Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

nodnues

«30» мая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

К.М.02.02. «Модели искусственного интеллекта»

Направление подготовки 02.03.03 <u>Математическое обеспечение и</u> администрирование информационных систем

Направленность (профиль) Технологии разработки программных систем

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины «Модели искусственного интеллекта» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.03Математическое обеспечение и администрирование информационных систем.

Программу составил(и):

Костенко Константин Иванович доцент кафедры математического моделирования, кандидат физ.-мат. наук, доцент

Рабочая программа дисциплины «Системы искусственного интеллекта» утверждена на заседании кафедры математического моделирования протокол № 11 от «22» мая 2025 г.

Заведующий кафедрой (разработчика) академик РАН, доктор физ.-мат. наук, проф. В. А. Бабешко

подпис

Рабочая программа обсуждена на заседании кафедры информационных технологий

протокол №16 от «14» мая 2025 г.

Заведующий кафедрой (выпускающей) кандидат физ.-мат. наук, доцент В. В. Подколзин

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики

протокол № 4 от «23» мая 2025 г.

Председатель УМК факультета доктор технических

наук, доцент А. В. Коваленко

подпись

Рецензенты: Левицкий Б.Е., директор РЦКС КубГУ Белкина Н.Н., Мегафон, Эксперт

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Дисциплина «Модели искусственного интеллекта» изучается в соответствии с Федеральным Государственным образовательным стандартом высшего образования РФ и является одной из базовых дисциплин, изучаемых студентами специальности 02.03.03 Математическое обеспечение и администрирование информационных систем.

Целями курса является получение представлений о современных технологиях представления и обработки знаний в информационных системах, навыков структуризации предметных и профессиональных знаний, формирования полей предметных знаний и применения знаний в решении задач профессиональной деятельности. Технологиям разработки, классификации и реализации интеллектуальных программных систем.

1.2 Задачи дисциплины

Задачами изучения дисциплины являются формирование устойчивых представлений о содержании систем предметных и профессиональных знаний, составляющих учебную дисциплину. Требованием к «выходным» предметным и профессиональным знаниям является владение технологиями алгоритмизации и алгоритмического мышления, знание фундаментальные алгоритмических, алгебраических и логических моделей, навыки применения формализованных математических языков для описания свойств и знаний в различных областях

1.3 Место дисциплины (модуля) в структуре образовательной программы

Данному курсу предшествуют дисциплины Б1.О.11 — Фундаментальные дискретные модели и Б1.О.28— Базы данных. Курс поддерживает изучение дисциплины Б1.Щ.10 Системный анализ и принятие решений.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Процесс изучения дисциплины направлен на формирование компетенций: ИД-1.ПК-1; ИД-1.ПК-1; ИД-2.ПК-1; ИД-1.ПК-2; ИД-3.ПК-2; ИД-1.ПК-5; ИД-2.ПК-5; ИД-1.ПК-6; ИД-2.ПК-6; ИД-3.ПК-6; ИД-1.ПК-7; ИД-2.ПК-7; ИД-3.ПК-7

- ПК-1 Имеет практический опыт научно-исследовательской деятельности в области построения математических моделей, программирования и информационных технологий
- **Знать** Знает методологию формулирования и решения стандартных задач в конкретной проблемной области
- Уметь Обладает навыками и опытом формулирования и решения стандартных задач в конкретной проблемной области Ограничений
- **Владеть** Владеет технологиями навыками формулирования и решения стандартных задач в конкретной проблемной области ограничений
- ПК-2 Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем, определять структуру программного обеспечения, методы и средства его проектирования на основе требований с учетом существующих ограничений

Знать

Знает концепцию и архитектуру программной системы, ее функциональные возможности и логику работы, делает выбор средств проектирования и реализации на основе требований с учетом существующих ограничений

Методы анализа и обобщения отечественного и международного опыта на основе существующих методов в конкретной области профессиональной деятельности

Методы и средства планирования и организации исследований и разработок в конкретной области профессиональной деятельности

Методы проведения экспериментов и наблюдений, обобщения и обработки информации в конкретной области профессиональной деятельности

Уметь

Оформлять результаты научно-исследовательских и опытно-конструкторских работ

Применять существующие методы анализа научно-технической информации в конкретной области профессиональной деятельности

Владеть

Проектирование структур данных при решении задач в конкретной области профессиональной деятельности

ПК-5 Способен использовать основные концептуальные положения функционального, логического, объектно-ориентированного и визуального направлений программирования, методы, способы и средства разработки программ в рамках этих направлений

Знать

Принципы построения архитектуры программного обеспечения и виды архитектуры программного обеспечения, современные методы разработки и реализации конкретных алгоритмов математических моделей

Типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Возможности ИС, реализующей алгоритмы математических моделей

Методы анализа и обобщения отечественного и международного опыта в области разработки и реализации алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач математического моделирования на базе языков программирования и пакетов прикладных программ моделирования

Уметь

Использовать существующие типовые решения и шаблоны, современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Применять методы и средства проектирования программного обеспечения, структур данных, баз данных, программных интерфейсов при реализации конкретных алгоритмов математических моделей

- **Владеть** Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в области знаний алгоритмизации математических моделей на базе языков программирования и пакетов прикладных программ моделирования
- ПК-6 Использует современные инструментальные средства разработки баз данных, прикладного программного обеспечения и систем различного функционального назначения
- **Знать** Методы, технологии и средства разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков программирования, баз данных и пакетов прикладных программ
- **Уметь** Использует современные приемы работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ
- Владеть Владеет современными современные приемами работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ
- ПК-7 Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов
- **Знать** Методологию и порождающие принципы интеллектуальных систем. Основные модели и типы интеллектуальных систем.
- **Уметь** Разрабатывать и анализировать модели ИС, исследовать структуры процессов в таких системах
- Владеть Навыками проектирования и анализа содержания баз знаний социальных, экономических и технических систем, обеспечивающих реализацию однозадачных интеллектуальных систем разных типов ИПК-7.21 (A/01.5 Тд.3) Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в области знаний алгоритмизации математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144часов), их распределение по видам работ представлено в таблице

Вид учебной работы	Всего	
	часов	7

Контактная работа, в то	54,3	64,3	
Аудиторные занятия (все	50	50	
Занятия лекционного типа		34	34
Лабораторные занятия		16	16
Занятия семинарского тип	а (семинары, практические занятия)		
Иная контактная работа	•	4,3	4,3
Контроль самостоятельной	й работы (KCP)	4	4
Промежуточная аттестаци	я (ИКР)	0,3	0,3
Самостоятельная работа	, в том числе:	54	54
Курсовая работа			
Проработка учебного (теор	36	36	
Выполнение индивидуалы сообщений, презентаций)	18	18	
Реферат			
Подготовка к текущему ко	нтролю		
Контроль:	35,7	35,7	
Подготовка к экзамену		35,7	35,7
	час.	144	144
Общая трудоемкость	в том числе контактная работа	72,3	72,3
	зач. ед	4	4

2.2 Структура дисциплины Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 7 семестре

	тизделы (темы) днециплины, изу шемые в		Коли	чество	часов	
№			иторная работа		Внеа удит орна я рабо та	
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Тема 1 Системы, основанные на знаниях	8	4		0	4
2.	Тема 2 Модели представления знаний	16	6		4	6
3.	3. Тема 3 Семантические информационные системы		6		4	14
4.	. Тема 4 Специальные модели знаний		6		3	16
5.	Тема 5 Извлечение знаний	15	6		3	6
6. Тема 6 Прикладные интеллектуальные системы		16	6		2	8
ИТОГО по разделам дисциплины		104	34		16	54
Конт	Контроль самостоятельной работы (КСР)					
Пром	Промежуточная аттестация (ИКР)					
Поді	Подготовка к текущему контролю					
Обш	ая трудоемкость по дисциплине	144				

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1.	Тема 1 Системы, основанные на	Понятие знания. интеллектуальной системы. Экспертные системы. Структура экспертных и интеллектуальных информационных систем. Разработка интеллектуальных систем. Необходимость и возможность создания интеллектуальной системы. Технологии выбора экспертов. Свойства и классификация экспертных систем.	РГЗ,Т
2.	знаниях	Статические и динамические экспертные системы. Этапы разработки: идентификации, концептуализации, формализации, реализации и тестирования. Особенности работы инженера знаний, предметного эксперта и программиста на каждом этапе. Представление знаний: принципы и методы.	РГЗ,Т
3.	T. OM	Продукции и их компоненты. Классификация продукционных моделей. Атомарные продукционные системы, предикатные, императивные продукционные системы. Прямой и обратный вывод. Оценка эффективности вывода.	РГЗ,Т
4.	Тема 2 Модели представления знаний	Методы организации продукционных баз знаний: иерархии, графы И-ИЛИ, структуры классной доски, системы с исключениями и дополнениями правил. Особенности прямого и обратного вывода для предикатных систем.	РГЗ,Т
5.		Реализация продукционных баз знаний в среде реляционных СУБД. Представление продукционных знаний в языке CLIPS	РГ3,Т
6.		Понятие семантической сети. Дескриптивные логики. Онтологии. Иерархии в отношениях и их применение для решения задач.	РГ3,Т
7.	Тема 3 Семантические информационные системы	Семантические сети предложений естественного языка. Автоматизация построения семантических сетей. Постановка и решение задач для семантических сетей. Унификация семантических сетей. Вычислительные сети. Прямая и обратная задачи для вычислительных сетей и методы их решения.).	РГЗ,Т
8.		Фреймы. Классификация фреймов и методов решения задач для баз знаний фреймов. Нейронные сети. Уровни сетей. Применение нейронных сетей (задача обучения сетей	РГЗ,Т
9.	Тема 4 Специальные	Неопределённость в базах знаний. Экспертные	РГЗ,Т

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
	модели знаний	системы и теория вероятностей. Коэффициенты уверенности. Нечёткая логика. Нечёткие множества. Основные проблемы применения неопределённых знаний.	
10.		Задача экспертной классификации и ее атрибуты. Язык векторной логики. Решение задачи экспертной классификации в векторной логике. Необходимость использования пространств большей размерности. Экспертная классификация для гипотезы характерности.	РГЗ,Т
11.		Структура пространства состояний и алгоритм опроса эксперта. Обработка результатов опроса и решение задачи классификации произвольных наборов	РГЗ,Т
12.	T. 614	Теоретический анализ процесса извлечения знаний. Стадии процесса извлечения знаний. Уровни извлечения знаний.	РГ3,Т
13.	Тема 5 Извлечение	Онтологическая модель извлечения знаний.	РГ3,Т
14.	знаний	Классы и роли процесса извлечения знаний из неструктурированных информационных ресурсов	РГ3,Т
15.	Тема 6 Прикладные	Классификация экспертных систем. Экономические интеллектуальные системы, основанные на продукционных знаниях. Проектирование системы финансового аудита. Модели знаний биржевой деятельности.	РГЗ,Т
16. 17.	интеллектуальные системы	Модели знаний системы экспертной классификации. Системы общения на естественном языке. Классификация систем общения. Свойства систем разного уровня.	РГ3,Т РГ3,Т
1/.			113,1

2.3.2 Занятия семинарского типа
Проведение семинарских занятий учебным планом не предусмотрено
2.3.3 Лабораторные занятия

Nº	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущ его контро ля
1	2	3	4
1.	Тема 1 Системы, основанные на знаниях	Структуризация систем знаний предметных областей. Структура базы знаний: основные компоненты, связи областей базы знаний	Р3
2.	Тема 2 Модели представления знаний	Построение примеров продукционных знаний и систем продукций в различных предметных областях с использованием	Р3

Nº	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущ его контро ля
1	2	3	4
		разных моделей структуризации знаний правил. Разбор алгоритмов функционирования интерпретатора, использование правил и метаправил.	
3.		Моделирование систем знаний для задач работы с множествами и графами. Модель активной онтологии. Построение моделей активных онтологий	Р3
4.	Тема 3 Семантические информационные системы	Ассоциативные сети и системы фреймов. Графы, деревья, сети. Семантические сети. Ассоциативные сети, иерархические сети. Разбор алгоритмов анализа сетей	Р3
5.		Проектирование и реализация алгоритмов механизмов вывода для разных моделей представления знаний. Разбор индивидуальных заданий на разработку механизмов вывода в специальных моделях знаний	P3
6.	Тема 4 Специальные модели знаний	Разработка элементов интеллектуального интерфейса.	Р3
7.	Тема 5 Извлечение знаний	Лингвистические системы. Алгоритмы декомпозиции структуризации неструктурированных интеллектуальных ресурсов. Моделирование системы извлечения знаний из неструктурированных цифровых ресурсов.	P3
8.	Тема 6 Прикладные интеллектуальные системы	Детализация (сверху-вниз) модели онтологии, инжиниринг (уточнение, разрешение противоречий, синонимии, избыточности, перестройка, дополнение	Р3

2.3.4 Примерная тематика курсовых работ (проектов) Написание курсовых работ по дисциплине программой не предусмотрено 2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Изученние	Методические указания по организации самостоятельной

	теоретического	работы студентов, утвержденные кафедрой
	материала	информационных технологий, протокол №1 от 30.08.2019
		учебное пособие К.И. Костенко Формализмы представления
		знаний и модели интеллектуальных систем. – Краснодар:
		Кубанский гос. ун-т, 2015. – 300 с.
2	Решение задач	Методические указания по организации самостоятельной
		работы студентов, утвержденные кафедрой
		информационных технологий, протокол №1 от 30.08.2019
		учебное пособие К.И. Костенко Формализмы представления
		знаний и модели интеллектуальных систем. – Краснодар:
		Кубанский гос. ун-т, 2015. – 300 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал. Создание и использование диагностических тестов является неотъемлемой частью данной технологии.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:

- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления— способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Семест	Вид занятия	Используемые интерактивные образовательные технологии	количество интерактивны х часов
7	Л	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	16
Итого			16

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме тестовых заданий, доклада-презентации по проблемным вопросам, разно уровневых заданий, ролевой игры, ситуационных задач (указать иное) и промежуточной аттестации в форме вопросов и заданий к экзамену (дифференцированному зачету, зачету).

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

№	Kouthoulinvani ja ngallalli j	Код		енование
п/п	Контролируемые разделы (темы) дисциплины*	контролируемой компетенции	Текущий	го средства Промежуточная
		(или ее части)	контроль	аттестация
1	Системы, основанные на знаниях	ИД-1.ПК-1; ИД- 2.ПК-1;	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 1-3
2	Модели представления знаний	ИД-1.ПК-1; ИД- 1.ПК-5; -2.ПК-6; ИД-3.ПК-6. ИД- 3.ПК-7	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 4-8
3	Семантические информационные системы	ИД-1.ПК-2; ИД- 3.ПК-2; ИД- 1.ПК-5; ИД- 2.ПК-5; ИД- 1.ПК-6; ИД- 2.ПК-6; ИД- 3.ПК-6. ИД- 1.ПК-7; ИД- 2.ПК-7	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 9-13
4	Специальные модели знаний	ИД-3.ПК-2; ИД- 1.ПК-5; ИД- 2.ПК-5; ИД- 1.ПК-6;	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 14-19
5	Извлечение знаний	ИД-1.ПК-6; ИД- 2.ПК-6; ИД- 3.ПК-6. ИД- 1.ПК-7; ИД- 3.ПК-7	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 20-23
6	Прикладные интеллектуальные системы	ИД-2.ПК-5; ИД- 1.ПК-6; ИД- 2.ПК-6; ИД- 1.ПК-7;	Вопросы для устного (письменного) опроса по теме	Вопрос на экзамене 24-29

ИД-1.ПК-7; ИД-2.ПК-7; ИД-3.ПК-7

Показатели, критерии и шкала оценки сформированных компетенций

Соответствие <u>пороговому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **удовлетворительно** /зачтено):

- ПК-1 Имеет практический опыт научно-исследовательской деятельности в области построения математических моделей, программирования и информационных технологий
- **Знать** Знает методологию формулирования и решения стандартных задач в конкретной проблемной области
- **Уметь** Обладает навыками и опытом формулирования и решения стандартных задач в конкретной проблемной области Ограничений
- **Владеть** Владеет технологиями навыками формулирования и решения стандартных задач в конкретной проблемной области ограничений
- ПК-2 Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем, определять структуру программного обеспечения, методы и средства его проектирования на основе требований с учетом существующих ограничений
- Знать Знает концепцию и архитектуру программной системы, ее функциональные возможности и логику работы, делает выбор средств проектирования и реализации на основе требований с учетом существующих ограничений Методы анализа и обобщения отечественного и международного опыта на основе существующих методов в конкретной области профессиональной деятельности

Методы и средства планирования и организации исследований и разработок в конкретной области профессиональной деятельности

Методы проведения экспериментов и наблюдений, обобщения и обработки информации в конкретной области профессиональной деятельности

- Уметь Оформлять результаты научно-исследовательских и опытноконструкторских работ Применять существующие методы анализа научно-технической информации
- **Владеть** Проектирование структур данных при решении задач в конкретной области профессиональной деятельности

в конкретной области профессиональной деятельности

- ПК-5 Способен использовать современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования
- **Знать** Принципы построения архитектуры программного обеспечения и виды архитектуры программного обеспечения, современные методы разработки и реализации конкретных алгоритмов математических моделей

Типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Возможности ИС, реализующей алгоритмы математических моделей

Методы анализа и обобщения отечественного и международного опыта в области разработки и реализации алгоритмов математических моделей на языков программирования и пакетов прикладных программ моделирования

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач математического моделирования на базе языков программирования и пакетов прикладных программ моделирования

Уметь Использовать существующие типовые решения и шаблоны, современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

> Применять методы и средства проектирования программного обеспечения, структур данных, баз данных, программных интерфейсов при реализации конкретных алгоритмов математических моделей

- Владеть Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в области знаний алгоритмизации математических моделей на базе языков программирования и пакетов прикладных моделирования
- ПК-6 Использует современные инструментальные средства разработки баз данных, прикладного программного обеспечения и систем различного функционального назначения
- Знать Методы, технологии и средства разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков программирования, баз данных и пакетов прикладных программ
- Уметь Использует современные приемы работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ
- Владеть Владеет современными современные приемами работы инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ
- ПК-7 Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов
- Основы методологии и порождающие принципы интеллектуальных систем. Знать Основные модели и типы интеллектуальных систем.

Разрабатывать и анализировать простые модели ИС, исследовать структуры

Уметь процессов в таких системах.

Владеть Навыками проектирования и анализа содержания баз знаний социальных, экономических и технических систем, обеспечивающих реализацию однозадачных интеллектуальных систем основных типов

Соответствие <u>базовому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **хорошо** /**зачтено**):

ПК-1 Имеет практический опыт научно-исследовательской деятельности в области построения математических моделей, программирования и информационных технологий

Знать Знает методологию формулирования и решения стандартных задач в конкретной проблемной области

Уметь Обладает навыками и опытом формулирования и решения стандартных задач в конкретной проблемной области Ограничений

Владеть Владеет технологиями навыками формулирования и решения стандартных задач в конкретной проблемной области ограничений

ПК-2 Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем, определять структуру программного обеспечения, методы и средства его проектирования на основе требований с учетом существующих ограничений

Знать Знает концепцию и архитектуру программной системы, ее функциональные возможности и логику работы, делает выбор средств проектирования и реализации на основе требований с учетом существующих ограничений Методы анализа и обобщения отечественного и международного опыта на основе существующих методов в конкретной области профессиональной деятельности

Методы и средства планирования и организации исследований и разработок в конкретной области профессиональной деятельности

Методы проведения экспериментов и наблюдений, обобщения и обработки информации в конкретной области профессиональной деятельности

Уметь Оформлять результаты научно-исследовательских и опытноконструкторских работ Применять существующие методы анализа научно-технической информации в конкретной области профессиональной деятельности

Владеть Проектирование структур данных при решении задач в конкретной области профессиональной деятельности

ПК-5 Способен использовать основные концептуальные положения функционального, логического, объектно-ориентированного и

визуального направлений программирования, методы, способы и средства разработки программ в рамках этих направлений

Знать

Принципы построения архитектуры программного обеспечения и виды архитектуры программного обеспечения, современные методы разработки и реализации конкретных алгоритмов математических моделей

Типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Возможности ИС, реализующей алгоритмы математических моделей

Методы анализа и обобщения отечественного и международного опыта в области разработки и реализации алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач математического моделирования на базе языков программирования и пакетов прикладных программ моделирования

Уметь

Использовать существующие типовые решения и шаблоны, современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Применять методы и средства проектирования программного обеспечения, структур данных, баз данных, программных интерфейсов при реализации конкретных алгоритмов математических моделей

Владеть

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в области знаний алгоритмизации математических моделей на базе языков программирования и пакетов прикладных программ моделирования

ПК-6 Способен использовать современные методы разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков программирования, баз данных и пакетов прикладных

Знать программ

Методы, технологии и средства разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков

Уметь программирования, баз данных и пакетов прикладных программ

Использует современные приемы работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов

Владеть прикладных программ

Владеет современными современные приемами работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ

ПК-7 Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве

научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов

Знать Основные принципы и методологию интеллектуальных систем. Основные модели и типы интеллектуальных систем.

Уметь Разрабатывать и анализировать интегрированные модели ИС, исследовать структуры процессов в таких системах.

Владеть Навыками проектирования и анализа содержания баз знаний социальных, экономических и технических систем, обеспечивающих реализацию многозадачных интеллектуальных систем разных типов

Соответствие <u>продвинутому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: отлично /зачтено):

- ПК-1 Имеет практический опыт научно-исследовательской деятельности в области построения математических моделей, программирования и информационных технологий
- **Знать** Знает методологию формулирования и решения стандартных задач в конкретной проблемной области
- Уметь Обладает навыками и опытом формулирования и решения стандартных задач в конкретной проблемной области Ограничений
- **Владеть** Владеет технологиями навыками формулирования и решения стандартных задач в конкретной проблемной области ограничений
- ПК-2 Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем, определять структуру программного обеспечения, методы и средства его проектирования на основе требований с учетом существующих ограничений
- Знать Знает концепцию и архитектуру программной системы, ее функциональные возможности и логику работы, делает выбор средств проектирования и реализации на основе требований с учетом существующих ограничений Методы анализа и обобщения отечественного и международного опыта на основе существующих методов в конкретной области профессиональной деятельности

Методы и средства планирования и организации исследований и разработок в конкретной области профессиональной деятельности

Методы проведения экспериментов и наблюдений, обобщения и обработки информации в конкретной области профессиональной деятельности

- Уметь Оформлять результаты научно-исследовательских и опытноконструкторских работ Применять существующие методы анализа научно-технической информации в конкретной области профессиональной деятельности
- **Владеть** Проектирование структур данных при решении задач в конкретной области профессиональной деятельности

ПК-5 Способен использовать основные концептуальные положения функционального, логического, объектно-ориентированного и визуального направлений программирования, методы, способы и средства разработки программ в рамках этих направлений

Знать Принципы построения архитектуры программного обеспечения и виды архитектуры программного обеспечения, современные методы разработки и реализации конкретных алгоритмов математических моделей

Типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Возможности ИС, реализующей алгоритмы математических моделей

Методы анализа и обобщения отечественного и международного опыта в области разработки и реализации алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач математического моделирования на базе языков программирования и пакетов прикладных программ моделирования

Уметь Использовать существующие типовые решения и шаблоны, современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования

Применять методы и средства проектирования программного обеспечения, структур данных, баз данных, программных интерфейсов при реализации конкретных алгоритмов математических моделей

Владеть Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в области знаний алгоритмизации математических моделей на базе языков программирования и пакетов прикладных программ моделирования

ПК-6 Способен использовать современные методы разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков программирования, баз данных и пакетов прикладных программ

Знать Методы, технологии и средства разработки программных систем и реализации конкретных алгоритмов математических моделей на базе языков программирования, баз данных и пакетов прикладных программ

Уметь Использует современные приемы работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ

Владеть Владеет современными современные приемами работы с инструментальными средствами, поддерживающими создание программных продуктов и программных комплексов на базе языков программирования, баз данных и пакетов прикладных программ

ПК-7 Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов

Знать Методологию и порождающие принципы интеллектуальных систем.

Уметь Основные модели и типы интеллектуальных систем.

Разрабатывать и анализировать модели ИС, исследовать структуры

Владеть процессов в таких системах.

Навыками проектирования и анализа содержания баз знаний социальных, экономических и технических систем, обеспечивающих реализацию однозадачных интеллектуальных систем разных типов

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

- 1. Разработать систему классов онтологии «словарь предметной области»
- 2. Определить иерархию классов «словаря», используя Protege в синтаксисе owl-dl
- 3. Разработать систему ролей и фильтров для онтологии словаря
- 4. Определить систему свойств классов словаря, наложить необходимые ограничения (например, указатель словаря состоит из букв алфавита).
- 5. Создать экземпляры классов онтологии «словарь».
- 6. Используя встроенные механизмы, проверить онтологию на целостность.
- 7. Привести примеры запросов на SPARQL к онтологии «словарь»
- 8. Разработать онтологии по темам:
 - а. Произвольная область математики (ТФКП, мат. анализ, алгебра или другая)
 - b. Учебный курс (включая понятия дистанционного, самостоятельного, очного обучения)
 - с. Онтология научного исследования (включая сбор и анализ данных, проведение экспериментов, выдвижение гипотез, их доказательство)
 - d. Онтология понятия печатного издания (включающая любые издания)
 - e. Онтология web сайта (включая программную и аппаратную инфраструктуру)

Написать программу, визуализирующую классы и свойства произвольной онтологии, и связи между ними. На основе файла owl строится изображение графа

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет) ИД-1.ПК-1; ИД-2.ПК-1; ИД-1.ПК-2; ИД-3.ПК-2; ИД-1.ПК-5; ИД-2.ПК-5; ИД-1.ПК-6; ИД-2.ПК-6; ИД-3.ПК-6

Вопросы для подготовки к экзамену

- 1. Архитектура интеллектуальных систем
- 2. Задачи и механизмы их решения.
- 3. Классификация моделей представления знаний.
- 4. Атомарные продукционные системы. Прямой вывод
- 5. Обратный вывод для атомарных продукционных систем
- 6. Предикатные продукционные системы.
- 7. Структурная организация продукционных баз знаний (стопка книг, классная доска, исключение из правил)
- 8. Иерархическая модель систем продукционных знаний
- 9. Унификация в интеллектуальных системах.

- 10. Неопределённость знаний и данных.
- 11. Нечёткие знания и множества.
- 12. Дерево вывода для логических программ.
- 13. Программа поиска пути в лабиринте
- 14. Программа поиска кратчайшего пути в лабиринте
- 15. Иерархии в отношениях «являться» и «быть частью».
- 16. Извлечение знаний.
- 17. Семантические сети предложений естественного языка
- 18. Структура системы общения на ЕЯ.
- 19. Классификация систем общения на ЕЯ. Вопросно-ответные системы, СОБД
- 20. Системы диалогового решения задач и обработки связных текстов.
- 21. Функциональные сети: прямая задача.
- 22. Обратная задача для функциональных сетей
- 23. Фреймы процессы и фреймы объекты.
- 24. Задача экспертной классификации. Гипотеза характерности.
- 25. Решение задачи экспертной классификации для гипотезы характерности.
- 26. Решение задачи экспертной классификации в векторной логике.
- 27. Интеллектуальные системы в Экономике.
- 28. Интеллектуальные системы в Военном деле.
- 29. Интеллектуальные системы в Медицине

Перечень компетенций (части компетенции), проверяемых оценочным средством

ИД-1.ПК-1; ИД-2.ПК-1; ИД-1.ПК-2; ИД-3.ПК-2; ИД-1.ПК-5; ИД-2.ПК-5; ИД-1.ПК-6; ИД-2.ПК-6; ИД-3.ПК-6; ИД-1.ПК-7; ИД-2.ПК-7; ИД-3.ПК-7

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии экзаменационной оценки

Отлично — уверенное знание всех понятий, конструкций и утверждений, представленных в экзаменационных вопросах, способность к анализу и синтезу понятий и утверждений, доказательство аналитических утверждений, умение решать теоретические задачи, связанные с изученным материалом;

Хорошо – знание всех понятий, конструкций и утверждений, представленных в экзаменационных вопросах, грамотное оформление определений и доказательств, навыки анализа и синтеза при решении теоретических задач.

Удовлетворительно — знание основных понятий, структур доказательств утверждений и теорем, полное доказательство отдельных утверждений, правильное использование математического языка для представления определений и формулировок результатов.

Критерии получения итогового зачёта по предмету

Итоговая оценка (зачёт/ незачёт) по предмету выставляется в случае получения верных ответов на поставленные вопросы, а также в целом верного решения предложенных качественных задач. Ответ на вопрос в составе билета считается правильным если, если он включает верное определение всех необходимых понятий, точные формулировки

основных результатов (аналитические утверждения), знаний структуры доказательств (обоснований), а также умение самостоятельного изложения доказательств. Критерии оценки ответа оценка на + (верный полный ответ) или +/- (в целом верный ответ, содержащий недостатки, которые были устранены в присутствии преподавателя). В остальных случаях

(результат проверки — или -/+, а также +/-, если студент испытывает трудности с полным ответом с помощью преподавателя).

Критерии промежуточной аттестации — оценивается решение контрольных задач, однотипных и близких по сложности с зачетными, с помощью четырёх-бальной системы + (верное и полное решение) или +/- (в целом верное решение, содержащее незначительные недостатки), -/+ (неполное решение или решение содержащее грубые ошибки, отдельные части которого можно использовать для решения задачи), - (неверное решение, не содержащее значимых фрагментов, ведущих к решению задачи).

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий **5.1** Основная литература:

- 1. Гаврилова, Т.А. Инженерия знаний. Модели и методы [Электронный ресурс] : учеб. / Т.А. Гаврилова, Д.В. Кудрявцев, Д.И. Муромцев. Электрон. дан. Санкт-Петербург : Лань, 2016. 324 с. Режим доступа: https://e.lanbook.com/book/81565.
- 2. Вагин, В.Н. Достоверный и правдоподобный вывод в интеллектуальных системах [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2008. 704 с. Режим доступа: https://e.lanbook.com/book/2357.
- 3. Костенко К.И. Формализмы представления знаний и модели интеллектуальных систем. Краснодар: Кубанский гос. ун-т, 2015. 300 с.
- 4. Костенко, К.И. Математические модели сложных интеллектуальных систем, Краснодар: Кубанский государственный университет, 2024. – 522 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Ясницкий, Л.Н. Интеллектуальные системы [Электронный ресурс] : учебник / Л.Н. Ясницкий. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2016. 224 с. Режим доступа: https://e.lanbook.com/book/90254 .
- 2. Вагин, В.Н. Достоверный и правдоподобный вывод в интеллектуальных системах [Электронный ресурс] : учеб. пособие Электрон. дан. Москва: Физматлит, 2008. 704 с. Режим доступа: https://e.lanbook.com/book/2357.
- 3. Капля, Е.В. Моделирование процессов управления в интеллектуальных измерительных системах [Электронный ресурс] : монография / Е.В. Капля, В.С. Кузеванов, В.П. Шевчук. Электрон. дан. Москва : Физматлит, 2009. 512 с. Режим доступа: https://e.lanbook.com/book/59524 .
- 4. Жданов, А.А. Автономный искусственный интеллект / А.А. Жданов. 4-е изд. Москва: БИНОМ. Лаборатория знаний, 2015. 362 с.: схем., табл., ил. (Адаптивные и интеллектуальные системы). Библиогр. в кн. ISBN 978-5-9963-2540-5 ; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=427723 (30.11.2017).

5. Смолин, Д.В. Введение в искусственный интеллект: конспект лекций [Электронный ресурс]: учеб. пособие — Электрон. дан. — Москва: Физматлит, 2007. — 264 с. — Режим доступа: https://e.lanbook.com/book/2325.

5.3. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/
- 5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

5.5.Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

5.6. Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

5.7. Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 11. Служба тематических толковых словарей http://www.glossary.ru/;
- 12. Словари и энциклопедии http://dic.academic.ru/;
- 13. Образовательный портал "Учеба" http://www.ucheba.com/;

14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

5.8. Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Системы, основанные на знаниях	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.
2	Модели представления знаний.	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.
3	Семантические информационные системы	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.
4	Специальные модели знаний	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.
6	Извлечение знаний	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.
6	Прикладные базы знаний	учебное пособие К.И. Костенко Формализмы представления знаний и модели интеллектуальных систем. – Краснодар: Кубанский гос. ун-т, 2015. – 300 с.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта

между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

№	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения
1.	Лекционные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, проектором, программным обеспечением
3.	Практические занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения
4.	Групповые (индивидуальные) консультации	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением
5.	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением
6.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети Интернет-,программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.

Примечание: Конкретизация аудиторий и их оснащение определяется ОПОП.