятиях технических проектов на базе конкретного расчетно-графического задания с прохождением основных этапов их жизненного цикла);
- *применение мультимедиа технологий* (проведение лекционных и лабораторных занятий с применением компьютерных презентаций с помощью проектора);
- case-study (получение для выполнения работы учебных кейсов с постановкой задачи и глубокой проработкой методики и технологии исследования конкретных задач механики жидкости и газа);
- мастер-классы (демонстрация на лабораторных занятиях применения приёмов, технологий, *методов* исследования конкретных задач механики жидкости и газа);
- технология развития критического мышления (развитие у студентов навыков критической оценки результатов оценки результатов).

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Семестр	Вид занятия	Исі	пользуемые интерактивные образовательные технологии	Общее количество часов
	Л		и́д-лекции. Обсуждение сложных и уссионных вопросов.	8
2		№	Тема	количество часов
		1	Введение	2

	Вид занятия	Используемые интерактивные образовательные		Общее
Семестр		110	технологии	количество
			ТСАПОЛОГИИ	часов
		2	Уравнение Эйлера движения невязкой жидкости. Невязкая жидкость и силы, действующие на невязкую жидкость. Уравнения состояния жидкости (газа).	2
	ЛР		ппьютерные занятия в режимах взаимодействия еподаватель – студент» и «студент – студент»	4
Итого				8

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Контролируемые	Код Наименование оценочного средства		еночного средства
	разделы (темы)	контролируемой	Текущий контроль	Промежуточная
	дисциплины	компетенции	1	аттестация
1.	Введение.	ИОПК-1.4 (D/01.6 У.2)	Текущий опрос;	Вопросы к зачету
1.		ИОПК-3.5 (А/01.6 Зн.2)	защита результатов	1–3
		ИОПК-3.6 (А/01.6 Зн.4)	лР	1 3
		ИПК-1.1 (D/29.7 Зн.8) ИПК-1.11 (D/04.7 Тд.5)	JIF	
		ИПК-6.5 (D/29.7 3н.1)		
		ИПК-6.20 (А/01.6 У.2)		
		ИПК-6.25 (D/01.6 Тд.1)		
2.	Кинематика	ИОПК-1.2 (А/01.6 Зн.1)	Текущий опрос;	Вопросы к зачету
	жидкости	ИОПК-1.4 (D/01.6 У.2)	защита результатов	4–8
		ИОПК-1.5 (D/01.6 У.3) ИОПК-1.6 (A/01.6 У.1)	ЛР	-
		ИОПК-1.10 (Д/01.0 3.1) ИОПК-1.10 (D/01.6	311	
		Тд.4) ИОПК-3.11		
		(А/01.6 У.2) ИОПК-3.14		
		(А/01.6 Тд.3) ИПК-1.2		
		(A/01.6 3H.1)		
		ИПК-1.3 (D/01.6 У.1) ИПК-1.4 (A/01.6 У.1)		
3.	Динамика	ИОПК-1.2 (А/01.6 3н.1)	Текущий опрос;	Вопросы к зачету
3.	1 ' '	ИОПК-1.4 (D/01.6 У.2)		1
	невязкой	ИОПК-1.5 (D/01.6 У.3)	защита результатов	9–13, 19
	жидкости.	ИОПК-1.6 (А/01.6 У.1)	ЛР	
		ИОПК-1.10 (D/01.6 Тд.4) ИОПК-3.4 (A/01.6		
		3н.1) ИОПК-3.5 (A/01.6		
		3н.2)		
		ИПК-1.2 (A/01.6 3н.1)		
		ИПК-1.3 (D/01.6 У.1)		
4	П	ИПК-1.4 (А/01.6 У.1)	2	D
4.	Потенциальные	ИОПК-1.2 (А/01.6 Зн.1) ИОПК-1.4 (D/01.6 У.2)	Защита результатов	Вопросы к зачету
	течения	ИОПК-1.5 (D/01.6 У.3)	ЛР	14–18
	несжимаемой	ИОПК-1.6 (А/01.6 У.1)		
	жидкости	ИОПК-1.10 (D/01.6		
		Тд.4) ИОПК-3.4 (A/01.6 3н.1) ИОПК-3.5 (A/01.6		
		3н.2) ИОПК-3.6 (A/01.6		
		3н.4) ИОПК-3.7 (А/01.6		
		3н.7) ИОПК-3.11		
		(А/01.6 У.2) ИПК-1.2		
		(A/01.6 Зн.1) ИПК-1.3 (D/01.6 У.1)		
		ИПК-1.4 (А/01.6 У.1)		
5.	Динамика	ИОПК-1.2 (А/01.6 3н.1)	Текущий опрос;	Вопросы к зачету
J.	вязкой жидкости	ИОПК-1.4 (D/01.6 У.2)	защита результатов	20–24
	визкой жидкости	ИОПК-1.5 (D/01.6 У.3)	защита результатов ПР	20-24
		ИОПК-1.6 (А/01.6 У.1) ИОПК-1.10 (D/01.6	JIP	
		иопк-1.10 (D/01.0 Тд.4)		
		ИОПК-3.4 (А/01.6 Зн.1)		
		ИОПК-3.5 (А/01.6 Зн.2)		
		ИОПК-3.6 (А/01.6 Зн.4)		
		ИОПК-3.11 (А/01.6 У.2)		
		ИОПК-3.14 (A/01.6 Тд.3) ИПК-1.2 (A/01.6		
		3н.1)		
		ИПК-1.3 (D/01.6 У.1)		
		ИПК-1.4 (А/01.6 У.1)		

Показатели, критерии и шкала оценки сформированных компетенций

Код и наименование	1	ей освоения компетенц чения и критериям их	
компетенций	пороговый	базовый	продвинутый
		Оценка	
	зачтено	зачтено	зачтено
ОПК-1 — Способен решать актуальные задачи фундаментальной и прикладной математики ОПК-3 — Способен разрабатывать математические	Знает: некоторые основные положения статики, кинематики и динамики жидкости и газа, составляющие основу расчета гидротехнических систем и инженерных	Знает: основные положения статики, кинематики и динамики жидкости и газа, составляющие расчета гидротехнических и систем и	Знает: положения статики, кинематики и динамики жидкости и газа, составляющие основу расчета гидротехнических систем и
модели и проводить их анализ при решении задач в области профессиональной деятельности	умеет: применять	инженерных сетей и сооружений в рамках учебного курса Умеет: применять	инженерных сетей и сооружений Умеет: применять
ПК-1 — Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики ПК-6 — Способен эффективно определять компонентный состав и архитектуру программного обеспечения или программноаппаратного комплекса в соответствии с его назначением,	некоторые основные законы статики, кинематики и динамики жидкости и газов, различать режимы течения жидкости и методы решения задач по движению жидкости в теоретических и практических целях своей профессиональной деятельности в составе коллектива	основные законы статики, кинематики и динамики жидкости и газов, различать режимы течения жидкости и методы решения задач по движению жидкости в теоретических и практических целях своей профессиональной деятельности	основные законы статики, кинематики и динамики и жидкости и газов, различать режимы течения жидкости и методы решения задач по движению жидкости в теоретических и практических целях своей профессиональной деятельности, быть руководителем работ
осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения	Владеет: приемами постановки простейших инженерных задач для решения их коллективом специалистов различных направлений	Владеет: приемами постановки инженерных задач для решения их коллективом специалистов различных направлений	Владеет: приемами постановки инженерных задач для решения их коллективом специалистов различных направлений, способен быть руководителем такого коллектива

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Оценочные средства для проведения текущего контроля.

Вопросы для устного опроса по разделу «Введение»:

- 1) Дайте определение сплошной среды.
- 2) Перечислите важнейшие механические свойства жидкости.
- 3) Какие силы действуют в жидкости?
- 4) Что такое массовая сила?
- 5) В чем состоит моделирование механических свойств сплошной среды?
- 6) В чем отличие подходов Эйлера и Лагранжа к описанию сплошной среды?
- 7) Как можно перейти от переменных Лагранжа к переменным Эйлера и обратно?
- 8) Что такое тензоры скоростей деформаций и угловой скорости сплошной среды.
- 9) Дайте определение функции давления.
- 10) Получите функцию давления при изотермическом течении.

Вопросы для устного опроса по разделу «Кинематика жидкости»

- 1) Что изучает кинематика жидкости?
- 2) Чем кинематика жидкости отличается от кинематики твердого тела?
- 3) В чем отличие установившегося движения жидкости от неустановившегося, равномерного от неравномерного, напорного от безнапорного?
 - 4) Что представляет собой многоэлементная (струйная) модель потока жидкости?
 - 5) Чем траектория частицы жидкости отличается от линии тока?
 - 6) При каком условии линия тока совпадает с траекторией частицы жидкости?
 - 7) Что называют трубкой тока?
- 8) Что представляет собой элементарный поток жидкости, и какими свойствами он обладает?
- 9) Что называют живым сечением потока, и какую форму это сечение может иметь?
 - 10) Что в промышленной гидравлике обычно называют расходом жидкости?
- 11) Следствием, какого закона является уравнение расхода (уравнение неразрывности потока)?
 - 12) При каких условиях справедливо уравнение расхода жидкости?
 - 13) Что называют средней скоростью потока?
 - 14) Можно ли измерить среднюю скорость в потоке движущейся жидкости?
 - 15) Как на практике используют уравнение неразрывности потока?
 - 16) Каковы основные аналитические методы исследования движения жидкости?
- 17) Какой метод исследования движения жидкости применяют в современной гидравлике?
 - 18) Какова роль экспериментальных исследований в гидравлике?

Вопросы для устного опроса по разделу «Динамика невязкой жидкости»

- 1) Дайте определение и приведите примеры основных видов движения жидкости: установившегося и неустановившегося, напорного и безнапорного, равномерного и неравномерного, медленно изменяющегося.
 - 2) Что такое линия тока, трубка тока и элементарная струйка?
 - 3) При каких условиях сохраняется постоянство расхода вдоль потока?
- 4) Укажите физический смысл величин, входящих в дифференциальные уравнения гидродинамики Эйлера.
- 5) Объясните геометрический и физический смысл понятий геодезический, пьезометрический и гидравлический уклоны Может ли быть отрицательным гидравлический уклон?
- 6) Когда линия полной энергии и пьезометрическая линия параллельны? Когда в направлении движения жидкости эт|-линии сближаются и когда удаляются одна от другой?
 - 7) Какие существуют ограничения в применении уравнения Бернулли?

- 8) К каким выражениям приводится уравнение Бернулли в случаях: а) неподвижной жидкости; б) равномерного движения в горизонтальном трубопроводе; в) истечения жидкости из сосуда через круглое небольшое отверстие.
- 9) Каковы причины возникновения потерь напора при движении вязкой жидкости? Дайте определение понятию «гидравлические потери напора».
 - 10) Потенциальные течения несжимаемой жидкости

Вопросы для устного опроса по разделу «Динамика вязкой жидкости»

- 1) Что изучает гидродинамика?
- 2) Какими гидродинамическими характеристиками обладает поток движущейся жидкости?
- 3) В чем заключается смысл дифференциальных уравнений движения идеальной жидкости (уравнений Эйлера)?
 - 4) Действие, каких сил учитывается в уравнениях Эйлера?
 - 5) Действие, каких сил учитывается в уравнениях Навье Стокса?
- 6) Связь, между какими параметрами потока устанавливает уравнение Бернулли?
 - 7) Каков энергетический смысл членов уравнения Бернулли?
- 8) Какой закон выражает уравнение Бернулли для элементарного потока идеальной жидкости?
- 9) Чем отличаются уравнения Бернулли для идеальной и реальной жидкостей, для элементарного и реального потоков?
 - 10) Что учитывает и какой физический смысл имеет коэффициент Кориолиса?
- 11) Каков энергетический смысл уравнения Бернулли для потока реальной (вязкой) жидкости?
- 12) Что представляет собой упрощенная (приближенная) форма записи уравнения Бернулли?
 - 13) Что собой представляют гидравлические потери потока реальной жидкости?
 - 14) Какие виды потерь возникают при движении жидкости?
 - 15) От чего зависят гидравлические потери?
- 16) В каких случаях в гидравлике применяют уравнение количества движения (импульса сил) к жидкости?
- 17) В чем смысл теоремы Эйлера об изменении количества движения объема жидкости?
- 18) Как графический способ Эйлера позволяет определить силу реакции стенок трубы на поток движущейся жидкости?
 - 19) От чего зависит сила воздействия потока жидкости на преграду?
- 20) Как угол установки плоской преграды к потоку жидкости влияет на величину силы давления?

Материалы для промежуточной аттестации (зачет)

Студент получает «зачет» по курсу, если он активно работал на лабораторных занятиях, подготовил хотя бы одно сообщение, участвовал в работе группы по разработке проекта технического задания, в презентации проекта, показал хорошие знания материала в ходе текущего опроса. В противном случае, студент должен сдать теоретический зачет по вопросам.

Материалы для промежуточной аттестации (зачет)

- 1) Определение сплошной среды.
- 2) Механические свойства жидкостей.
- 3) Силы, действующие на жидкость.
- 4) Методы Лагранжа и Эйлера исследования движения жидкости.

- 5) Траектории движения. Линии и трубки тока.
- 6) Установившееся движение.
- 7) Уравнение неразрывности в переменных Эйлера в декартовой системе координат.
- 8) Уравнение неразрывности в в переменных Лагранжа.
- 9) Уравнения Эйлера движения идеальной жидкости.
- 10) Уравнения движения идеальной жидкости в форме Лэмба-Громеко.
- 11) Уравнения Гельмгольца движения идеальной жидкости.
- 12) Интеграл Бернулли для несжимаемой тяжелой жидкости.
- 13) Интеграл Лагранжа.
- 14) Общая схема решения задач по определению элементов движения идеальной жидкости. Начальные и граничные условия.
- 15) Плоское движение. Функция тока.
- 16) Теорема коши Гельмгольца о разложении движения. Вихревое и безвихревое движение.
- 17) Потенциал скорости. Уравнение неразрывности для потенциала скорости. Связь потенциала скорости и функции тока.
- 18) Простейшие случаи потенциальных течений и значения потенциалов скорости этих течений.
- 19) Задача о движении твердой сферы в безграничном объеме идеальной несжимаемой жидкости.
- 20) Уравнения движения вязкой жидкости в напряжениях.
- 21) Напряжения в вязкой жидкости. Дифференциальные уравнения движения вязкой жилкости.
- 22) Начальные и граничные условия для задач движения вязкой жидкости.
- 23) Интеграл Бернулли для вязкой жидкости. Диссипация механической энергии.
- 24) Прямолинейное течение вязкой жидкости между двумя параллельными стенками. Понятие средней скорости.

Перечень компетенций (части компетенции), проверяемых оценочным средством

ОПК-1, ОПК-3, ПК-1, ПК-6.

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии оценивания выполнения лабораторных работ:

Оценка **«отлично»** выставляется студенту, если: оформление и содержание отчета по лабораторной работе соответствует требованиям к оформлению; выполнен правильный отбор информации, установлена логичность структуры; представлена характеристика элементов в краткой форме; присутствует наличие обобщающего (систематизирующего, структурирующего, сравнительного) характера изложения информации; работа оформлена и предоставлена в установленный срок. Студент выполнил работу без ошибок и недочетов, допустил не более одного недочета.

Оценка **«хорошо»** выставляется студенту, если: оформление и содержание отчета по лабораторной работе соответствует требованиям к оформлению; выполнен правильный отбор информации, установлена логичность структуры; представлена характеристика элементов в краткой форме; отсутствует наличие обобщающего (систематизирующего, структурирующего) характера изложения информации; работа оформлена и предоставлена в установленный срок. Студент выполнил работу полностью, но допустил в ней не более одной негрубой ошибки и одного недочета, или не более двух недочетов.

Оценка **«неудовлетворительно»** выставляется студенту, если работа не выполнена или содержит материал не по вопросу.

Во всех остальных случаях работа оценивается на «удовлетворительно».

Основные критерии оценки устного зачета:

Ответ оценивается отметкой «зачтено», если студент:

- раскрыл содержание материала в области, предусмотренной программой;
- изложил материал грамотным языком в определенной логической последовательности, точно использовал терминологию;
- показал умение иллюстрировать теоретические положения конкретными примерами из практики;
- продемонстрировал усвоение изученных сопутствующих вопросов, устойчивость знаний;
 - отвечал как на основные, так и на дополнительные вопросы;
- проявил достаточно высокую активность на занятиях, не имеет задолженности и пропусков без уважительных причин этих занятий;

При этом возможны неточности при освещении второстепенных вопросов, в изложении допущены небольшие пробелы, не исказившие методического содержания ответа.

«Незачтено» ставится в следующих случаях:

- не раскрыто основное содержание учебного методического материала;
- обнаружено незнание и непонимание студентом большей или наиболее важной части дисциплины;
- допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов преподавателя;
 - допускает ошибки в освещении основополагающих вопросов дисциплины.

Основные критерии оценки зачета

Критерии	Шкала оценивания			
	Пороговый «зачтено»	Базовый «зачтено»	Продвинутый «зачтено»	
Владение	Свободно владеет	Владеет терминологией,	Редко использует при	
специальной	терминологией из	делая ошибки; при	ответе термины, подменяет	
терминологи	различных разделов	неверном употреблении	одни понятия другими, не	
ей	курса.	сам может их исправить	всегда понимая разницы	
Глубина и	Демонстрирует	Хорошо владеет всем	Отвечает только на	
полнота	прекрасное знание	содержанием, видит	конкретный вопрос,	
знания	предмета, соединяя	взаимосвязи, может	соединяет знания из	
теоретичес	при ответе знания из	провести анализ и т.д.,	разных разделов курса	
ких основ	разных разделов,	но не всегда делает это	только при наводящих	
курса	добавляя	самостоятельно без	вопросах экзаменатора	
	комментарии,	помощи экзаменатора		
	пояснения,			
	обоснования			
Умение	Отвечая на вопрос,	Может подобрать	С трудом может соотнести	
проиллюстр	может быстро и	соответствующие	теорию и практические	
ировать	безошибочно	примеры, чаще из	примеры из учебных	
теоретическ	проиллюстрировать	имеющихся в учебных	материалов; примеры не	
ий материал	ответ собственными	материалах	всегда правильные	

примерами	примерами		
Дискурсивн	Демонстрирует	Присутствуют	С трудом применяются
ые умения	различные формы	некоторые формы	некоторые формы
(если	мыслительной	мыслительной	мыслительной
включены в	деятельности: анализ,	деятельности: анализ,	деятельности: анализ,
результаты	синтез, сравнение,	синтез, сравнение,	синтез, сравнение,
обучения)	обобщение и т.д.	обобщение и т.д.	обобщение и т.д. Слабая
	Владеет	Хорошая аргументация,	аргументация, нарушенная
	аргументацией,	четкость, лаконичность	логика при ответе,
	грамотной и понятной	ответов.	однообразные формы
	речью.		изложения мыслей.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1) Андреев В.К. Математические модели механики сплошных сред. СПб: Лань, 2015. 240 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/67464.
- 2) Жизняков В.В. Механика жидкости и газа: методические указания. Нижний Новгород: ННГАСУ, 2011. 24 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=427404.
- 3) Давыдов А.П. Основы механики жидкости и газа: современные проблемы техники, технологий и инженерных расчетов / А.П. Давыдов, М.А. Валиуллин, О.Р. Каратаев. Казань: Изд-во КНИТУ, 2014. 109 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=427856.

4) Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа М.: Физматлит, 2012. 468 с. [Электронный ресурс]. - Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=59637.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1) Димитриенко, Ю.И. Нелинейная механика сплошной среды. М: Физматлит, 2009. 624 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/59577.
- 2) Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники. М.: Лань, 2014. 352 с. [Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=39146
 - 3) Ландау Л. Д., Лифшиц Е. М. Механика. М.: Физматлит, 2004. 224 с.
- 4) Рыков В. Т. Основы механики сплошной среды. Учебное пособие. Краснодар: изд-во КубГУ, 2003. 192 с.
- 5) Рыков В.Т. Механика сплошных сред: учебное пособие студентов вузов/ Ч.2.— 2-е изд. Краснодар: Изд-во КубГУ, 2008. 103 с.
- 6) Удовин В. Г. , Оденба И. А. Гидравлика: учебное пособие. Оренбург: ОГУ, 2014. 132 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=330600&sr=1.
- 7) Учайкин, В.В. Механика. Основы механики сплошных сред. СПб: Лань, 2017. 860 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/91899.

5.3. Периодические издания:

- 1) Известия Российской академии наук. Механика жидкости и газа.
- 2) Известия высших учебных заведений. Северо-Кавказский регион. Технические науки.
- 3) Прикладная механика и техническая физика.

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. \Box SEC «BOOK.ru» https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

1) Реферативные журналы ВИНИТИ (РЖ ВИНИТИ)

http://www.lib.tpu.ru/cgi-bin/viniti/zgate?Init+viniti.xml,viniti.xsl+rus

База данных содержит информационные сообщения о научных документах по естественным и техническим наукам. В Базе данных представлено содержание выпусков РЖ, выписываемых НТБ ТПУ в электронном виде с 2005 года.

2) <u>Авторефераты диссертаций Российской национальной библиотеки (PHБ)</u> http://www.arbicon.ru

Библиографическая база данных авторефератов диссертаций. Хронологический охват: с 2000 по 2004 год.

3) <u>Электронная библиотека диссертаций Российской государственной библиотеки</u> (ЭБД РГБ) http://diss.rsl.ru

Коллекция диссертаций и авторефератов диссертаций по всем специальностям. Содержит более 650 000 полных текстов. Хронологический охват: с 1998 года по текущий год.

4) Межрегиональная аналитическая роспись статей (МАРС)

http://www.lib.tpu.ru/resource_mars.html

Сводная база данных аналитической росписи статей из периодических изданий по всем областям знаний. Хронологический охват: с 2001 года по текущий год.

5) Научная электронная библиотека (НЭБ) http://elibrary.ru

Информационный портал в области науки, технологии и образования.

6) ProQuest Dissertations and Theses http://proquest.umi.com/login

Электронное собрание магистерских и докторских диссертаций, защищенных в университетах 80 стран мира на 40 языках. Полнотекстовый доступ к тому В: технические и естественные науки. Тезисы диссертаций переведены на русский язык.

7) Elsevier – ScienceDirect http://www.sciencedirect.com

Электронные научные журналы и книги. Предметные коллекции журналов охватывают практически все области знаний; коллекции книг — сферу математики, информатики, материаловедения, технических наук. Глубина полнотекстового доступа журналов: с 2006 года по текущий год, книг с 2009 года по 2010 год.

8) SpringerLink http://www.springerlink.de

Ресурсы свободного доступа:

- 1. Мир математических уравнений EqWorld. http://eqworld.ipmnet.ru/ru/library.htm
- 2. Физика, химия, математика. http://www.ph4s.ru/index.html
- 3. Journal of Mathematical Physics. Online ISSN 1089-7658. http://jmp.aip.org
- 4. Словари и энциклопедии http://dic.academic.ru/;

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/

5.4 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

- Консультирование и предварительная проверка отчетов по лабораторным работам посредством электронной почты.
 - Использование электронных презентаций при проведении лекционных занятий.

8.2 Перечень необходимого программного обеспечения.

- Интегрированное офисное приложение MS Office.
- Программы для демонстрации и создания презентаций («Microsoft Power Point»).
- Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).
 - Математические пакеты Maple и Matlab (FemLab)

6. Методические указания для обучающихся по освоению дисциплины

В ходе преподавания дисциплины используется как традиционная подача теоретического материала по теме лекционного занятия, так и интерактивная подача материала с мультимедийной системой или интерактивной доской.

На лекциях студенты получают общее представление о теории, подходах и методах исследования и решения задач.

Интерактивные формы проведения лекций: проблемная лекция; лекция – дискуссия.

Цель лабораторных работ — научить применять теоретические знания при решении и исследовании конкретных задач.

Внеаудиторные формы работы: подготовка к текущим занятиям, изучение учебного материала по конспектам лекций, литературным источникам, подготовка к коллоквиуму, подготовка к зачету.

Самостоятельное изучение разделов дисциплины

Для самостоятельного изучения предлагаются следующие темы:

- 1) Гидравлические сопротивления: Виды гидравлических сопротивлений. Потери напора по длине при равномерном установившемся ламинарном движении и при равномерном установившемся турбулентном движении.
- 2) Движение жидкости и газа в трубопроводе: Расчет коротких трубопроводов. Расчет длинных трубопроводов. Гидравлический расчет сложных трубопроводов. Принципы расчета водопроводных сетей. Описание гидравлического удара и способов его предотвращения.
- 3) Истечение жидкости и газа через отверстия и насадки: Истечение жидкости и газа через отверстия и насадки при постоянном напоре. Истечение жидкости и газа через отверстия и насадки при переменном напоре. Свободные струи жидкости.

По каждому разделу студент должен подготовить краткий отчет в форме инфографики и предоставить преподавателю на проверку в виде электронного документа в последнюю неделю учебного семестра.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Целью самостоятельной работы является углубление знаний, полученных в результате аудиторных занятий, выработка навыков индивидуальной работы, закрепление навыков, сформированных во время лабораторных занятий, и включает в себя:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
 - выполнение домашнего задания;
 - подготовка реферативного обзора;
 - опережающую самостоятельную работу;
 - изучение тем, вынесенных на самостоятельную проработку;
 - подготовку к лабораторным занятиям;
- подготовку к выступлению и проведению научной дискуссии в рамках выполнения лабораторных работ.

Творческая самостоятельная работа направлена на развитие интеллектуальных умений, комплекса профессиональных компетенций, повышение творческого потенциала студентов.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

		M
No	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук), соответствующим программным обеспечением, а также необходимой мебелью (доска, столы, стулья). (аудитории: 129, 131, 133, A305, A307).
2.	Лабораторные занятия	Компьютерный класс, укомплектованный компьютерами с лицензионным программным обеспечением, необходимой мебелью (доска, столы, стулья). (аудитории: 101, 102, 106, 106a, 105/1, 107(2), 107(3), 107(5), A301).
3.	Групповые (индивидуальные) консультации	Аудитория для семинарских занятий, групповых и индивидуальных консультаций, укомплектованные необходимой мебелью (доска, столы, стулья). (аудитории: 129, 131).
4.	Текущий контроль, промежуточная аттестация	Аудитория для семинарских занятий, текущего контроля и промежуточной аттестации, укомплектованная необходимой мебелью (доска, столы, стулья) (аудитории: 129, 131, 133, A305, A307, 147, 148, 149, 150, 100С, A301б, A512), компьютерами с лицензионным программным обеспечением и выходом в интернет (106, 106a, A301)
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения, обеспеченный доступом в электронную информационно-образовательную среду университета, необходимой мебелью (доска, столы, стулья). (Аудитория 102а, читальный зал).

Осуществление учебного процесса предполагает наличие необходимого для реализации данной программы перечня материально-технического обеспечения: аудитории, оборудованные видеопроекционным оборудованием для презентаций (цифровой проектор, экран, ноутбук) и необходимой мебелью (доска, столы, стулья); компьютерные классы с компьютерной техникой с лицензионным программным обеспечением и необходимой мебелью (доска, столы, стулья) для проведения занятий.

Магистранты и преподаватели вуза имеют постоянный доступ к электронному каталогу учебной, методической, научной литературе, периодическим изданиям и архиву статей.