Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ
Проректор по учебной работе, качеству образования — первый проректор

— Хагуров Т.А.

« 30 » мая 2025г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.01.01 МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ В МОДЕЛИРОВАНИИ

Направление подготовки: 01.04.02 Прі	икладная математика и информа-
тика	
Профиль: Математическое моделирова	ние в естествознании и техноло-
гиях	
Программа подготовки	академическая
Форма обучения	очная
Квалификация (степень) выпускника	магистр

Рабочая программа дисциплины «Основы метода конечных элементов» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.04.02 Прикладная математика и информатика, профиль Математическое моделирование в естествознании и технологиях

Программу составил:

С.И. Фоменко, к.ф.-м.н., доцент

подпись

Рабочая программа дисциплины Б1.В.ДВ.01.01 утверждена на заседании кафедры прикладной математики, протокол № 9 от «06» мая 2025 г. И.о. заведующего кафедрой (разработчика)

Письменский А.В.

Рабочая программа дисциплины обсуждена на заседании кафедр(ы):

математического моделирования, протокол № 11 от 22.05.2025 г. Заведующий кафедрой (выпускающей)

акад. РАН, д.ф.-м.н., профессор В.А. Бабешко

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 «23» мая 2025г.

Председатель УМК факультета Коваленко А.В.

подпись

Рецензенты:

Голуб М.В., доктор. физ.-мат. наук, зав. кафедры теории функций ФГБОУ ВПО «КубГУ»

Марков Виталий Николаевич, доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Целью изучения дисциплины «Метод конечных элементов в моделировании» является развитие профессиональных компетентностей и приобретение практических навыков решения инженерных задач и задач математической физики современными численными методами. Цели дисциплины соответствуют формируемой компетенции ПК-2 и ПК-3 и позволяют подготовить обучающихся к успешной работе в различных сферах, применяющих математические методы, математическое и компьютерное моделирование, а также информационные технологии и развить способности самостоятельно приобретать и применять новые знания и умения.

1.2 Задачи дисциплины

Задачи освоения дисциплины.

- освоить конечно-элементные и сеточные методы аппроксимации решений физико-математических задач;
- изучить приемы программирования, визуализации и анализа численного решения задач математической физики численными методами.
- поднять общий уровень исследовательской, математической и программистской культуры обучающихся.
- выработать умения использовать справочные материалы и пособия в своей профессиональной деятельности.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Метод конечных элементов в моделировании» относится к вариативной части профессионального цикла и является естественным продолжением читаемых ранее курсов по программированию и современному анализу.

Для освоения дисциплины студент должен владеть знаниями, умениями и навыками по дисциплинам «Математический анализ» (Б1.О.04), «Алгебра и аналитическая геометрия» (Б1.О.05), «Дифференциальные уравнения»(Б1.О.09), «Уравнения математической физики» (Б1.О.25), «Численные методы» (Б1.О.13), Методы программирования (Б1.О.08) (специальность 01.03.02 Прикладная математика и информатика, бакалавриат)

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Программа определяет общий объем знаний, позволяющий сформировать у студента культуру решения как простых вспомогательных задач, так и умения программировать и решать задачи математического моделирования сложных физических явлений, владение общими принципами построения вычислительных алгоритмов, написания и отладки компьютерных программ.

Компетенции обучающегося, формируемые в результате освоения дисциплины «Введение в метод конечных элементов»:

Код и наименование индикатора достижения	Результаты обучения по дисциплине
компетенции	
ПК-2 Способен активно участвовать в иссле	едовании новых математических моделей в естествен-
ных науках	
ИПК-2.1 (06.016 А/30.6 Зн.3) Предметная об-	Знает основные методы математического и компьютер-
ласть и методы математического моделирова-	ного моделирования, особенности работы с конечно-
ния в естественных науках	элментными пакетами, справочными пособиями и тех-
	нической и математической литературой по численным

и сеточным методам

Умеет использовать знания современного математического аппарата для решения математических и прикладных задач, составлять на высоком уровне соответствующие технические описания и инструкции; подготавливать справочные материалы и описания программных комплексов для численного анализа с помощью сеточных методов.

Владеет навыками применения знаний по современному математическому аппарату для решения математических задач, способностями эффективно планировать необходимые ресурсы для проектирования и организации вычислений; навыками подготовки отчетов о результатах исследовательских и профессиональных работ.

ПК-3 Способен ориентироваться в современных алгоритмах компьютерной математики; обладать способностями к эффективному применению и реализации математически сложных алгоритмов

ИПК-3.4 (06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны проектирования программного обеспечения эффективно реализующих математически сложные алгоритмы

ИПК-3.8

(40.001 A/02.5 Тд.1) Проведение экспериментов по оценке эффективности реализации математически сложных алгоритмов

Знает основные понятия, положения и приемы метода конечных элементов как одного из самых эффективных методов моделирования и численного анализа

Умеет реализовывать элементы алгоритмов или математических моделей для метода конечных элементов в виде компьютерных программ, а также использовать существующие конечно-элементные программные продукты для создания компьютерных моделей и проведения расчетов

Владеет навыками анализа программного кода с точки зрения его адекватности той математической модели, которую он реализует и его вычислительной сложности, вывода, интерпретации и анализа численных результатов.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице

Вид учебной работы	Всего	Семестры
	часов	(часы)
		3 семестр
Контактная работа (всего), в том числе:		
Аудиторные занятия (всего)	28	28
В том числе:		
Занятия лекционного типа	14	14
Лабораторные занятия	14	14
Иная контактная работа		
В том числе:		

Промежуточная аттестация (ИКР)			0,2
Самостоятельная работа,	в том числе:		
Проработка учебного матер	риала	15	15
Выполнение индивидуальн	ых заданий	54	54
Подготовка к текущему кон	нтролю	10,8	10,8
Контроль			
Общая трудоемкость	час.	108	108
	в том числе контактная работа	28,3	28,3
	зач. ед	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины, разделы дисциплины, изучаемые в 3 семестре *(очная форма)*

		Количество часов			
No	Наименование разделов		Ауди	торная	Внеаудиторная
715	паименование разделов	Всего	pa6	бота	работа
			Л	ЛР	CPC
1	2	3	4	6	7
1.	Вариационные и проекционные методы аппроксимации	8,4	2	2	4,4
2.	Метод конечных элементов для решения одномерных задач	26	3	3	20,0
3.	Конечно-элементные пакеты	24	2	2	20
4.	Метод конечных элементов решения двумерных и трехмерных задач математической физики	25	4	4	17,0
	Метод конечных элементов с полиноминальной аппроксимацией высокого порядка.	24,4	3	3	18,4
	Всего по разделам дисциплины:	107,8	14	14	79,8
	Промежуточная аттестация (ИКР)	0,2			
	Итого по дисциплине:	108	14	14	79,8

Примечание: Л – лекции, ЛР – лабораторные занятия, СРС – самостоятельная работа студента; ИКР – иная контактная работа

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

No	Наименование раздела	Содержание раздела	Форма теку-
раз-			щего контроля
дела			
1	2	3	4
1	Вариационные и	Задача минимизации невязки; слабая поста-	Устный
	проекционные ме-	новка задачи и обобщенные решения; вариа-	опрос
	тоды аппроксима-	ция, функционал энергии, метод Ритца, метод	
	ции	наименьших квадратов; проекционные методы	
		Галеркина, метод коллокаций.	
2	Метод конечных	Понятие о конечном элементе, функции фор-	Устный
	элементов для ре-	мы; слабая постановка; одномерный элемент с	опрос
	шения одномерных	кусочно-линейными базисными функциями;	
	задач	элементная матрица, ансамблирование, матри-	
		ца жёсткости; решение систем уравнений лен-	
		точного типа.	
3	Конечно-	Разработка конечно-элементных моделей в	Устный
	элементные пакеты	специализированных пакетах программ	опрос
4	Метод конечных	Триангуляция, линейный треугольный элемент	Устный
	элементов решения	и применение четырехугольных элементов в	опрос
	двумерных и трех-	задачах аппроксимации; решение двумерных	
	мерных задач мате-	задач теплопроводности и волновых задач	
	матической физики	упругости.	
5	Метод конечных	Полиномы Гаусса-Лобатто; аппроксимация на	Устный
	элементов с поли-	конечных элементах, квадратурные формулы и	опрос
	номинальной ап-	элементная матрицы жёсткости одномерного	
	проксимацией вы-	спектрального элемента.	
	сокого порядка.		

Примечание: защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т), устный опрос по знанию теоретического материала (О) и т.д.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

No	№ раздела дисципли- ны	Наименование лабораторных работ	Форма текущего контроля
1		3	4
1.	1	Вариационные методы аппроксимации и Проекционные методы Галеркина	
2.	2	Одномерный конечный элемент с кусочно- линейными базисными функциями	ЛР, РГЗ
3.	2	Программирование элементных матриц и матриц жесткости для краевых задач одномерного уравнения Гельмгольца	ЛР, РГЗ
4.	2	Программная реализация и решение разрешающих уравнений	ЛР, РГЗ
5.	2	Анализ сходимости решения краевых задач методом конечных элементов	ЛР, РГЗ
6.	5	Разработка проектов в пакетах программ, реализующих конечно-элементные методы	ЛР
7.	5	Решение одномерных задач в конечно- элементных пакетах	ЛР
8.	5	Решение двумерных и трехмерных задач в конечно-элементных пакетах	ЛР

9.	3	Триангуляция и линейный треугольный конечный элемент; Элементные матрицы и матрица жесткости для краевых задач на плоскости.	ЛР
10	3	Программная реализация и приемы решения разрешающих систем линейных уравнений для конечных элементов на плоскости	
11	3	Анализ сходимости метода конечных элементов на треугольных сетках.	ЛР
12	4	Аппроксимация функций ортогональными полиномами Лежандра и Лобатто; полиномы Гаусса-Лобатто и квадратурные формулы Гаусса-Лежандра-Лобатто	
13	4	Одномерный конечный элемент высокого порядка точности в глобальных и локальных координатах	ЛР, РГЗ
14	4	Программная реализация и численный анализ решения одномерных задач с кусочнолинейной и полиномиальной аппроксимацией	ЛР, РГЗ

Примечание: Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид самостоятельной	± ,
работы по выполнению самостоятельной работы		по выполнению самостоятельной работы
1	1 2 3	
1	повторение лекционного	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
12.		Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики

	занятиям	факультета компьютерных технологий и прикладной математи- ки ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
3	Подготовка к решению задач	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
4	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

С точки зрения применяемых методов используются как традиционные информационно-объяснительные *лекции*, так и интерактивная подача материала с мультимедийной системой и др. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематический обзор понятий и методов Комплексного анализа с подачей материала в форме презентаций и с использованием других интерактивных технологий: проблемное обучение, моделирование, дискуссия.

Занятия, проводимые с использованием интерактивных технологий

		Количество часов	
№	Наименование разделов (тем)	всего ауд. часов	интерактивные часы
1	2	3	4
1.	Вариационные и проекционные методы аппроксимации	8,4	1
2	Конечно-элементные пакеты	24	2
3.	Метод конечных элементов для решения одномерных задач	26	3

4.	Метод конечных элементов решения двумерных и трехмерных задач математической физики	25	4
5.	Метод конечных элементов с полиноминальной аппроксимацией высокого порядка.	24,4	3
	Итого по дисциплине:	107,8	14

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач, развить математическую интуицию и творческое мышление. Разбор конкретных ситуаций, математическое моделирование задач, встречающихся на практике (проблемное обучение), командная работа, визуализация и обсуждение результатов анализа широко используется при проведении лабораторных, а также самостоятельных работ.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием возможностей средств удаленного доступа (электронная почта, видеоконференция).

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной аттестации (зачета)

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- оценки, выставляемой при сдаче индивидуальных заданий;

Зачет выставляется по результатам выполненных индивидуальных заданий и текущей работы на лабораторных и лекционных занятиях.

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме:

- лабораторных работ
- расчетно-графического задания.

и промежуточной аттестации в форме вопросов и заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование индика-	Результаты обучения	Наименование оценочного средства	
п/п	тора	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная
	(в соответствии с п. 1.4)	(=		аттестация
	ИПК-2.1 (06.016 А/30.6 Зн.3)	Знает основные методы ма-	Текущие опросы на	Теоретические
	Предметная область и методы	тематического и компьютер-	лекциях и лабора-	вопросы на за-
	математического моделирова-	ного моделирования, осо-	торных занятиях	чете
	ния в естественных науках	бенности работы с конечно-		
1		элментными пакетами, спра-		
		вочными пособиями и тех-		
		нической и математической		
		литературой по численным и		
		сеточным методам		
	ИПК-2.1 (06.016 А/30.6 Зн.3)	Умеет использовать знания	Отчеты о прове-	Отчеты о вы-
2	Предметная область и методы	современного математиче-	дении лаборатор-	полнении рас-
	математического моделирова-	ского аппарата для решения	ных работ	четно-
	ния в естественных науках	математических и приклад-		графического
		ных задач, составлять на вы-		задания
		соком уровне соответству-		

3	ИПК-2.1 (06.016 A/30.6 3н.3) Предметная область и методы математического моделирования в естественных науках	ющие технические описания и инструкции; подготавливать справочные материалы и описания программных комплексов для численного анализа с помощью сеточных методов. Владеет навыками применения знаний по современному математическому аппарату для решения математических задач, способностями эффективно планировать необходимые ресурсы для проектирования и организации вычислений; навыками	Отчеты о прове- дении лаборатор- ных работ	Расчетно- графическое задание к заче- ту
4	ИПК-3.4 (06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны проектирования программного обеспечения эффективно реализующих математически сложные алгоритмы	подготовки отчетов о результатах исследовательских и профессиональных работ. Знает основные понятия, положения и приемы метода конечных элементов как одного из самых эффективных методов моделирования и численного анализа	Текущие опросы на лекциях и лабора- торных занятиях	Теоретические вопросы на за- чете
5	ИПК-3.4 (06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны проектирования программного обеспечения эффективно реализующих математически сложные алгоритмы	Умеет реализовывать элементы алгоритмов или математических моделей для метода конечных элементов в виде компьютерных программ, а также использовать существующие конечноэлементные программные продукты для создания компьютерных моделей и проведения расчетов	Отчеты о прове- дении лаборатор- ных работ	Расчетно- графическое задание к заче- ту
6	ИПК-3.4 (06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны проектирования программного обеспечения эффективно реализующих математически сложные алгоритмы	Владеет навыками анализа программного кода с точки зрения его адекватности той математической модели, которую он реализует и его вычислительной сложности, вывода, интерпретации и анализа численных результатов.	Задания для лабораторных работ	Расчетно- графическое задание к заче- ту

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Показатели, критерии и шкала оценки сформированных компетенций

Код и наименование компетенций	Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания			
Kommereniquii	пороговый	базовый	<u>продвинутый</u>	
	Оценка		•	
	Удовлетворительно /зачтено	Хорошо/зачтено	Отлично /зачтено	
ПК-2: Способен эффективно планировать необходимые ресурсы и этапы выполнения работ в области математического моделирования и информационно-коммуникационных технологий, составлять на высоком уровне соответствующие технические описания и инструкции	Знает — базовые понятия и методы дисциплины, возможные сферы их связи и приложения в других областях математического знания и дисциплинах естественно-научного и профессионального цикла;	Знает — основные мето ды и понятия, изучаемы в дисциплине, возмож ные сферы их связи приложения в других областях математическог знания и дисциплина естественно-научного профессионального цикла;	е понятия, изучаемые в дисциплине, сферы их связи и приложения в других областях математического знания и дисциплинах естественнонати учного и профессиональ-	

	Умеет – решать базовые задачи, встречающиеся в практике профессиональной деятельности, сформулированные в терминах данной математической дисциплины, применять основные методы решения; использовать графические и текстовые редакторы, а также составлять научнотехнические отчеты, инструкции и описание разработанных программ по ГОСТ	Умеет - решать основные задачи, встречающиеся в практике профессиональной деятельности, сформулированные в терминах данной математической дисциплины, применять основные и продвинутые методы решения; использовать графические и текстовые редакторы, а также визуализировать полученные результаты, составлять научно-технические отчеты, инструкции и описание разработанных программ по ГОСТ	Умеет — формулировать в терминах данной математической дисциплины задачи, встречающиеся в практике профессиональной деятельности, решать их с помощью основных и продвинутых методов; использовать графические и текстовые редакторы, а также визуализировать полученные результаты, составлять на высоком уровне научнотехнические отчеты, инструкции и описание разработанных программ по ГОСТ
	Владеет отдельными методами применения математических методов, рассмотренных в рамках дисциплины, для решения профессиональных задач; навыками составления технических описаний и инструкций	Владеет основными методами применения математических методов, рассмотренных в рамках дисциплины, для решения профессиональных задач; навыками составления научнотехнических описаний и инструкций	Владеет методами применения полученных знаний в постановке и решении прикладных задач; навыками составления научно-технических описаний и инструкций
ПК-3: Способен эффективно применять алгоритмиче- ские и программные ре- шения в области ин- формационно- коммуникационных тех- нологий, а также участ- вовать в их проектиро- вании и разработке	ния и свойства математических объектов, изучаемых в дисциплине, формулировки и утвер-	Знает — основные методы, основные понятия, определения и свойства математических объектов, изучаемых в дисциплине; методы алгоритмизации математической модели, разработки соответствующих компьютерных программ на высоком уровне	Знает - основные методы, основные понятия, определения и свойства математических объектов, изучаемых в дисциплине, формулировки утверждений, методы их доказательства; знаком с нестандартными подходами к решению задач; методы алгоритмизации математической модели, разработки соответствующих компьютерных программ на высоком уровне

Умеет — формулировать базовые утверждения, ре- шать базовые задачи дис- циплины; программиро- вать разработанные алго- ритмы на языках высокого уровня, проводить расчеты	Умеет - формулировать и доказывать базовые утверждения дисциплины, применять полученные навыки в других областях и дисциплинах естественно-научного цикла; программировать разработанные алгоритмы на языках высокого уровня, проводить расчеты.	Умеет - формулировать и доказывать основные утверждения дисциплины, решать основные и продвинутые задачи, применять полученные навыки в других областях и дисциплинах естественнонаучного цикла; проводить доказательства нестандартным путем; программировать разработанные алгоритмы на языках высокого уровня, проводить расчеты и анализировать полученные результаты
Владеет — методами решения базовых задач и базовыми понятиями, рассматриваемые в дисциплине, а также методами разработки программных проектов. Способен работать в команде разработчиков.	Владеет - методами решения задач, а также методами разработки программных комплексов, навыками применения этого в других областях и дисциплинах естественно-научного цикла. Способен работать в команде разработчиков.	Владеет - методами ре- шения задач, а также ме- тодами разработки про- граммных комплексов, навыками применения этого в других областях и дисциплинах естественно- научного цикла. Способен работать в команде разра- ботчиков в качестве лиде- ра. Демонстрирует допол- нительные знания и эру- дицию.

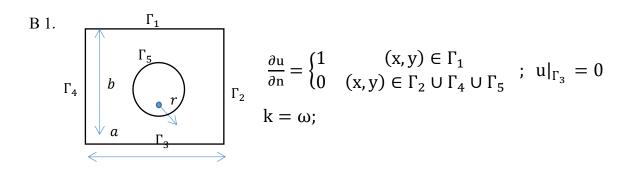
Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

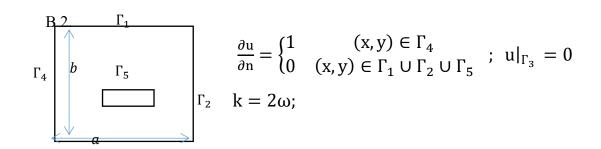
4.1.1. Методические рекомендации к выполнению лабораторных работ

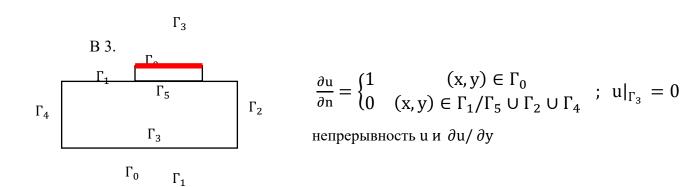
Для успешного выполнения лабораторной работы обучающемуся следует ознакомиться с теоретической частью дисциплины по теме лабораторной работы, изложенной в лекциях. Для углубленного понимания теоретического материала могут быть использованы источники, указанные в списке основной литературы [1-4], дополнительной [5-7].

Критерием должной подготовки студентов к выполнению лабораторных работ являются приобретенные знания, позволяющие безошибочно ответить на вопросы, сформулированные по каждой теме лабораторных работ. Для приобретения должных навыков к решению задач предполагается решение задач на лабораторных занятиях в учебных аудиториях под руководством преподавателя. Закрепление приобретенных навыков осуществляется внеаудиторным самостоятельным решением студентом задач. Номера задач для решения в аудитории и дома указаны к каждой лабораторной работе.

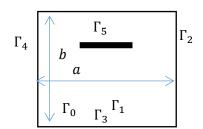
4.2 Фонд оценочных средств для проведения промежуточной аттестации.

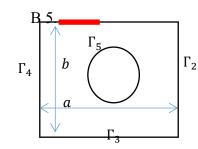

Промежуточный контроль осуществляется в конце семестра в форме зачета.

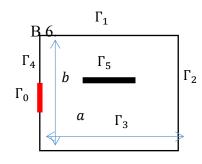

Образцы расчетно-графических заданий к лабораторным работам


1) Разработать алгоритм и компьютерную вычислительную программу для решения краевой задачи для гармонических колебаний струны методом конечных элементов с кусочно-линейной аппроксимацией; найти точное аналитическое решение, сравнить его с приближенным, исследовать сходимость решения в зависимости от частоты колебаний ω:

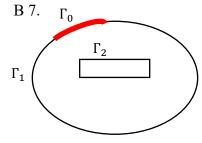
B 1.
$$u''(x) + k^2u(x) = x^2$$
, $u(0) = 1$, $u'(1) = 0$, $k = \omega/2$
B 2. $u''(x) + k^2u(x) = 2x$, $u'(0) = 1$, $u(1) = 0$, $k = \omega/3$
B 3. $u''(x) + k^2u(x) = 2x-1$, $u(0) = 2$, $u'(1) = 0$, $k = \omega/3$
B 4. $u''(x) + k^2u(x) = \frac{x^2}{2}$, $u'(0) = 1$, $u(1) = 0$, $k = \omega/4$
B 5. $u''(x) + k^2u(x) = e^x$, $u(0) = 1$, $u(1) = 0$, $k = \omega$
B 6. $u''(x) + k^2u(x) = e^{-x}$, $u'(0) = 1$, $u(1) = 0$, $k = \omega/2$
B 7. $u''(x) + k^2u(x) = x(1-x)$, $u'(0) = 1$, $u(1) = 0$, $k = \omega/2$
B 8. $u''(x) + k^2u(x) = x(1-x^2)$, $u(0) = 1$, $u'(1) = 0$, $k = \omega$
B 9. $u''(x) + k^2u(x) = x^3$, $u'(0) = 2$, $u'(1) = 0$, $k = \omega$
B 10. $u''(x) + k^2u(x) = \cos x$, $u(0) = 1$, $u'(1) = 0$, $k = \omega$

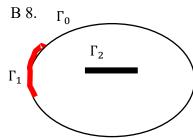

2) Разработать алгоритм и компьютерную программу для численного решения уравнения Гельмгольца $\Delta u(x,y) + k^2 u(x,y) = 0$ в области Ω (ограниченная линиями Γ_k) методом конечных элементов с триангуляцией кусочно-линейными функциями; исследовать численную сходимость решения. Граничные условия и волновые числа даны в соответствии с вариантом:



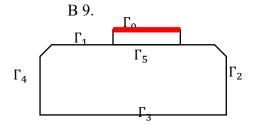

B 4.
$$\frac{\partial u}{\partial n} = \begin{cases} \frac{1}{3} & (x,y) \in \Gamma_0 \\ 0 & (x,y) \in \Gamma_1/\Gamma_0 \cup \Gamma_2 \cup \Gamma_4 \end{cases} ; \ u|_{\Gamma_3} = 0$$

$$k = \omega;$$




$$\begin{vmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} = \begin{cases} 1 & (\mathbf{x}, \mathbf{y}) \in \Gamma_0 \\ 0 & (\mathbf{x}, \mathbf{y}) \in \Gamma_1 / \Gamma_0 \cup \Gamma_2 \cup \Gamma_4 \end{cases} ; \ \mathbf{u}|_{\Gamma_3} = 0$$

$$\mathbf{k} = 2\omega;$$



$$\begin{split} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} &= \begin{cases} 1 & (\mathbf{x}, \mathbf{y}) \in \Gamma_0 \\ 0 & (\mathbf{x}, \mathbf{y}) \in \Gamma_1 / \Gamma_0 \cup \Gamma_2 \end{cases} \\ k &= 0.5\omega; \end{split}$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{n}} = \begin{cases} 1 & (\mathbf{x}, \mathbf{y}) \in \Gamma_0 \\ 0 & (\mathbf{x}, \mathbf{y}) \in \Gamma_1 / \Gamma_0 \cup \Gamma_2 \end{cases}$$
$$k = 2\omega;$$

$$\frac{\partial u}{\partial n} = \begin{cases} 1 & (x,y) \in \Gamma_0 \\ 0 & (x,y) \in \Gamma_1/\Gamma_5 \cup \Gamma_2 \cup \Gamma_4 \end{cases} ; \ u|_{\Gamma_3} = 0$$
 непрерывность u и $\partial u/\partial y$

- 3) Разработать алгоритм и компьютерную вычислительную программу для решения краевой задачи для гармонических колебаний струны методом конечных элементов с аппроксимацией полиномами Гаусса-Лежандра-Лобатто, параметры задач см. в соответствующем варианте задания 1.
- 4) В среде конечно-элементного пакета разработать проекты решения задач из задания 1 и 2. Сравнить результаты работы собственной программы и конечно-элементного пакета.

По результатам работы необходимо подготовить итоговый отчет, включающий в себя описания постановки задачи, метода решения, а также и анализа численного анализа и выводы по результатам выполнения лабораторной работы

Критерии выставления оценок.

Зачет по практике выставляется по результатам выполненных лабораторных и расчетно-графических работ (индивидуальных заданий) и текущей работы на лабораторных занятиях. Отметка «зачтено» выставляется при более, чем 80% выполнении индивидуальных заданий

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

1. Бахвалов, Н.С. Численные методы в задачах и упражнениях: учеб. пособие / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2015. — 243 с. — ISBN 978-5-9963-2980-9 - [Электронный ресурс]. — URL: https://e.lanbook.com/book/70743 (06.04.2018).

- 2. Зализняк, В. Е. Численные методы. Основы научных вычислений: учебник и практикум для академического бакалавриата / В. Е. Зализняк. 2-е изд., перераб. и доп. М.: Издательство Юрайт, 2018. 356 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-02714-3. URL: https://biblio-online.ru/book/9D9516CB-A065-4497-9062-5D8C77D8E644/chislennye-metody-osnovy-nauchnyh-vychisleniy
- 3. Голуб М. В., Фоменко С. И., Шпак А. Н. Метод спектральных конечных элементов в задачах математической физики и механики: учеб. пособие. Краснодар: Кубанский гос. ун-т, 2022.
- 4. Срочко, В.А. Численные методы. Курс лекций: учебник / В.А. Срочко.— М: Изда тельство "Лань", 2010. 208 с. ISBN 978-5-8114-1014-9. [Электронный ресурс]. URL: https://e.lanbook.com/book/378 (06.04.2018).
- 5. Ю.А. Сагдеева, С.П. Копысов, А.К. Новико. Введение в метод конечных элементов: метод. пособие. Ижевск: Изд-во "Удмуртский университет". 2011. 44с
- 6. Попонин В. Метод спектральных элементов на неструктурированной сетке в вычислительной механике. Томск.: Изд-во Томского государственного университета, 2009.— С. 143.
- 7. Огородников А.С. Моделирование в среде MatLab COMSOL 3.5a. Часть 1. Учебное пособие.-Томск: Изд-во Томского политехнического университета, 2012.— 104 с.

5.2. Периодическая литература

- 1. Журнал "Вычислительная механика сплошных сред" http://www2.icmm.ru/journal/
- 5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 2. 9EC «ZNANIUM.COM» www.znanium.com
- 3. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Springer eBooks: https://link.springer.com/
- 5. Общероссийский портал Math-Net.Ru: http://www.mathnet.ru

Ресурсы свободного доступа:

- 1. Федеральный портал "Российское образование" http://www.edu.ru/;
- 2. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 3. Образовательный портал "Учеба" http://www.ucheba.com/;

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины.

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, лабораторных занятий, позволяющих студентам в полной мере ознакомиться с понятиями и методами Комплексного анализа и навыками их применением в решении практических задач.

Важнейшим этапом является самостоятельная работа по дисциплине. Целью самостоятельной работы магистранта является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

Самостоятельная работа в ходе изучения дисциплины состоит в выполнении индивидуальных заданий, даваемых преподавателем, ведущим лабораторные занятия, подготовки теоретического материала к лабораторным занятиям, на основе конспектов лекций и учебной литературы, согласно календарному плану и подготовки теоретического материала к тестовому опросу, зачету и экзамену, согласно вопросам к экзамену.

Указания по оформлению работ:

Отчет по выполнению лабораторной работы и индивидуальных расчетнографических заданий должен быть подготовлен в соответствии с ГОСТ 7.32-2001 и содержать:

- титульный лист;
- введение;
- постановку задачи;
- краткое описание последовательного алгоритма;
- подробное описание параллельного алгоритма;
- текст разработанной программы на выбранном языке программирования;
- тестовые примеры и результаты тестирования программы: оценка ускорения и эффективности разработанного параллельного алгоритма, оптимальные размеры входных данных на которых достигается максимум ускорения при различном числе узлов вычислительной системы и др.;
 - заключение
 - список использованной литературы.

Проверка индивидуальных заданий по темам, разобранным на лабораторных занятиях, осуществляется через неделю на текущем лабораторном занятии, либо в течение недели после этого занятия на консультации.

Для разъяснения непонятных вопросов лектором и ассистентом еженедельно проводятся консультации, о времени которых группы извещаются заранее.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список задач и вопросов коллоквиума) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специаль-	Оснащенность специаль-	Перечень лицензионного
ных помещений	ных помещений	программного обеспечения
Учебные аудитории А305,	Мебель: учебная мебель	MS Windows, MS Word, MS
А307, 133, 129. для прове-	Технические средства обу-	PowerPoint
дения занятий лекционного	чения:	
типа	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	Не предусмотрено
проведения лабораторных	Технические средства обу-	
работ: 133, 149, 150.	чения: не требуются	
, ,	1 2	
Аудитории А305, 133, 150,	учебная мебель (столы,	MS Windows, MS Word, MS
148, для групповых (инди-	стулья, доска), презентаци-	PowerPoint
видуальных) консультаций	онная техника	
Аудитории А305, 133. для	учебная мебель (столы,	Не предусмотрено
текущего контроля, про-	стулья, доска)	по предјеметреме
межуточная аттестация	ступы, доски)	
Самостоятельная работа:	Кабинеты для самостоя-	MS Windows, MS Internet
102-А, а также студентче-	тельной работы, оснащен-	Explorer, Microsoft Edge
ский читальный зал биб-	ный компьютерной техни-	Explorer, wherosoft Eage
лиотеки КубГУ (к.109С) и	кой с возможностью под-	
` ` `		
зал доступа к электронным	ключения к сети «Интер-	
ресурсам и каталогам (к.	нет», программой экранно-	
A213).	го увеличения и обеспечен-	
	ный доступом в электрон-	
	ную информационно-	
	образовательную среду	
	университета:	