Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

30мая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.01.02 Моделирование компьютерных сетей

Направление подготовки 01.04.02 Прикладная математика и информатика

Направленность (профиль) Математическое моделирование в естествознании и технологиях

Форма обучения очная

Квалификация магистр

Рабочая программа дисциплины «Моделирование компьютерных сетей» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.04.02 Прикладная математика и информатика

Программу составил:

Евдокимов А.А., канд. физ.-мат. наук, доцент кафедры математического моделирования КубГУ

Рабочая программа дисциплины «Моделирование компьютерных сетей» утверждена на заседании кафедры математического моделирования протокол № 11 от «22» мая 2025 г.

Заведующий кафедрой (разработчика) д-р физ.-мат. наук, проф. Бабешко В.А.

кад, РАН,

подпись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 от «23» мая 2025 г. Председатель УМК факультета

д-р. техн. наук, доцент Коваленко А.В.

Рецензенты:

Бегларян М.Е., канд. физ.-мат. наук, проф. кафедры СГЕНД СКФ ФГБОУ ВО «РГУП»

Подколзин В.В., канд. физ.-мат. наук, зав. кафедрой информационных технологий КубГУ

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Дисциплина «Моделирование компьютерных сетей» ставит своей целью развитие профессиональных компетентностей приобретения практических навыков соответствующих разделов математики, подготовить обучающихся к успешной работе в различных сферах, применяющих математические методы и информационные технологии и развить способности самостоятельно приобретать и применять новые знания и умения.

Цели дисциплины соответствуют следующим формируемым компетенциям, определенным учебным планом подготовки магистров по направлению «Прикладная математика и информатика»: ПК-2, ПК-3.

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- изучение основных математических методов теории массового обслуживания;
- изучение аналитических методов и рекуррентных алгоритмов расчета локально-сбалансированных сетей очередей;
- изучение основных направлений развития теории сетей очередей.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Моделирование компьютерных сетей» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана.

Перечень предшествующих дисциплин:

- Технологии проектирования и сопровождения программных систем;
- Системный анализ и принятие решений;
- Статистическое моделирование сложных систем.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате изучения курса «Моделирование компьютерных сетей» студент должен овладеть следующими компетенциями:

- ПК-2 Способен эффективно определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением, осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения
- **Знать** ИПК-2.3 (40.001 A/02.5 Зн.2) Отечественный и международный опыт исследовании моделей в естественных науках
- **Уметь** ИПК-2.7 (06.016 А/30.6 У.2) Планировать работы в проектах в области ИТ, активно участвовать в исследовании новых математических моделей в естественных науках
- **Владеть** ИПК-2.8 (06.001 D/03.06 Тд.2) Проектирование структур данных при разработке и проведении исследований новых математических моделей в естественных науках
- ПК-3 Способен эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке
- **Знать** ИПК-3.1 (D/01.6 Зн.2) Возможности современных и перспективных средств разработки программных продуктов, технических средств, алгоритмические

и программные решения в области информационно-коммуникационных технологий

ИПК-3.2 (D/01.6 Зн.3) Методологии разработки программного обеспечения и технологии программирования, алгоритмические и программные решения в области информационно-коммуникационных технологий

ИПК-3.3 (D/01.6 3н.4) Методологии и технологии проектирования и использования баз данных, алгоритмические и программные решения в области информационно-коммуникационных технологий

ИПК-3.5 (D/29.7 3н.6) Основы современных операционных систем, алгоритмические и программные решения в области информационно-коммуникационных технологий

ИПК-3.6 (D/29.7 3н.8) Современный отечественный и зарубежный опыт в профессиональной деятельности, алгоритмические и программные решения в области информационно-коммуникационных технологий

ИПК-3.8 (A/01.6 Зн.1) Методы и приемы формализации задач, алгоритмические и программные решения в области информационно-коммуникационных технологий

ИПК-3.9 (A/01.6 Зн.2) Методы и приемы алгоритмизации поставленных задач, программные решения в области информационно-коммуникационных технологий

ИПК-3.10 (A/01.6 Зн.3) Программные продукты для графического отображения алгоритмов, алгоритмические решения

ИПК-3.11 (A/01.6 Зн.4) Стандартные алгоритмы в области информационнокоммуникационных технологий

Уметь

ИПК-3.21 (А/01.6 У.1) Использовать методы и приемы формализации задач, эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

ИПК-3.22 (A/01.6 У.2) Использовать методы и приемы алгоритмизации поставленных задач в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

ИПК-3.24 (A/01.6 У.4) Применять стандартные алгоритмы в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

Владеть

ИПК-3.29 (D/01.6 Тд.1) Анализ возможностей реализации требований к программному обеспечению в области информационно-коммуникационных технологий

ИПК-3.35 (A/01.6 Тд.2) Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов, а также участвовать в их проектировании и разработке

ИПК-3.36 (A/01.6 Тд.3) Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов, а также участвовать в их проектировании и разработке

Код компетенции	Формулировка компетенции							
компетенции								
ПК-2	Способен эффективно определять компонентный состав и архитектуру программного обеспечения или программно-аппаратного комплекса в соответствии с его назначением, осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения							

ИПК-2.3 (40.001 A/02.5 Зн.2) Отечественный и международный опыт в исследовании моделей в естественных науках ИПК-2.7 (06.016 A/30.6 У.2) Планировать работы в проектах в области ИТ, активно участвовать в исследовании новых математических моделей в естественных науках ИПК-2.8 (06.001 D/03.06 Тд.2) Проектирование структур данных при разработке и проведении исследований новых математических моделей в естественных науках	Знает Умеет Владеет	 современный отечественный и зарубежный опыт моделирования компьютерных сетей базовые технологии компьютерных сетей теоретические подходы к интегрированию компьютерных сетей и электронной элементной базы; возможности распараллеливания вычислений в сетях; системы передачи данных. моделировать сетевые взаимодействия, применять современные сетевые стандарты стандартными алгоритмами в области моделирования сетей; навыками осуществлять выбор современных оптимальных технологий и средств его разработки и сопровождения
		ять алгоритмические и программные решения в области онных технологий, а также участвовать в их проектировании и
ИПК-3.1 (D/01.6 Зн.2) Возможности современных и перспективных средств разработки программных продуктов, технических средств, алгоритмические и программные решения в области информационнокоммуникационных технологий ИПК-3.2 (D/01.6 Зн.3) Методологии разработки программного обеспечения и технологии программирования, алгоритмические и программные решения в области информационно-коммуникационных технологий ИПК-3.3 (D/01.6 Зн.4) Методологии и технологии проектирования и использования баз данных, алгоритмические и программные решения в области информационно-коммуникационных технологий ИПК-3.5 (D/29.7 Зн.6) Основы современных операционных систем, алгоритмические и программные	Знает	 сетевые компьютерные технологии переработки и передачи информации основные математические методы исследования марковских и полумарковских систем массового обслуживания; аналитические методы исследования локальносбалансированных сетей очередей; алгоритмы расчета сетей очередей.
решения в области информационно- коммуникационных технологий ИПК-3.8 (А/01.6 Зн.1) Методы и приемы формализации задач, алго- ритмические и программные реше- ния в области информационно- коммуникационных технологий ИПК-3.9 (А/01.6 Зн.2) Методы и приемы алгоритмизации поставлен- ных задач, программные решения в области информационно-коммуни-	Умеет	 применять теоретические подходы к интегрированию компьютерных сетей и эектронной элементной базы; применять стандартные алгоритмы в области сетевых технологий; применять методы и приемы формализации задач; применять методологии проектирования компьютерных сетей
кационных технологий ИПК-3.10 (А/01.6 Зн.3) Программные продукты для графического отображения алгоритмов, алгоритмические решения ИПК-3.11 (А/01.6 Зн.4) Стандартные алгоритмы в области информационно-коммуникационных	Владеет	 навыками разработка сетевых алгоритмов на основе структурного и объектно-ориентированного подхода; навыками использования методы и приемы алгоритмизации поставленных задач;

онно-коммуникационных

ИПК-3.21 (А/01.6 У.1) Использовать методы и приемы формализации задач, эффективно применять

технологий

алгоритмические и программные решения в области информационнокоммуникационных технологий, а участвовать В проектировании и разработке ИПК-3.22 (А/01.6 У.2) Использовать методы и приемы алгоритмизации поставленных задач в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке ИПК-3.24 (А/01.6 У.4) Применять стандартные алгоритмы в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке ИПК-3.29 (D/01.6 Тд.1) Анализ возможностей реализации требований к программному обеспечению в области информационно-коммуникационных технологий ИПК-3.35 (А/01.6 Тд.2) Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов, а также участвовать в их проектировании и разработке ИПК-3.36 (А/01.6 Тд.3) Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов, а также участвовать в их проектировании и разработке

Процесс освоения дисциплины «Моделирование компьютерных сетей» направлен на получения необходимого объема теоретических знаний, отвечающих требованиям ФГОС ВО и обеспечивающих успешное ведение магистром научно-исследовательской деятельности, владение методологией формулирования и решения прикладных задач, а также на выработку умений применять на практике методы прикладной математики и информатики.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетных единицы, 108 академических часов (из них 28 аудиторных). Курс «Моделирование компьютерных сетей» состоит из лекционных и лабораторных занятий, сопровождаемых регулярной индивидуальной работой преподавателя со студентами в процессе самостоятельной работы. В конце семестра проводится зачет. Программой дисциплины предусмотрены 14 часов лекционных и 14 часов лабораторных занятий.

Вид учебной работы	Всего часов	Семестр (часы) 3
Контактная работа (всего)	28,2	28,2
В том числе:		
Занятия лекционного типа	14	14

Вид учебі	Всего часов	Семестр (часы) 3					
Занятия семинарского тип зан	_	_					
Лаборатор	ные занятия	14	14				
Иная контактная работа							
Контроль самостоятельной	í работы (КСР)	_	_				
Промежуточная аттестаци.	я (ИКР)	0,2	0,2				
Самостоятельная работа (всего)			79,8				
Курсовая работа		_	_				
Проработка учебного (теор	ретического) материала	57	57				
Подготовка к текущему ко	нтролю	21,8	21,8				
Контроль: зачет							
Общая трудоемкость час.			108				
	в том числе контактная работа	28,2	28,2				
	зач. ед	3	3				

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре

		Количество часов				
№	Наименование разделов	Всего	Аудиторная работа		Внеаудиторная работа	
		Beero	Л	ЛР	CPC	
1	2	3	4	5	6	
1	Математические методы теории очередей		4	4	20	
2	2 Аналитические методы теории сетей очередей		6	4	30	
3	3 Вычислительные алгоритмы расчета сетей очередей		4	4	20	
4 Обзор пройденного материала и сдача зачета		11,8		2	9,8	
Про	Промежуточная аттестация (ИКР)		_	_	_	
	Итого:	108	14	14	79,8	

Примечание: Л – лекции, ЛР – лабораторные занятия, СРС – самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа.

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Математические	Общие положения и определения теории	УО

	очередей	массового обслуживания. Марковские случайные процессы. Однолинейные марковские системы массового обслуживания. Полумарковские однолинейные системы и методы их анализа. Многолинейные, приоритетные и многофазные системы массового обслуживания.	
2.	методы теории сетей очередей	Однородные экспоненциальные сети. Сети массового обслуживания с несколькими классами сообщений. Итерационный метод анализа средних значений.	УО, ПИЗ
3.	сетей очередей	Алгоритмы вычисления характеристик однородных замкнутых экспоненциальных СМО. Расчет сетей с несколькими классами сообщений. Вычислительные аспекты метода анализа средних значений.	ПИЗ

Примечание: $\Pi \text{И}3$ – проверка индивидуальных заданий, УO – устный опрос, ЭВ - экзаменационные вопросы.

2.3.2 Занятия семинарского типа.

Занятия семинарского типа – не предусмотрены

2.3.3 Лабораторные занятия.

		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля
1	3	4
1.	Однолинейные марковские системы массового обслуживания	ЛР
2.	Полумарковские однолинейные системы и методы их анализа	ЛР
3.	Многолинейные, приоритетные и многофазные системы массового	ЛР
	обслуживания	
4.	Однородные экспоненциальные сети	ЛР
5.	Сети массового обслуживания с несколькими классами сообщений	ЛР
6.	Итерационный метод анализа средних значений	ЛР
7.	Алгоритмы вычисления характеристик однородных замкнутых	ЛР
	экспоненциальных СМО	
8.	Расчет сетей с несколькими классами сообщений	ЛР
9.	Вычислительные аспекты метода анализа средних значений	ЛР

2.3.4 Примерная тематика курсовых работ

Учебный план не предусматривает занятий курсовых работ по дисциплине «Моделирование компьютерных сетей».

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы			
1	2	3			
1	Проработка учебного (теоретического) материала	Олифер, В. Г.Компьютерные сети: принципы, технологии, протоколы. — СПб.: Питер, 2011. — 943 с. Методические указания по организации и выполнению самостоятельной работы, утвержденные на заседании кафедры математического моделирования факультета компьютерных технологий и прикладной математики			
		ФГБОУ ВО «КубГУ», протокол № 10 от 30.03.2018			
2	контролю	Мелехин В.Ф., Павловский Е.Г. Вычислительные машины, системы и сети. – М.: Академия, 2010. – 555 с. Методические указания по организации и выполнению самостоятельной работы, утвержденные на заседании кафедры математического моделирования факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол № 10 от 30.03.2018			

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

2.5 Самостоятельное изучение разделов дисциплины

Целью самостоятельной работы является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных работ в процессе работы над индивидуальными заданиями.

При освоении дисциплины используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности студентов для достижения запланированных результатов обучения и формирования компетенций: разбор конкретных ситуаций, IT-методы, командная работа, опережающая СРС.

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием Internet-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;

• закрепление теоретического материала при проведении лабораторных работ с использованием учебного оборудования, выполнения проблемно-ориентированных, творческих заданий.

3. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки магистров программа по дисциплине «Моделирование компьютерных сетей» предусматривает использование в учебном процессе различных образовательных технологий.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Семестр	Вид занятия	Ист	іользуемые	Общее количество часов		
3	Л		ід-лекции. уссионных	Обсуждение вопросов.	сложных и	6
		Nº		Тема		количество часов

Семестр	Вид занятия	Исі	пользуемые интерактивные образовательные технологии	Общее количество часов
		1	Общие положения и определения теории массового обслуживания. Марковские случайные процессы.	2
	ЛР		пьютерные занятия в режимах взаимодействия еподаватель – студент» и «студент – студент»	4
	6			

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Учебная деятельность проходит в соответствии с графиком учебного процесса. Оценка успеваемости осуществляется по результатам: самостоятельного выполнения лабораторных работ, устного опроса при сдаче выполненных самостоятельных заданий, индивидуальных лабораторных заданий и защиты групповых заданий.

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагаются варианты индивидуальных заданий, которые прорабатываются в процессе освоения курса.

Структура оценочных средств для текущей и промежуточной аттестации

N₂	Контролируемые	Код контролируемой		ие оценочного (ства
п/п	разделы (темы) дисциплины	компетенции (или ее части)	Текущий	Промежуточная аттестация
1	Математические методы теории очередей	ИПК-3.1 (D/01.6 3н.2) ИПК-3.2 (D/01.6 3н.3) ИПК-3.2 (D/01.6 3н.4) ИПК-3.3 (D/01.6 3н.4) ИПК-3.5 (D/29.7 3н.6) ИПК-3.8 (A/01.6 3н.1) ИПК-3.9 (A/01.6 3н.2) ИПК-3.10 (A/01.6 3н.3) ИПК-3.11 (A/01.6 3н.4) ИПК-2.7 (06.016 A/30.6 У.2) ИПК-2.8 (06.001 D/03.06 Тд.2)	у О	3B (1-13)
2	Аналитические методы теории сетей очередей	ИПК-3.5 (D/29.7 Зн.6) ИПК-3.8 (A/01.6 Зн.1) ИПК-3.9 (A/01.6 Зн.2) ИПК-3.10 (A/01.6 Зн.3) ИПК-3.11 (A/01.6 Зн.4) ИПК-2.3 (40.001 A/02.5 Зн.2)	УО, ПИЗ	3B (14-21)
3	Вычислительные алгоритмы расчета сетей очередей	ИПК-3.21 (A/01.6 V.1) ИПК-3.22 (A/01.6 V.2) ИПК-3.24 (A/01.6 V.4) ИПК-3.29 (D/01.6 Тд.1) ИПК-3.35 (A/01.6 Тд.2) ИПК-3.36 (A/01.6 Тд.3 ИПК-2.3 (40.001 A/02.5 3н.2)) ИПК-2.7 (06.016 A/30.6	ПИЗ	3B (22-25)

№	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства	
п/п			Текущий контроль	Промежуточная аттестация
		У.2) ИПК-2.8 (06.001 D/03.06 Тд.2)		

Показатели, критерии и шкала оценки сформированных компетенций

	Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания			
Код и наименование		оучения и критериям и базовый		
компетенции	пороговый	оазовыи Оценка	продвинутый	
	зачтено	зачтено	зачтено	
ПК-2 Способен	Знать: основные	Знать:	Знать: методы	
эффективно	математические	аналитические	математического	
определять	методы исследования	методы	моделирования;	
компонентный	марковских и	исследования	технологии	
состав и	полумарковских	локально-	электронного	
архитектуру	систем массового	сбалансированных	обучения.	
программного	обслуживания;	сетей очередей;	обучения.	
обеспечения или	oocsiy kiibaliini,	алгоритмы расчета		
программно-	Уметь: составлять	сетей очередей.		
аппаратного	уравнение глобаль-	озгон о юродон.	Уметь: применять	
комплекса в	ного баланса и	Уметь: Применяет	стандарт SCORM	
соответствии с его	решать их в	теоретические осно-	при построении	
назначением,	мультипликативной	вы СМО при	электронных курсов.	
осуществлять	форме.	построении моделей.	Владеть: навыками	
выбор современных	Владеть:	Владеть: навыками	построения	
оптимальных	методологией и	использования СМО	электронных курсов;	
технологий и	навыками построения	в постановке задачи;	электронным курсов,	
средств его	математических	B not ranophe saga m,	Обучаю показывает	
разработки и	моделей для	Обучающийся	не только высокий	
сопровождения	поставленных задач;	показывает доста-	уровень теорети-	
ПК-3 Способен	,	точный уровень	ческих знаний по	
эффективно	Обучающийся	профессиональных	дисциплине, но и	
применять	показывает не	знаний, свободно	прослеживает	
алгоритмические и	достаточный уровень	оперирует поняти-	междисциплинарные	
программные	знаний учебного	ями, методами оцен-	связи. Умеет	
решения в области	материала, не в	ки принятия реше-	увязывать знания,	
информационно-	полном объеме	ний, имеет представ-	полученные при	
коммуникационных	владеет	ление о междисцип-	изучении различных	
технологий, а	практическими	линарных связях,	дисциплин,	
также участвовать в	навыками, чувствует	увязывает знания,	анализировать	
их проектировании	себя неуверенно при	полученные при изу-	практические	
и разработке	анализе	чении различных	ситуации, принимать	
	междисциплинарных	дисциплин, умеет	соответствующие	
	связей. В ответе не	анализировать прак-	решения. Ответ,	
	всегда присутствует	тические ситуации,	построен логично,	
	логика, аргументы	но допускает некото-	материал излагается	
	привлекаются	рые погрешности.	четко, ясно, хорошим	
	недостаточно веские.	Ответ построен ло-	языком,	

На поставленные	гично, материал из-	аргументировано. На
вопросы	лагается хорошим	вопросы отвечает
затрудняется с	языком, привле-	кратко,
ответами, показывает	кается информатив-	аргументировано,
недостаточно	ный и иллюстри-	уверенно, по
глубокие знания.	рованный материал,	существу
	но при ответе	
	допускает некоторые	
	погрешности. Воп-	
	росы, задаваемые	
	преподавателем, не	
	вызывают	
	существенных	
	затруднений	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерные задания на лабораторные работы

Варианты индивидуальных заданий Вариант 1

В ЭВМ, работающую в системе управления технологическим процессом, через каждые 8 с поступают данные от датчиков. Обработка данных осуществляется с использованием *оперативной памяти* [длится 14 с, требует 2 условных единицы оперативной памяти (которая освобождается после обработки)] и жесткого диска [длится 17 с, требует 3 условные единицы жесткого диска]. Всего в системе присутствует 5 единиц оперативной памяти и 6 условных единиц жесткого диска. Смоделируйте работу системы по обработке 100 заданий.

Измените, начальные условия поступления данных: «поступают одновременно 3 набора данных от датчиков». Смоделируйте работу системы в течение 3 часов.

Вариант 2

Система обработки данных, поступающих один раз в 4 с, состоит из трех специализированных устройств, которые последовательно обрабатывают поступающие пакеты данных. Устройства используют для обработки данных соответственно 1, 3 и 2 единицы *оперативной памяти* (которая освобождается после обработки), первое и третье устройство также требуют работы 4 и 5 единиц *записывающего устройства*. Всего в системе 5 единиц оперативной памяти и 600 единиц записывающего устройства. Обработка на первом устройстве занимает 10 с, на втором — 3 с, а на третьем — 8 с. Смоделируйте работу системы по обработке 200 пакетов данных.

Измените, начальные условия поступления данных: «поступают одновременно 2 пакета данных». Смоделируйте работу системы в течение 1 часа.

Вариант 3

Банк данных состоит из двух машин, которые подсоединены к хранилищам, содержимое которых синхронизовано. На каждую машину каждые 5 с поступает запрос. Обработка запроса состоит из двух этапов: поиска запрошенных данных (9 с) и их отправки (11 с). Поиск занимает 3 условные единицы оперативной памяти (которая освобождается) каждой из машин (всего на машинах установлено по 7 единиц оперативной памяти), а также эксклюзивного доступа к хранилищу. Запрос данных требует 5 условных единиц оперативной памяти, но не требует эксклюзивного доступа к хранилищу. Смоделируйте обработку 100 запросов.

Измените, начальные условия поступления запросов: «поступают одновременно 3 запроса». Смоделируйте работу системы в течение часа.

Вариант 4

Сетевое хранилище состоит из двух жестких дисков и одного накопителя на магнитной ленте. На вход каждого устройства каждые 3 с поступают пакеты данных объемом 5 условных единиц, которые необходимо записать. Жесткие диски обладают объемом 500 условных единиц, а накопитель на магнитной ленте – 200 условных единиц. Процесс записи на жесткий диск длится 4 с и требует 5 единиц питания, а на магнитную ленту – 2 с и 3 единиц питания (всего в системе присутствует 10 единиц питания).

Смоделируйте сохранение 70 пакетов данных.

Измените, начальные условия поступления пакетов данных: «поступают одновременно 2 пакета данных». Смоделируйте работу системы в течение 4 часов.

Вариант 5

В каждую из двух ЭВМ вычислительного центра каждые 5 с поступает пакет данных, которые необходимо обработать и передать на запись в общее внешнее хранилище. Обработка данных длится 9 с и требует 5 условных единиц *оперативной памяти* (которая освобождается после обработки). Запись во внешнее хранилище происходит в режиме эксклюзивного доступа и длится 10 с. На каждой ЭВМ присутствует 7 единиц оперативной памяти. Смоделируйте обработку 300 пакетов данных.

Измените, начальные условия поступления данных: «поступают одновременно 2 пакета данных». Смоделируйте работу системы в течение 3 часов.

Вариант 6

В ЭВМ, работающую в системе управления технологическим процессом, через каждые 8 с поступает блок данных от датчиков. Обработка блока данных состоит из трех этапов: запись, сравнение и выдача управляющего воздействия. Длительность записи блока данных занимает 2 с и 3 единицы ресурса ЭВМ (всего ЭВМ состоит из 4 единиц ресурса). Длительность сравнения занимает 3 с и требует 2 единиц ресурса ЭВМ, по результатам сравнения генерируется управляющее воздействие. Длительность выдачи управляющего воздействия 1 с и требует 1 единицу ресурса. Смоделируйте работу системы по обработке 350 блоков данных.

Измените, начальные условия поступления данных: «поступают одновременно 2 пакета данных». Смоделируйте обработку в течение 1 часа.

Вариант 7

В вычислительном центре имеются две ЭВМ. Задания на обработку поступают каждые 2 мин в пункт приема. Здесь в течение 12 мин они регистрируются и сортируются оператором, после чего каждое задание поступает на одну из ЭВМ. Примерно в 70 % заданий в результате их первой обработки на ЭВМ обнаруживаются ошибки ввода, которые сразу же в течение 3 мин исправляются оператором. На время корректировки ввода задание не освобождает соответствующей ЭВМ, и после корректировки начинается его повторная обработка. Возможность ошибки при повторной обработке исключается, т.е. повторная обработка всегда является окончательной. Продолжительность работы ЭВМ при обработке задания в каждом случае составляет 10. В центре имеется лишь одно рабочее место оператора. Смоделировать процесс функционирования вычислительного центра при условии, что обработать необходимо 100 заданий.

Измените, начальные условия поступления заданий: «поступают одновременно 2 задания». Смоделируйте обработку в течение 1 суток.

Вариант 8

Банк данных состоит из двух ЭВМ, которые подсоединены к хранилищу. На каждую ЭВМ каждые 10 с поступает запрос. Обработка запроса состоит из двух этапов: поиска запрошенных данных и их отправки. Длительность поиска 2 с и требует 3 единицы ресурса ЭВМ, а длительность отправки 5 с и требует 2 единицы ресурса ЭВМ. Смоделируйте обработку 500 запросов.

Измените, начальные условия поступления запросов: «поступают одновременно 3 запроса». Смоделируйте работу системы в течение часа.

Вариант 9

Система обработки данных состоит из двух специализированных устройств и общей оперативной памяти (2 единицы ресурса), которые последовательно обрабатывают поступающие пакеты данных. Блок данных поступает каждые 7 с. Сначала первое устройство производит анализ данных, длительность которого 10 с и запись данных, которая требует 1 единицу ресурсы памяти и 7 с. Затем второе устройство производит его непосредственную обработку, которая занимает 2 с, после чего также происходит запись данных, которая требует 2 единицы ресурса памяти и 9 с. Смоделируйте обработку 100 блоков данных.

Измените, начальные условия поступления данных: «поступают одновременно 2 пакета данных». Смоделируйте работу системы в течение 3 часов.

Вариант 10

Специализированная ЭВМ получает на вход задания трех типов: А, В и С. Задания типа А поступают раз в 15 с, типа В — раз в 10 с, типа С — раз в 7 с. Все задания предварительно записываются, процесс записи занимает 2 с. Затем задания поступают на обработку, причем каждый тип задания на выделенную ЭВМ — это обработка первого уровня, она занимает 10 с. После обработки на первом уровне задачи распределяются на две ЭВМ второго уровня случайным образом, что соответствует вероятности 50 %. Каждая ЭВМ имеет 1 ресурс. Смоделируйте обработку 200 заданий.

Измените, начальные условия поступления заданий: «поступают одновременно 2 задания». Смоделируйте работу системы в течение 2 часов.

Примерные темы рефератов и докладов

- 1. Открытые информационные системы.
- 2. Модели и структуры информационных сетей.
- 3. Информационные ресурсы сетей.
- 4. Теоретические основы современных информационных сетей.
- 5. Базовая эталонная модель Международной организации стандартов.
- 6. Компоненты информационных сетей.
- 7. Коммуникационные подсети.
- 8. Моноканальные подсети.
- 9. Циклические подсети.
- 10. Узловые подсети.
- 11. Методы маршрутизации информационных потоков.
- 12. Методы коммутации информации.
- 13. Протокольные реализации.
- 14. Сетевые службы.
- 15. Модель распределенной обработки информации.
- 16. Безопасность информации.
- 17. Базовые функциональные профили.
- 18. Полные функциональные профили.
- 19. Методы оценки эффективности информационных сетей.
- 20. Сетевые программные и технические средства информационных сетей.

Оценочные средства для проведения промежуточной аттестации.

Аттестация по учебной дисциплине проводится в виде зачета.

Перечень вопросов, выносимых на зачет

1. Основные понятия информационных сетей.

- 2. Сущность централизованной и распределенной обработки информации.
- 3. Компоненты информационных сетей.
- 4. Классификация компьютерных сетей. Топология.
- 5. Общие положения и определения теории массового обслуживания.
- 6. Модели массового обслуживания. Типы СМО.
- 7. Разомкнутые и замкнутые стохастические сети.
- 8. Параметры и характеристики сетевых моделей.
- 9. Модели и структуры информационных сетей.
- 10. Марковские случайные процессы.
- 11. Математическая модель марковской сети очередей.
- 12. Описание входных потоков.
- 13. Структурирование очередей и процессы обслуживания.
- 14. Равновесие состояния сети очередей.
- 15. Дискретно-событийное моделирование.
- 16. Однолинейные марковские системы массового обслуживания
- 17. Многолинейные системы массового обслуживания.
- 18. Многофазные системы массового обслуживания.
- 19. Модель распределенной обработки информации.
- 20. Однородные экспоненциальные сети.
- 21. Сети массового обслуживания с несколькими классами сообщений
- 22. Методы анализа средних значений
- 23. Расчет сетей с несколькими классами сообщений
- 24. Методы оценки эффективности информационных сетей
- 25. Сетевые программные и технические средства информационных сетей.

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Основные критерии оценки устного зачета:

Оценка «зачтено» выставляется студенту, если:

- -свободно владеет терминологией из различных разделов курса, делая ошибки или при неверном употреблении термина сам может их исправить;
- -хорошо владеет всем содержанием, видит взаимосвязи, может провести анализ, соединяя при ответе знания из разных разделов, допустимо: не всегда делает это самостоятельно без помощи экзаменатора;
- отвечая на вопрос, может быстро и безошибочно проиллюстрировать ответ собственными примерами, допустимо: примеры чаще из имеющихся в учебных материалах;
- -демонстрирует различные формы мыслительной деятельности: анализ, синтез, сравнение, обобщение и т.д. Владеет аргументацией, грамотной, лаконичной, доступной и понятной речью;
- если не менее чем 2/3 предложенных вопросов оценены как «полный» или «преимущественно полный» ответ и нет вопросов, оценённых как «вопрос не раскрыт».

Оценка «незачтено» – в противном случае.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Олифер, В. Г. Компьютерные сети: принципы, технологии, протоколы. СПб.: Питер, 2011. 943 с.
- 2. Мелехин В.Ф., Павловский Е.Г. Вычислительные машины, системы и сети. М.: Академия, 2010. 555 с.
- 3. Построение коммутируемых компьютерных сетей / Е.В. Смирнова, И.В. Баскаков, А.В. Пролетарский, Р.А. Федотов. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 429 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=429834.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1. Бройдо В.Л., Ильина О.П. Вычислительные системы, сети и телекоммуникации. СПб.: Питер, 2011. 54 с.
- 2. Замятина О.М. Вычислительные системы, сети и телекоммуникации. Моделирование сетей. М.: Издательство Юрайт, 2018. 159 с. [Электронный ресурс]. Режим доступа: https://biblio-online.ru/viewer/3A1BBC90-1F94-4581-A4A3-8181BD9032BC/vychislitelnye-sistemy-seti-i-telekommunikacii-modelirovanie-setey#page/1.
- 3. Станкевич Л.А. Интеллектуальные системы и технологии. М.: Юрайт, 2018. 397 с. [Электронный ресурс]. Режим доступа: https://biblio-online.ru/viewer/A45476D8-8106-487A-BA38-2943B82B4360/intellektualnye-sistemy-i-tehnologii#page/1.

4. Технологии разработки и создания компьютерных сетей на базе аппаратуры D-LINK. М.: Горячая линия-Телеком, 2013. 216 с. [Электронный ресурс]. — Режим доступа: https://e.lanbook.com/book/11826.

5.3. Периодические издания:

Периодические издания – отсутствуют.

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. General Section 3. General Section 3. General Section 1988.
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Scopus http://www.scopus.com/
- 2. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 3. Springer Materials http://materials.springer.com/
- 4. zbMath https://zbmath.org/

Ресурсы свободного доступа:

- 1. Мир математических уравнений EqWorld. http://eqworld.ipmnet.ru/ru/library.htm
- 2. Физика, химия, математика. http://www.ph4s.ru/index.html
- 3. Journal of Mathematical Physics. Online ISSN 1089-7658. http://jmp.aip.org
- 4. Словари и энциклопедии http://dic.academic.ru/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/

5.4 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень информационных технологий

– Использование электронных презентаций при проведении лекционных занятий.

Перечень необходимого программного обеспечения.

- Операционная система MS Windows.
- Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет.
- Программы для демонстрации и создания презентаций («Microsoft Power Point»).
- NET-Simulator.
- Mininet.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

No	Рин побот	Материально-техническое обеспечение дисциплины и
Nō	вид расот	оснашенность

№	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук), соответствующим программным обеспечением, а также необходимой мебелью (доска, столы, стулья). (аудитории: 129, 131, 133, A305, A307).
2.	Лабораторные занятия	Компьютерный класс, укомплектованный компьютерами с лицензионным программным обеспечением, необходимой мебелью (доска, столы, стулья). (аудитории: 101, 102, 106, 106a, 105/1, 107(2), 107(3), 107(5), A301).
3.	Групповые (индивидуальные) консультации	Аудитория для семинарских занятий, групповых и индивидуальных консультаций, укомплектованные необходимой мебелью (доска, столы, стулья). (аудитории: 129, 131).
4.	Текущий контроль, промежуточная аттестация	Аудитория для семинарских занятий, текущего контроля и промежуточной аттестации, укомплектованная необходимой мебелью (доска, столы, стулья) (аудитории: 129, 131, 133, A305, A307, 147, 148, 149, 150, 100С, A301б, A512), компьютерами с лицензионным программным обеспечением и выходом в интернет (106, 106a, A301)
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения, обеспеченный доступом в электронную информационно-образовательную среду университета, необходимой мебелью (доска, столы, стулья). (Аудитория 102а, читальный зал).

Примечание: Конкретизация аудиторий и их оснащение определяется ОПОП.