Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

Троректор по учебной работе, качеству образования — первый проректор

Хагуров Т.А.

«30» мая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.11 ФИЗИЧЕСКАЯ ТЕОРИЯ ФУНКЦИОНИРОВАНИЯ КОМПЬЮТЕРА

Направление подготовки 09	.03.03 Прикладная информатика
Направленность (профиль) <u>Искусст</u>	венный интеллект и машинное обучение
Программа подготовки	академическая
Форма обучения	очная
Крапификания (степень) выпуск	лика бакапави

Рабочая «ФИЗИЧЕСКАЯ программа дисциплины ТЕОРИЯ ФУНКЦИОНИРОВАНИЯ КОМПЬЮТЕРА» составлена в соответствии с Федеральным государственным образовательным стандартом высшего (ΦΓΟС BO) направлению 09.03.03 образования ПО Прикладная информатика, утвержденным приказом Министерства образования и науки Российской Федерации № 922 от 19 сентября 2017 г.

Программу составил:

Рубцов С.Е., канд. физ.-мат. наук, доцент, доцент кафедры математического моделирования КубГУ

Рабочая программа дисциплины «Физическая теория функционирования компьютера» утверждена на заседании кафедры математического моделирования протокол №11 от «22» мая 2025 г.

Заведующий кафедрой математического моделирования акад. РАН, д-р физ.-мат. наук, проф. Бабешко В.А.

Рабочая программа дисциплины «Физическая теория функционирования компьютера» обсуждена на заседании кафедры анализа данных и интеллектуальных информационных систем протокол № 13от «20» мая 2025г.

Заведующий кафедрой анализа данных и интеллектуальных информационных систем доктор техн. наук, доцент Коваленко А.В.

подпись

подпись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2025 г.

Председатель УМК факультета доктор технических наук, доцент Коваленко А.В.

Рецензенты:

Телятников И.С., канд. физ.-мат. наук, научный сотрудник лаборатории математики и механики Южного научного центра РАН

Гаркуша О.В., канд. физ.-мат. наук, доцент кафедры информационных технологий КубГУ

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Дисциплина «Физическая теория функционирования компьютера» ставит своей целью изучение физических законов, положенных в основу функционирования базовых элементов современных ЭВМ, их устройство и взаимодействие. Цели дисциплины соответствуют формируемой компетенции ОПК-1.

1.2 Задачи дисциплины

Основные задачи дисциплины: усвоение основных идей, лежащих в основе построения современных ЭВМ; формирование представлений о направлениях развития компьютерной техники; углубление общего уровня профессиональных знаний.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Физическая теория функционирования компьютера» относится к вариативной части профессионального цикла подготовки. Место курса в профессиональной подготовке выпускника определяется необходимостью развития современной компьютерной техники и новейших информационных технологий.

Данный курс наиболее тесно связан с дисциплинами: «Методы математической физики», «Концепции современного естествознания».

Необходимым требованием к «входным» знаниям, умениям и опыту деятельности обучающегося при освоении данной дисциплины, приобретенным в результате изучения предшествующих дисциплин является освоение курсов «Вычислительные системы, сети и телекоммуникации», «Пакеты прикладных программ».

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных компетенций (ОПК):

Программа определяет общий объем знаний, позволяющий сформировать у студента целостное представление о физических процессах и явлениях, происходящих в компьютере, принципах построения современных ЭВМ и дальнейших путей их развития. Вместе с тем, изложение ряда разделов курса неизбежно имеет, в основном, информационный характер.

В результате освоения курса «Физическая теория функционирования компьютера» обучающийся овладевает следующей компетенцией:

ОПК-1	Способен применять фундаментальные знания, полученные в области	
	математических и (или) естественных наук, и использовать их в	
	профессиональной деятельности	
Знать	(40.011 А/02.5 Зн.2) Отечественный и международный опыт в методах	
	математического анализа и моделирования, теоретического и	
	экспериментального исследования, и использовать его в профессиональной	
	деятельности	
Уметь	(06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны	
	проектирования программного обеспечения, применять естественно-научные и	
	общеинженерные знания, методы математического анализа и моделирования,	
	теоретического и экспериментального исследования в профессиональной	
	деятельности	
Владеть	ь (40.011 А/02.5 Др.2) Деятельность, направленная на решение аналитических	
	задач, предполагающих выбор и многообразие актуальных способов решения	
	задач, с использованием естественно-научные и общеинженерных знаний,	
	методов математического анализа и моделирования, теоретического и	
	экспериментального исследования в профессиональной деятельности	

Процесс освоения дисциплины «Физическая теория функционирования компьютера» направлен на получения необходимого объема знаний, отвечающих требованиям ФГОС ВО и обеспечивающих успешное ведение бакалавром научно-исследовательской деятельности, владение методологией формулирования прикладных задач, а также на выработку умений применять на практике методы прикладной математики и информатики.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 академических часа (из них 50 аудиторных). Курс «Физическая теория функционирования компьютера» состоит из лекционных и занятий, сопровождаемых регулярной индивидуальной работой преподавателя со студентами в процессе самостоятельной работы. Программой дисциплины предусмотрены 34 часов лекционных и 16 часов лабораторных занятий, а также 33,8 часов самостоятельной работы. В конце семестра проводится зачет.

Вид	Всего часов (5 семестр)		
	,		
Аудиторные занятия (всег	0)	54,2	
	В том числе:		
Занятия лекционного типа	Занятия лекционного типа		
Занятия семинарского типа	(семинары, практические занятия)	_	
Лабораторные занятия		16	
	Иная контактная работа:		
Контроль самостоятельной работы 4			
Промежуточная аттестация	Промежуточная аттестация (ИКР)		
Самостоятельная работа			
Самостоятельная работа (всего) 53,8			
В том числе:			
Проработка учебного (теоре	тического) материала	30	
Подготовка к текущему кон	тролю	20	
Подготовка к промежуточно	ой аттестации	3,8	
Контроль: зачет			
Общая трудоемкость	час.	108	
	в том числе контактная работа	54,2	
	зач. ед	3	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

		Количество часов			
No	Наименование разделов	Всего	Аудиторная		Внеаудиторная
715			раб	ота	работа
			Л	Лб	CPC
1	Введение (сведения из общего курса физики)		4	6	6
2	Основы теории электропроводимости металлов и	16	6	4	6
	полупроводников	10	O	4	6
3	3 Элементы физики полупроводников		6	4	4
4	Транзисторы		6	2	6
5	Элементная база современных ЭВМ, системный	10	4	2	4
3	блок	10	4	2	4

6	6 Полупроводниковые запоминающие устройства				6
7 Внешняя память в ЭВМ.		8	4	_	4
8	8 Отображение информации в ЭВМ		2		4
9 Обзор изученного материала и проведение зачета			_	2	3,8
Контроль самостоятельной работы (КСР)		4	_	_	_
	Промежуточная аттестация (ИКР)	0,2	_		_
	Итого по дисциплине:	108	34	16	53,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

<u>•</u> ела	Наименование	C	Форма
№ азле.	Наименование раздела	Содержание раздела	текущего
-			контроля
1	Введение	Основные сведения из общего курса физики. Механика: кинематика материальной точки, законы Ньютона, закон всемирного тяготения, импульс, энергия, моменты импульса и силы, законы сохранения. Электромагнетизм: электрическое поле в вакууме и в диэлектрике, теорема Гаусса, потенциал, проводники в электрическом поле, электроемкость, конденсаторы, электрический ток, законы Ома, закон Джоуля — Ленца, магнитное поле в вакууме и в магнетиках, проводники и заряженные частицы в магнитном поле, электромагнитная индукция, уравнения Максвелла.	Опрос по результатам индивидуаль- ного задания
2	_	Краткие сведения из квантовой механики: волны де Бройля, неравенства Гейзенберга, волновая функция. Спектр электронных состояний в атомах, молекулах и кристаллах. Разрешенные и запрещенные уровни энергии.	результатам индивидуаль-
3	Элементы физики полу- проводников	Движение свободных носителей заряда в полупроводниках – диффузия и дрейф. Уравнение непрерывности. Электроннодырочные переходы и их характеристики. Барьерная и диффузионная емкости. ПП диоды. Контакт металл-полупроводник. Диоды Шоттки. Быстродействие	Опрос по результатам индивидуального задания
4	Транзисторы	Взаимодействие двух близкорасположенных электроннодырочных переходов. Биполярные транзисторы. Режимы работы и схемы включения биполярных транзисторов. Полевые транзисторы. Flash-память.	
5	менных ЭВМ,	± • • • • • • • • • • • • • • • • • • •	Опрос по результатам индивидуального задания
6	Полупровод- никовые запо- минающие	Триггер как элемент памяти. Оперативные запоминающие устройства (ОЗУ). Постоянное запоминающее устройство (ПЗУ). Ячейка памяти и ее адрес. Статическое оперативное	

	устройства	запоминающее устройство (СОЗУ).	ного задания
7	Внешняя память в ЭВМ.	Принципы записи и считывания информации на магнитных носителях. Типы магнитных носителей и магнитных головок. Магнитооптика. Оптическая память.	результатам индивидуаль- ного задания
8	информации в ЭВМ	Принципы отображения визуальной информации. Принципы отображения информации на твердом носителе — принтеры и плоттеры. Матричные, струйные, лазерные и светодиодные принтеры. Цветная печать. Алфавитно-цифровые и графические (аналоговые) мониторы. Электронно-лучевая трубка. Формирование изображения в ЭЛТ, строчная и кадровая развертки. Отображение информации о цвете. Плоские мониторы — жидкокристаллические (LCD) дисплеи, плазменные (газоразрядные PDP) мониторы, дисплеи с излучающим полем (FED), электронная бумага.	Опрос по результатам индивидуального задания

Раздел 1. Введение.

Механика: Путь, траектория, перемещение. Кинематические элементы движения: скорость, ускорение, касательное и нормальное ускорения.

Инерциальные системы отсчета. Первый закон Ньютона. Понятие о силе и массе. Второй закон Ньютона. Единицы измерения и размерности физических величин. Третий закон Ньютона. Закон всемирного тяготения. Импульс материальной точки и силы. Работа силы. Поле сил. Силы консервативные и неконсервативные, потенциальное поле сил. Кинетическая энергия. Потенциальная энергия. Соотношение между силой и потенциальной энергией. Полная механическая энергия. Внутренняя энергия, энергия теплового движения молекул. Понятие момента вектора. Момент импульса и силы. Законы сохранения.

Электромагнетизм: Закон взаимодействия электрических зарядов. Понятие об электрическом поле. Напряженность электрического поля. Теорема Гаусса. Работа в электростатическом поле. Потенциал. Разность потенциалов и напряженность поля. Эквипотенциальные поверхности. Поляризация диэлектриков. Напряженность электрического поля внутри диэлектрика. Электрическое смещение в диэлектрике. Равновесие зарядов на проводнике. Проводник во внешнем электрическом поле. Электроемкость, конденсаторы. Соединение конденсаторов. Электродвижущая сила. Закон Ома, сопротивление проводников. Закон Ома для неоднородного участка цепи. Закон Джоуля — Ленца. Взаимодействие токов, магнитная индукция. Линии индукции магнитного поля. Закон Био — Савара. Циркуляция и поток вектора магнитной индукции. Намагничивание сред. Напряженность магнитного поля. Магнитная индукция в магнетике. Действие магнитного поля на токи и заряды Силы Ампера и Лоренца. Явление электромагнитной индукции, правило Ленца. Электродвижущая сила индукции. Самоиндукция, индуктивность. Уравнения Максвелла.

Раздел 2. Основы теории электропроводимости металлов и полупроводников.

Краткие сведения из квантовой механики. Спектр электронных состояний в атомах, молекулах и кристаллах. Разрешенные и запрещенные уровни энергии. Электропроводность твердых тел. Модель электронного газа. Квантовая модель электропроводимости. Энергетические зоны и уровень Ферми. Принципы разделения веществ на проводники (металлы), полупроводники и изоляторы (диэлектрики). Собственная и примесная проводимость полупроводников.

Раздел 3. Элементы физики полупроводников. Полупроводниковые диоды.

Движение свободных носителей заряда в полупроводниках — диффузия и дрейф. Уравнение непрерывности. Электронно-дырочные переходы и их характеристики. Барьерная и диффузионная емкости. Контакт металл-полупроводник. Омический переход. Гетеропереходы. ПП диоды.

Раздел 4. Биполярные и полевые транзисторы.

Взаимодействие двух близкорасположенных электронно-дырочных переходов. Биполярные транзисторы. Схемы включения. Полевые транзисторы. МОП (МДП) структуры с изолированными каналами и их быстродействие.

Раздел 5. Элементная база современных ЭВМ, системный блок.

Реализация элементарных логических функций. Позитивная и негативная логики. Основные характеристики логических элементов. Сумматор.

Раздел 6. Полупроводниковые запоминающие устройства.

Триггер как элемент памяти. Ячейка памяти и ее адрес. Оперативное запоминающее устройство (ОЗУ). Постоянное запоминающее устройство (ПЗУ).

Раздел 7. Внешняя память в ЭВМ.

Магнетизм. Магнитные материалы: диамагнетики, парамагнетики, ферромагнетики антиферромагнетики, ферримагнетики. Кривая намагниченности ферромагнетиков. Температуры Кюри и Нееля. Доменная структура. Принципы записи и считывания информации на магнитных носителях. Магнитооптика. Оптическая память. CD и DVD диски. Flash-память.

Раздел 8. Отображение информации в ЭВМ.

Принципы отображения информации на твердом носителе – принтеры и плоттеры. Матричные, струйные, лазерные и светодиодные принтеры. Цветная печать. Принципы отображения визуальной информации. Алфавитно-цифровые и графические (аналоговые) мониторы. Электронно-лучевая трубка. Плоские мониторы – жидкокристаллические (LCD) дисплеи, плазменные (газоразрядные PDP) мониторы, дисплеи с излучающим полем (FED). Электронная бумага.

2.3.2 Занятия семинарского типа (практические занятия)

Занятия семинарского типа занятия не предусмотрены.

2.3.3 Лабораторные занятия.

No॒	No	Тематика лабораторных занятий	Форма текущего
занятия	раздела	1 1	контроля
1.	1	Механика: Скорость и ускорение. Второй закон Ньютона. Законы сохранения импульса и энергии.	Отчет по ЛР
2.	1	Электрический ток. Законы Ома. Закон Джоуля – Ленца.	Отчет по ЛР
3.	2	Электроны. Волны де Бройля. Соотношение неопределенности. Волновая функция.	Отчет по ЛР
4.	2	Атом водорода. Спектр электронных состояний атома водорода. Энергетические состояния электронов в многоэлектронных атомах. Квантовые числа. Электронные оболочки.	Отчет по ЛР,
5.	2	Элементы зонной теории: металлы, полупроводники и диэлектрики. Уровень Ферми. Акцепторные и донорные примеси. Свободные носители заряда.	Отчет по ЛР, защита реферата
6.	3	Движение свободных носителей заряда в полупроводниках – диффузия и дрейф. p-n-переход. Полупроводниковые приборы.	Отчет по ЛР, защита реферата
7.	4	Взаимодействие двух близкорасположенных электроннодырочных переходов. Транзисторы.	Отчет по ЛР защита реферата
8.	5	Физическое представление информации в ЭВМ. Двоичный	Отчет по ЛР
		код. Реализация элементарных логических функций.	защита реферата
9.		Итоговое занятие. Обзор пройденного материала.	зачет

2.3.4 Примерная тематика курсовых работ

Учебный план не предусматривает курсовых работ по дисциплине " Физическая теория функционирования компьютера "

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

No	Вил СРС	Перечень учебно-методического обеспечения дисциплины по		
31=	Вид ст с	выполнению самостоятельной работы		
1	Изученние теоретического	Методические указания по организации самостоятельной		
	материала	работы студентов, утвержденные кафедрой математического		
	моделирования, протокол №1 от 30.08.2018			

Целью самостоятельной работы является углубление знаний, полученных в результате аудиторных занятий, выработка навыков индивидуальной работы, закрепление навыков, сформированных во время практических занятий.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки бакалавров программа по дисциплине «Физическая теория функционирования компьютера» предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; разбор конкретных ситуаций.

При изучении курса «Физическая теория функционирования компьютера» необходимо активизировать остаточные знания студентов по таким математическим дисциплинам, как математический анализ и дифференциальные уравнения.

Компьютерные технологии позволяют проводить сравнительный анализ научных исследований по данной проблеме, являясь средством разнопланового отображения алгоритмов и демонстрационного материала.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и бакалаврами во время лекций и анализа результатов самостоятельной работы. Это обусловлено тем, что в процессе моделирования физических явлений часто встречаются задачи, для которых единых подходов не существует. Каждая конкретная задача при своем исследовании имеет множество подходов, а это требует разбора и оценки целой совокупности конкретных ситуаций. Особенно этот подход широко используется при определении адекватности математической модели, результатам физических экспериментов.

Цель *пекции* — обзор понятий, категорий и законов физики, знакомство с проблемами и методами физических исследований.

При чтении лекционного курса представляется целесообразным обратить внимание на требуемые математические знания и умения. Необходимо отметить практическую значимость соответствующих проблем, обратить внимание на требования, предъявляемые к современному специалисту — прикладному математику, пояснить необходимость использования полученных знаний при изучении последующих специальных курсов.

Цель лабораторного занятия – научить применять теоретические знания и

математические навыки при решении и исследовании конкретных физических задач.

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Применяемая технология коллективного взаимодействия в виде организованного диалога, реализует коллективный способ обучения.

Групповые индивидуальные задания формируют навыки исследовательской работы в коллективе.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и решения индивидуальных задач повышенной сложности.

Код и	Соответствие уровней освоения компетенции планируемым результатам обучения и			
наименование	критериям их оценивания			
компетенции	пороговый	базовый	продвинутый	
ОПК-1.	Бакалавр показывает не	Бакалавр показывает	Бакалавр показывает не только	
	достаточный уровень	достаточный уровень	высокий уровень теоретических	
	знаний учебного и	профессиональных	знаний по дисциплине, свободно	
	лекционного материала,	знаний, но допускает	оперирует понятиями, ка-	
	не в полном объеме	некоторые неточности и	тегориями, принципами и	
	владеет практическими	погрешности. Ответ	законами физики, но и умеет	
	навыками, чувствует себя	построен достаточно	анализировать физические	
	неуверенно при анализе	логично, грамотно	явления протекающие в	
	физических явлений	используются физические	основных узлах компьютера и	
	протекающих в основных	и компьютерные термины,	периферийных устройств,	
	узлах компьютера и	но в ответе присутствуют	увязывать знания, полученные	
	периферийных устройств.	незначительные ошибки.	при изучении различных	
	В ответе не всегда	Вопросы, задаваемые	дисциплин. Ответ, построен	
	присутствует логика,	преподавателем, не вы-	логично, материал излагается	
	аргументы привлекаются	зывают существенных	четко, ясно, аргументировано,	
	недостаточно веские. На	затруднений.	грамотно используются	
	поставленные вопросы		компьютерные и физические	
	затрудняется с ответами,		термины. На вопросы отвечает	
	показывает недостаточно		уверенно, по существу.	
	глубокие знания.			

Фонд оценочных средств дисциплины состоит из средств текущего контроля и итоговой аттестации (зачета).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы.

Аттестация по учебной дисциплине проводится в виде зачета.

Оценка успеваемости осуществляется по результатам: защиты рефератов, устного опроса при сдаче выполненных самостоятельных заданий, ответов на зачете.

Перечень вопросов, выносимых на зачет

- 1. Кинематика: путь, траектория, перемещение, скорость, ускорение, касательное и нормальное ускорения.
- 2. Динамика: Законы Ньютона. Принцип относительности Галилея. Закон всемирного тяготения. Импульс. Работа силы. Кинетическая энергия. Потенциальное поле сил. Потенциальная энергия. Соотношение между силой и потенциальной энергией. Закон сохранения энергии. Энергия теплового движения молекул. Закон сохранения импульса.
- 3. Электрическое поле в вакууме: Закон взаимодействия электрических зарядов. Напряженность электрического поля. Теорема Гаусса. Работа в электростатическом поле. Потенциал. Связь потенциала и напряженности поля. Эквипотенциальные поверхности.
- 4. Электрическое поле в диэлектрике: Поляризация диэлектриков. Напряженность электрического поля внутри диэлектрика. Электрическое смещение.
- 5. Проводник в электростатическом поле: Равновесие зарядов на проводнике. Проводник во внешнем электрическом поле. Электроемкость, конденсаторы. Соединение конденсаторов.
- 6. Постоянный электрический ток: Электродвижущая сила. Закон Ома, сопротивление проводников. Закон Ома для неоднородного участка цепи. Плотность тока. Закон Джоуля Ленца. Разветвленные цепи. Правила Кирхгофа. КПД.
- 7. Магнитное поле в вакууме: Взаимодействие токов, магнитная индукция. Линии индукции магнитного поля. Закон Био Савара. Циркуляция и поток вектора магнитной индукции.
- 8. Магнитное поле в веществе: Намагничивание сред. Напряженность магнитного поля. Магнитная индукция в магнетике. Магнитные свойства веществ. Диамагнетизм, парамагнетизм, ферромагнетизм. Действие магнитного поля на токи и заряды Силы Ампера и Лоренца.
- 9. Электромагнитная индукция: Явление электромагнитной индукции, правило Ленца. Электродвижущая сила индукции. Самоиндукция, индуктивность. Ток при замыкании и размыкании цепи.
- 10. Переменный ток: ток в цепи с сопротивлением, ток в цепи с индуктивностью, ток в цепи с емкостью, общий случай.
- 11. Уравнения Максвелла в интегральной и дифференциальной формах, физический смысл.
- 12. Краткие сведения из квантовой механики: Электроны. Волны де Бройля. Соотношение неопределенности. Волновая функция.
- 13. Спектр электронных состояний: Атом водорода. Энергетические состояния электронов в многоэлектронных атомах. Квантовые числа. Электронные оболочки. Виды химических связей
- 14. Квантовая модель электропроводимости. Модель электронного газа. Понятие о зонной структуре твердых тел. Энергия Ферми. Распределение электронов по энергетическим зонам.
- 15. Явление проводимости в полупроводниках: Собственная проводимость. Носители заряда в полупроводнике. Уровень Ферми в истинном полупроводнике.
- 16. Явление проводимости в полупроводниках: Легирование полупроводников. Полупроводники *n* и *p*-типа. Положение уровня Ферми в полупроводниках *n* и *p*-типа.
- 17. Движение свободных носителей заряда в полупроводнике: Дрейфовый ток. Диффузионный ток.

- 18. Контактные явления на границе двух полупроводников. Электронно-дырочный (p-n) переход.
- 19. Вентильные свойства p-n перехода. Инжекция и экстракция носителей заряда в p-n переходе.
- 20. Вольтамперная характеристика p-n перехода. Виды пробоев (туннельный, лавинный, тепловой, поверхностный) Емкость p-n перехода.
- 21. Другие виды электрических переходов: Переходы металл-полупроводник, омический контакт. Гетеропереходы.
- 22. Биполярный транзистор: Принцип работы биполярного транзистора. Виды биполярных транзисторов.
- 23. Режимы работы и схемы включения биполярных транзисторов (с общей базой, с общим эмиттером, с общим коллектором).
- 24. Полевые транзисторы: Принцип работы полевых транзисторов. Виды полевых транзисторов. Транзистор с плавающим затвором (флеш-память).
- 25. Реализация логических функций: Представление логических нулей и единиц Положительная и отрицательная логики. Интегральные логические элементы (РТЛ, ТТЛ).
- 26. Триггеры.
- 27. Внутренняя память (ОЗУ, ПЗУ). Сумматор.
- 28. Внешняя память: Диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики, ферримагнетики. Доменные структуры. Магнитные ЗУ. Оптические ЗУ.
- 29. Вывод визуальной информации Светодиоды. Мониторы: электронно-лучевая трубка, автоэлектронная эмиссия, плазменный экран, жидкокристаллический экран (жидкие кристаллы), электронная бумага.

Примерный перечень тем рефератов.

- 1. Многоэмиттерные транзисторы. Полевые транзисторы. МОП-структуры с изолированным затвором и их быстродействие.
- 2. Магнетизм. Магнитные материалы: диамагнетики, парамагнетики, ферромагнетики. Кривая намагниченности ферромагнетиков. Температура Кюри. Доменная структура.
- 3. Электронно-лучевая трубка (ЭЛТ). Физические процессы в ЭЛТ: термоэлектронная эмиссия, отклонение, фокусировка, люминесценция.
- 4. Основные направления развития интегральных схем. Перспективы развития микро- и наноэлектроники.
- 5. Принципы проектирования интегральных микросхем и микропроцессоров.
- 6. Архитектура фон Неймана и обобщенная структура системного блока: микропроцессор (МП), память, шина. Основные характеристики микропроцессора (МП): технология изготовления, напряжение питания, объем адресуемой памяти, разрядность шины данных, тактовая частота, разрядность регистров. Цикл МП и его фазы.
- 7. Взаимодействие микропроцессора (МП) и оперативного запоминающего устройства (ОЗУ). Способы обмена информацией между МП и внешними устройствами: синхронный, асинхронный и полусинхронный. Режимы работы процессора: прерывание, прямой доступ к памяти, ожидание.
- 8. Шины и их основные характеристики (ISA, VESA, AGP, PCI, PCI-E). Мультиплексирование. Северный и южный мост.
- 9. Специализированные микропроцессоры. Мультипроцессорные и многоядерные конфигурации. Супер ЭВМ.
- 10. Общая организация памяти. Характеристики памяти: быстродействие, потребляемая мощность, возможность доступа, стоимость, емкость.
- 11. Устройство элемента динамического ОЗУ. Устройство элемента статического ОЗУ.
- 12. Энергозависимая и энергонезависимая память. Динамическое оперативное запоминающее устройство (ДОЗУ). Принципы работы и методы регенерации. Применение ДОЗУ в ЭВМ.

- 13. Постоянное запоминающее устройство (ПЗУ). Элементы на основе структур с плавающим затвором. Стирание информации. Применение ПЗУ в ЭВМ. Сравнительные характеристики и перспективы развития ПЗУ. Флеш-память.
- 14. Роль и место различных типов памяти в ЭВМ. Принципы организации памяти. Направления развития запоминающих устройств. Перспективные технологии устройств памяти.
- 15. Определение элемента памяти. Бистабильность. Триггеры.
- 16. Транзисторы с МНОП-структурой. Транзисторы с плавающим затвором.
- 17. Функции интерфейса ввода-вывода. Конструктивная совместимость интерфейсов. Устройство типичного интерфейса. Методы доступа FIFO и LIFO.
- 18. Интерфейс последовательной связи. Дуплексная и полудуплексная связь. Асинхронная и синхронная связь. Типы универсальных и специализированных интерфейсов. Скорость передачи информации и электрические параметры.
- Модем. Амплитудная, частотная и фазовая модуляция сигнала. Передача данных по телефонным линиям. Скорость передачи данных.
- 19. Принципы хранения, записи и считывания информации на магнитных носителях. Типы магнитных носителей и магнитных головок. Продольная и поперечная запись информации. Предельная плотность записи и скорость доступа к записанной информации. Двойной антиферромагнитный слой. Вертикальная запись информации на магнитных дисках.
- 20. Организация информации на магнитных дисках. Головки, дорожки, секторы, цилиндры. Структура рабочего слоя магнитных дисков. Физические факторы, ограничивающие плотность записи.
- 21. Использование оптических явлений для повышения плотности записи информации на магнитных носителях. Магнитооптика.
- 22. Оптическая память. Предельная плотность записи информации в оптике. Кодирование
- 23. информации на оптическом компакт-диске. CD и DVD технологии. Blu-Ray и HD-DVD технологии. Устройство записываемых и перезаписываемых компакт-дисков (CD-R, CD-RW).
- 24. Повышение предельной плотности записи информации. Многослойные оптические диски. Трехмерная оптическая память: фоторефрактивные и фотохромные материалы.
- 25. Принципы отображения визуальной информации. Алфавитно-цифровые и графические (аналоговые) мониторы. Формирование изображения в ЭЛТ, строчная (чересстрочная и прогрессивная) и кадровая развертки. Отображение цвета.
- 26. Плоские мониторы: жидкокристаллические дисплеи (LCD), плазменные (газоразрядные, PDP) мониторы, дисплеи на основе автоэлектронной эмиссии (FED), OLED-дисплеи, AMOLED-дисплеи.
- 27. Ввод и вывод информации в ЭВМ. Цифро-аналоговое и аналого-цифровое преобразование. Принципы реализации. Разрядность и погрешности ЦАП и АЦП. Понятие о цифровом методе хранения и передачи аналоговой информации.
- 28. Ввод оптического изображения в ЭВМ: приборы с зарядовой связью (ПЗС). Принцип действия ПЗС-камеры.
- 29. Принципы отображения информации на твердых носителях принтеры и плоттеры. Алфавитно-цифровые и графические принтеры. Матричные, струйные, лазерные и светодиодные принтеры. Цветная печать.
- 30. Методы кодирования информации: амплитудная, фазовая и частотная модуляция.
- 31. Предельные размеры, быстродействие и энергозатраты. Нанотехнологии и новые материалы.
- 32. Вычисления в «классических» и «квантовых» компьютерах. Биты и кубиты. «Квантовые» алгоритмы.
- 33. Общая схема квантового компьютера. Возможности и перспективы применения квантовых компьютеров.

- 34. Построение квантового компьютера. Когерентность состояний. Особенности «квантовых» вычислений. Разрушение когерентности как источник ошибок при «квантовых» вычислениях и их коррекция.
- 35. Особенности оптических цифровых устройств. Возможности и перспективы оптического компьютера.
- 36. Перспективные направления развития микро- и наноэлектроники.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Бурбаева, Н.В. Основы полупроводниковой электроники. М.: Физматлит, 2012. 312 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/5261.
- 2. Савельев, И.В. Курс общей физики. В 5-и тт. Том 5. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. СПб.: Лань, 2011. 384 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/708.
- 3. Старосельский, В.И. Физика **полупроводн**иковых приборов микроэлектроники. М.: Юрайт, 2016. 463 с.

5.2 Дополнительная литература:

- 1. Грундман, М. Основы физики **полупроводн**иков / М. Грундман. М.: ФИЗМАТЛИТ, 2012. 771 с.
- 2. Бурбаева, Н.В. Сборник задач по полупроводниковой электронике. / Н.В. Бурбаева, Т.С. Днепровская. М.: ФИЗМАТЛИТ, 2004. 168 с.
- 3. Алешкевич, В.А. Курс общей физики. Механика / В.А. Алешкевич, Л.Г. Деденко, В.А. Караваев. М: Физматлит, 2011. 469 с. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/2384.

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

5.5. Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

5.6. Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

5.7. Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 11. Служба тематических толковых словарей http://www.glossary.ru/;
- 12. Словари и энциклопедии http://dic.academic.ru/;
- 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

5.8. Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал и практических занятий, на которых студенты применяют полученные теоретические знания к решению конкретных задач. Уровень усвоения теоретического материала проверяется посредством опроса по основным вопросам темы и результатам выполнения индивидуальных и групповых практических заданий.

При изучении курса «Физическая теория функционирования компьютера» необходимо активизировать остаточные знания студентов по таким дисциплинам, как физика и архитектура компьютеров.

Необходимо отметить практическую значимость соответствующих проблем, обратить внимание на требования, предъявляемые к современному специалисту — прикладному математику, пояснить необходимость использования полученных знаний при изучении последующих специальных курсов.

Важнейшим этапом курса является самостоятельная работа по дисциплине.

Целью самостоятельной работы является углубление знаний, полученных в результате аудиторных занятий, выработка навыков индивидуальной работы, закрепление навыков, сформированных во время практических занятий.

Разделы дисциплины, выносимые на самостоятельное изучение

- 1. Технологии создания ИС, БИС и СБИС
- 2. Выполнение логических операций на базе полупроводниковых приборов.
- 3. Аналоговая и цифровая обработка информации.
- 4. Нейросетевые архитектуры компьютеров.
- 5. Параллельные архитектуры компьютеров.
- 6. Сетевые технологии. Топология. Виды линий связи. Основы передачи сигналов по линиям связи

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

№	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные	Лекционная аудитория, оснащенная презентационной техникой
	занятия	(проектор, экран, компьютер/ноутбук), соответствующим
		программным обеспечением, а также необходимой мебелью
		(доска, столы, стулья).
		(аудитории: 129, 131, 133, А305, А307).
2.	Лабораторные	Компьютерный класс, укомплектованный компьютерами с
	занятия	лицензионным программным обеспечением, необходимой
		мебелью (доска, столы, стулья).
		(аудитории: 101, 102, 106, 106а, 105/1, 107(2), 107(3), 107(5),
		A301).
3.	Групповые	Аудитория для семинарских занятий, групповых и
	(индивидуальные)	индивидуальных консультаций, укомплектованные необходимой
	консультации	мебелью (доска, столы, стулья).
		(аудитории: 129, 131).
4.	Текущий	Аудитория для семинарских занятий, текущего контроля и
	контроль,	промежуточной аттестации, укомплектованная необходимой
	промежуточная	мебелью (доска, столы, стулья) (аудитории: 129, 131, 133, А305,
	аттестация	А307, 147, 148, 149, 150, 100С, А301б, А512), компьютерами с
		лицензионным программным обеспечением и выходом в интернет
	~	(106, 106a, A301)
5.	Самостоятельная	Кабинет для самостоятельной работы, оснащенный компьютерной
	работа	техникой с возможностью подключения к сети «Интернет»,
		программой экранного увеличения, обеспеченный доступом в
		электронную информационно-образовательную среду

No	№ Вид работ	Материально-техническое обеспечение дисциплины и
31≥	Бид расот	оснащенность
		университета, необходимой мебелью (столы, стулья).
		(Аудитория 102а, читальный зал).

Компьютерная поддержка учебного процесса по направлению 09.03.03 Прикладная информатика обеспечивается практически по всем дисциплинам. Факультет компьютерных технологий и прикладной математики, оснащен компьютерными классами, установлена локальная сеть, все компьютеры факультета подключены к сети Интернет. Студентам доступны современные ПЭВМ, современное лицензионное программное обеспечение.