министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.24 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ

Направление подготовки	09.03.03 Прикладная информатика
Направленность (профили)	Прикладная информатика в экономике;
Ис	кусственный интеллект и машинное обучение
Форма обучения	очная
Квалификация (степень) выпу	ускника бакалавр

Рабочая программа дисциплины «Вычислительные методы» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 09.03.03 Прикладная информатика.

Программу составил: Письменский А.В., к.ф.-м.н., доцент кафедры прикладной математики

Рабочая программа дисциплины «Вычислительные методы» утверждена на заседании кафедры прикладной математики протокол № 9 от 06.05.2025 г.

И.о. заведующего кафедрой Письменский А.В., к.ф.-м.н.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 от 23.05.2025 г.

-th.

Председатель УМК факультета компьютерных технологий и прикладной математики УМК факультета А.В. Коваленко, д.ф.-м.н, к.э.н., доцент

Рецензенты:

Шапошникова Татьяна Леонидовна.

Доктор педагогических наук, кандидат физико-математических наук, профессор. Почетный работник высшего профессионального образования РФ. Директор института фундаментальных наук (ИФН) ФГБОУ ВО «КубГТУ».

Марков Виталий Николаевич.

Доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная информатика», в рамках которой преподается дисциплина.

Целью дисциплины «Вычислительные методы» является развитие логического мышления, овладение основными методами численного анализа и их применения при решении математических задач, умение самостоятельно расширять знания в области численного исследования прикладных (в том числе, и экономических) задач.

1.2 Задачи дисциплины

- изучение основных понятий и методов численного решения типовых математических задач;
- овладение практическими навыками в реализации численных алгоритмов;
- обучение основам проведения вычислительного эксперимента, а также анализа численного решения задач прикладного характера.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Вычислительные методы» относится к обязательной части (Б1.О) учебного плана.

Для изучения данной учебной дисциплины (модуля) студент должен владеть обязательным минимумом содержания математической части ООП для данного направления:

знать/понимать

 основные понятия и методы математического анализа, аналитической геометрии, линейной алгебры, дифференциальных уравнений, принципы алгоритмизации и программирования;

уметь

- применять математические методы для решения практических задач;
- составлять алгоритмы и компьютерные программы;

владеть

- методами решения дифференциальных и алгебраических уравнений, дифференциального и интегрального исчисления, аналитической геометрии, теории вероятностей, математической статистики и случайных процессов;
- инструментальными средствами программирования.

Вышеуказанные знания, умения и навыки формируются предшествующими дисциплинами:

- Векторная алгебра.
- Математический анализ.
- Дифференциальные уравнения.
- Основы программирования.

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

- Методы математической физики.
- Эконометрика.
- Методы оптимизации.
- Финансовая математика.
- Системы искусственного интеллекта.
- Технологии параллельных вычислений.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы Изучение данной учебной дисциплины направлено на формирование у

обучающихся общепрофессиональных компетенций (ОПК):

No	Код и	Индикаторы достижения компетенции				
п.п	наименование					
•	компетенции	знает	умеет	владеет		
1.	ОПК-1 Способен	- основные понятия	обоснованно	методами		
	применять	о погрешности и	выбрать	численного		
	естественно-	приближенных	вычислительный	исследования в		
	научные и	вычислениях;	метод, разработать	профессионально		
	общеинженерные	- основные	алгоритм решения	й деятельности		
	знания, методы	требования,	поставленной			
	математического	предъявляемые к	задачи в рамках			
	анализа и	вычислительным	теоретического и			
	моделирования,	схемам:	экспериментально			
	теоретического и	корректность,	го исследования;			
	экспериментально	устойчивость,				
	го исследования в	сходимость;				
	профессиональной					
	деятельности					
2.	ОПК-2 Способен	- вычислительные	понимать	вычислительными		
	понимать	методы в алгебре;	принципы работы	методами		
	принципы работы	- методы	современных	решения задач		
	современных	приближенного	информационных	линейной		
	информационных	вычисления	технологий и	алгебры,		
	технологий и	сеточных функций;	программных	дифференциальн		
	программных	- методы и	средств, в которых	ых уравнений и		
	средств, в том	алгоритмы	применяются	систем,		
	числе	приближенного	численные методы	оптимизационных		
	отечественного	интегрирования и		задач для функции		
	производства и	дифференцировани		одной и		
	использовать их	я;		нескольких		
	при решении задач	- вычислительные		переменных,		
	профессиональной	схемы и алгоритмы		методами		
	деятельности	решения		дискретной		
		обыкновенных		математики и		
		дифференциальных		функционального		
		уравнений;		анализа		
3.	ОПК-7 Способен	приемы	составить и	инструментарием		
	разрабатывать	программирования	отладить	разработки		
	алгоритмы и	для персональных	программу на	программной		
	программы,	ЭВМ	алгоритмическом	реализации		
	пригодные для		языке (Паскаль /	вычислительных		
	практического		С++) для решения	алгоритмов		
	применения		несложных			
			вычислительных			
			задач			

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2 Структура и содержание дисциплины

2.1 Распределение трудоемкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часов), их распределение по видам работ представлено в таблице

		Трудоемкость,	
Вид учебной работы		часов	
		4 семестр	
Контактная работа, в том числе:	72,3		
Аудиторные занятия:		68	
Занятия лекционного типа (Л)		34	
Занятия семинарского типа (семинары, практич	неские занятия) (ПЗ)	_	
Лабораторные работы (ЛР)		34	
Иная контактная работа:	4,3		
Контроль самостоятельной работы (КСР)	4		
Промежуточная аттестация (ИКР)	0,3		
Самостоятельная работа, в том числе:		27	
Курсовой проект (КП), курсовая работа (КР)	<u> </u>		
Проработка учебного (теоретического) материа	15		
Подготовка к текущему контролю (ПТК)	12		
Выполнение индивидуальных заданий (подгото	_		
презентаций)			
Реферат (Р)	8		
Контроль: подготовка к экзамену	44,7		
Общая трудоемкость	час.	144	
	зач. ед.	4	

2.2 Структура учебной дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 4 семестре

№			Ко.	пичес	ство ч	асов
	Haymayanayya manyayan mass		Ay,	Аудиторная		Внеаудитор
разде	Наименование разделов, тем	Всего	ŗ	абот	a	ная работа
ла			Л	ПЗ	ЛР	CPC
	Введение	2	1	-	0	1
1.	Правила приближённых вычислений	1	1		2	1
1.	погрешностей при вычислениях	4	1	_	2	1
	1. Правила приближённых вычислений и оценка	1	7		2	1
	погрешностей при вычислениях	4	1	-	2	1
2.	Приближение функций	6	2	-	2	2
	1. Аппроксимация сеточных функций и					
	интерполирование.		2		2	2
	2. Интерполяционные многочлены Лагранжа и	6	2	-	2	2
	Ньютона. Схема Эйткена					
2	Численное решение систем линейных	1.0				4
3.	алгебраических уравнений	16	6	-	6	4
	1. Численное решение систем линейных					
	алгебраических уравнений (СЛАУ). Основные	3	2	_	0	1
	понятия					
	2. Метод Гаусса и его модификации	7	2	-	4	1
	3. Метод простой итерации.		_			_
	4. Метод Зейделя	6	2	-	2	2
	Численное решение систем нелинейных					
4.	уравнений	6	2	-	2	2
	1. Численное решение систем нелинейных					
	уравнений. Метод Ньютона.		_			
	2. Метод простой итерации для системы двух	6	2	-	2	2
	уравнений					
5.	Численное дифференцирование	6	2	-	2	2
	1. Численное дифференцирование. Формула					
	численного дифференцирования.		•			
	2. Выбор оптимального шага численного	6	2	-	2	2
	дифференцирования					
6.	Численное интегрирование	10	4	_	4	2
	1. Приближённое вычисление интегралов.					
	Квадратурные формулы с равноотстоящими					
	узлами.	5	2	_	2	1
	2. Выбор шага интегрирования. Квадратурная					
	формула Гаусса					
	3. Интегрирование с помощью степенных рядов.					
	4. Интегралы от разрывных функций и с	5	2	-	2	1
	бесконечными пределами					
7	Численное решение обыкновенных	10	1		1	A
7.	дифференциальных уравнений	12	4	-	4	4
	1. Численное решение обыкновенных					
	дифференциальных уравнений (ОДУ). Задача		4 2		0	2
	Коши.	4		-	0	2
	2. Метод последовательных приближений					
	3. Метод Эйлера и его модификации.					
	4. Методы Рунге-Кутта.	8	2	_	4	2
	5. Методы Адамса					

8.	Краевые задачи для обыкновенных дифференциальных уравнений	12	4	-	4	4
	1. Краевые задачи. Постановка задачи. 2. Метод конечных разностей.	6	2	-	2	2
	3. Метод прогонки. 4. Метод Галёркина	6	2	-	2	2
9.	Численное решение уравнений с частными производными	21	8	-	8	5
	1. Уравнения с частными производными. Метод сеток	3	2	-	0	1
	2. Метод сеток для задачи Дирихле	4	1	-	2	1
	3. Метод прогонки для уравнения теплопроводности	5	2	-	2	1
	4. Метод сеток для уравнений параболического типа	4	1	-	2	1
	5. Метод сеток для уравнений гиперболического типа	5	2	-	2	1
	ИТОГО по разделам дисциплины:	95	34	0	34	27
	Контроль самостоятельной работы (КСР)	4				
	Промежуточная аттестация (ИКР)	0,3				
	Подготовка к текущему контролю	44,7				
	Общая трудоемкость по дисциплине	144				

Cокращения: Л - лекции, $\Pi 3 -$ практические занятия, $\Pi P -$ лабораторные работы, CPC - самостоятельная работа студентов.

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

	Наименование		Форма
№		Содержание раздела	текущего
	раздела		контроля
1	2	3	4
	Введение	История и этапы развития вычислительной	Написание
		математики, и её роль в прикладных науках	реферата (по
			желанию)
1.	Правила	Приближённые числа, их абсолютные и	Тестирование,
	приближённых	относительные погрешности. Сложение и	написание
	вычислений	вычитание приближённых чисел. Умножение и	реферата (по
	погрешностей при	деление приближённых чисел. Погрешности	желанию)
	вычислениях	вычисления значений функции. Определение	
		допустимой погрешности аргументов по	
		допустимой погрешности функции	
2.	Приближение	Аппроксимация сеточных функций.	Тестирование,
	функций	Интерполирование. Сплайн-интерполяция.	написание
		Метод наименьших квадратов.	реферата (по
		Интерполяционные многочлены Лагранжа и	желанию)
		Ньютона. Схема Эйткена	

3.	Численное решение	Основные понятия. Метод Гаусса. Схема	Тестирование,
	систем линейных	Гаусса с выбором главного элемента.	написание
	алгебраических	Компактная схема Гаусса. Вычисление	реферата (по
	уравнений	определителей. Вычисление элементов	желанию)
		обратной матрицы методом Гаусса. Метод	
		простой итерации. Метод Зейделя	
4.	Численное решение	Метод Ньютона для системы двух уравнений.	Тестирование,
	систем нелинейных	Метод простой итерации для системы двух	написание
	уравнений	уравнений	реферата (по
			желанию)
5.	Численное	Формула численного дифференцирования.	Тестирование,
	дифференцирование	Погрешности, возникающие при численном	написание
		дифференцировании. Выбор оптимального	реферата (по
		шага численного дифференцирования	желанию)
6.	Численное	Квадратурные формулы с равноотстоящими	Тестирование,
	интегрирование	узлами. Формула трапеций, формула	написание
		Симпсона, формула Ньютона. Выбор шага	реферата (по
		интегрирования. Квадратурные формулы	желанию)
		Гаусса. Интегрирование с помощью степенных	
		рядов. Интегралы от разрывных функций.	
		Интегралы с бесконечными пределами	
7.	Численное решение	Задача Коши. Метод последовательных	Тестирование,
	обыкновенных	приближений. Метод Эйлера и его	написание
	дифференциальных	модификации. Метод Рунге-Кутта. Метод	реферата (по
	уравнений	Адамса. Метод Милна	желанию)
8.	Краевые задачи для	Постановка задачи. Метод конечных разностей	Тестирование,
	обыкновенных	для линейных дифференциальных уравнений	написание
	дифференциальных	второго порядка. Метод прогонки. Метод	реферата (по
	уравнений	Галёркина. Метод коллокации	желанию)
9.	Численное решение	Метод сеток. Метод сеток для задачи Дирихле.	Тестирование,
	уравнений с частными	Итерационный метод решения системы	написание
	производными	конечно-разностных уравнений. Решение	реферата (по
		краевых задач для криволинейных областей.	желанию)
		Метод сеток для уравнения параболического	
		типа. Метод прогонки для уравнения	
		теплопроводности. Метод сеток для уравнения	
		гиперболического типа	

2.3.2 Занятия семинарского типа (лабораторные занятия)

№	Наименование раздела	Тематика занятий/рабор	Форма текущего контроля
1	2	3	4
	Правила приближённых вычислений погрешностей при вычислениях	1. Правила приближённых вычислений и оценка погрешностей при вычислениях	Защита ЛР
2.	Приближение	2. Интерполяционные многочлены Лагранжа и	Защита ЛР
	функций	Ньютона. Схема Эйткена	

	Численное решение систем линейных алгебраических уравнений	3. Численное решение СЛАУ методом Гаусса. Модификации метода Гаусса. 4. Численное решение СЛАУ с помощью LU-разложения. 5. Численное решение СЛАУ итерационными методами. Метод простой итерации. Метод Зейделя.	Защита ЛР
4.	Численное решение систем нелинейных уравнений	6. Численное решение систем нелинейных уравнений. Метод Ньютона. Метод простой итерации для системы двух уравнений	Защита ЛР
5.	Численное дифференцирование	7. Численное дифференцирование. Выбор оптимального шага численного дифференцирования	Защита ЛР
6.	Численное интегрирование	8. Численное интегрирование. Квадратурные формулы с равноотстоящими узлами. Выбор шага интегрирования. Квадратурная формула Гаусса 9. Интегрирование с помощью степенных рядов. Интегралы от разрывных функций и с бесконечными пределами	Защита ЛР
7.	Численное решение обыкновенных дифференциальных уравнений	10. Численное решение задачи Коши для ОДУ. Метод Эйлера и его модификации. Методы Рунге-Кутта 11. Численное решение задачи Коши для ОДУ. Методы Адамса	Защита ЛР
8.	Краевые задачи для обыкновенных дифференциальных уравнений	12. Решение краевых задач для ОДУ. Метод конечных разностей 13. Решение краевых задач для ОДУ. Метод прогонки. Метод Галёркина	Защита ЛР
9.	Численное решение уравнений с частными производными	14. Метод сеток для задачи Дирихле 15. Метод прогонки для уравнения теплопроводности 16. Метод сеток для уравнений параболического типа 17. Метод сеток для уравнений гиперболического типа	Защита ЛР

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающегося по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий. Ниже представлен перечень учебно-методических материалов, которые помогают обучающемуся организовать самостоятельное изучение тем (вопросов) дисциплины по всем видам СРС.

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Проработка и повторение лекционного материала, материала учебной и научной литературы, подготовка к семинарским занятиям	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г. Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.
	Подготовка к лабораторным занятиям	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.
	Подготовка к решению задач и тестов	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.
4	Подготовка докладов	Методические указания для подготовки эссе, рефератов, курсовых работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.
3	Подготовка к решению расчетно-графических заданий (РГЗ)	Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г. Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.
n	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №10 от 15.05.2019 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

– в печатной форме,

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть расширен и конкретизирован в зависимости от контингента обучающихся.

3 Образовательные технологии, применяемые при освоении дисциплины

Лекционные материалы реализуются с помощью электронных презентаций. При реализации учебной работы по дисциплине «Вычислительные методы» используются следующие образовательные технологии:

- интерактивная подача материала с мультимедийной системой;
- разбор конкретных исследовательских задач.

Объем интерактивных занятий – 18% от объема аудиторных занятий

Сомость	Вид занятия	Используемые интерактивные образовательные	Количество
Семестр	$(\Pi, \Pi P, \Pi P)$	технологии	часов
4	Л	Интерактивная подача материала с	10
		мультимедийной системой. Обсуждение	
		сложных и дискуссионных вопросов.	
	ЛР	Компьютерные занятия в режимах	2
		взаимодействия «преподаватель - студент».	
ИТОГО			12

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Вычислительные методы».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме тестовых заданий для защиты лабораторных работ, **промежуточной** аттестации в форме вопросов и заданий к экзамену.

В качестве оценочных средств, используемых для текущего контроля успеваемости предлагается перечень теоретических и практических вопросов по выполненным лабораторным работам, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Студент демонстрирует свое решение преподавателю, отвечает на дополнительные вопросы.

4.1 Структура оценочных средств для текущей и промежуточной аттестации

No	Vou u namenanana		Наименование оценочного средства		
п/п	Код и наименование Результаты обучения Такуний контроль		Промежуточная		
11/11	индикатора		Текущий контроль	аттестация	
	ОПК-1 Способен	Знает	Защита ЛР №№	Вопросы на экзамене	
1	применять естественно-	- основные понятия о	1-17: контрольные	1-4.	
	научные и	погрешности и	тесты и вопросы		

	общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	приближенных вычислениях; - основные требования, предъявляемые к вычислительным схемам: корректность, устойчивость, сходимость. Умеет обоснованно выбрать вычислительный метод, разработать алгоритм решения поставленной задачи в рамках теоретического и экспериментального исследования. Владеет методами численного исследования в профессиональной деятельности		Практические задания к экзамену 1-7.
2	ОПК-2 Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства и использовать их при решении задач профессиональной деятельности	Знает - вычислительные методы в алгебре; - методы приближенного вычисления сеточных функций; - методы и алгоритмы приближенного интегрирования и дифференцирования; - вычислительные схемы и алгоритмы решения обыкновенных дифференциальных уравнений. Умеет понимать принципы работы современных информационных технологий и программных средств, в которых применяются численные методы. Владеет вычислительными методами решения задач линейной алгебры, дифференциальных уравнений и систем, оптимизационных задач для функции одной и нескольких переменных, методами дискретной математики и функционального анализа	Защита ЛР №№ 2-17: контрольные тесты и вопросы	Вопросы на экзамене 5-35. Практические задания к экзамену 8-20.
3	ОПК-7 Способен разрабатывать алгоритмы и программы, пригодные	Знает приемы программирования для персональных ЭВМ. Умеет	Защита ЛР №№ 1- 17: контрольные тесты и вопросы	

для практического	составить и отладить	
применения	программу на	
	алгоритмическом языке	
	(Паскаль / С++) для	
	решения несложных	
	вычислительных задач.	
	Владеет	
	инструментарием	
	разработки программной	
	реализации	
	вычислительных	
	алгоритмов	

4.2 Примерные задания для защиты лабораторных работ

Задания к ЛР раздела № 2 – Приближение функций (ЛР № 2)

x	y	№ варианта	<i>x</i> *	x	y	№ варианта	<i>x</i> *
0,2050	0,207921	1	0,2064	0,8902	1,23510	2	0,8942
0,2052	0,208130	5	0,2073	0,8909	1,23687	6	0,8973
0,2060	0,208964	9	0,2082	0,8919	1,23941	10	0,8958
0,2065	0,209486	13	0,2079	0,8940	1,24475	14	0,8948
0,2069	0,209904	17	0,2088	0,8944	1,24577	18	0,8934
0,2075	0,210530			0,8955	1,24858		
0,2085	0,211575			0,8965	1,25114		
0,2090	0,212097			0,8975	1,25371		
0,2096	0,212724			0,9010	1,26275		
0,2100	0,213142			0,9026	1,26691		
x	y	№ варианта	<i>x</i> *	x	y	№ варианта	<i>x</i> *
<i>x</i> 0,6100	y 1,83781	№ варианта 3	<i>x</i> * 0,6120	<i>x</i> 0,5400	<i>y</i> 1,66825	<i>№ варианта</i> 4	<i>x</i> * 0,5415
	, ,	•	1		<i>J</i>		
0,6100	1,83781	3	0,6120	0,5400	1,66825	4	0,5415
0,6100 0,6104	1,83781 1,83686	3 7	0,6120 0,6124	0,5400 0,5405	1,66825 1,66636	4 8	0,5415 0,5424
0,6100 0,6104 0,6118	1,83781 1,83686 1,83354	3 7 11	0,6120 0,6124 0,6142	0,5400 0,5405 0,5410	1,66825 1,66636 1,66448	4 8 12	0,5415 0,5424 0,5436
0,6100 0,6104 0,6118 0,6139	1,83781 1,83686 1,83354 1,82860	3 7 11 15	0,6120 0,6124 0,6142 0,6163	0,5400 0,5405 0,5410 0,5420	1,66825 1,66636 1,66448 1,66071	4 8 12 16	0,5415 0,5424 0,5436 0,5442
0,6100 0,6104 0,6118 0,6139 0,6145	1,83781 1,83686 1,83354 1,82860 1,82720	3 7 11 15	0,6120 0,6124 0,6142 0,6163	0,5400 0,5405 0,5410 0,5420 0,5429	1,66825 1,66636 1,66448 1,66071 1,65734	4 8 12 16	0,5415 0,5424 0,5436 0,5442
0,6100 0,6104 0,6118 0,6139 0,6145 0,6158	1,83781 1,83686 1,83354 1,82860 1,82720 1,82416	3 7 11 15	0,6120 0,6124 0,6142 0,6163	0,5400 0,5405 0,5410 0,5420 0,5429 0,5440	1,66825 1,66636 1,66448 1,66071 1,65734 1,65322	4 8 12 16	0,5415 0,5424 0,5436 0,5442
0,6100 0,6104 0,6118 0,6139 0,6145 0,6158 0,6167	1,83781 1,83686 1,83354 1,82860 1,82720 1,82416 1,82207	3 7 11 15	0,6120 0,6124 0,6142 0,6163	0,5400 0,5405 0,5410 0,5420 0,5429 0,5440 0,5449	1,66825 1,66636 1,66448 1,66071 1,65734 1,65322 1,64987	4 8 12 16	0,5415 0,5424 0,5436 0,5442

Задания к ЛР раздела № 3 – Численное решение СЛАУ (ЛР №№ 3-5)

Вариант 1

$$2x_1 +5x_2 -3x_3 +x_4 = 11$$

$$x_1 +4x_2 -5x +8x = 20$$

$$3x_1 -2x_2 +4x_3 -7x_4 = -11$$

$$7x_1 +2x_2 -3x_3 +x_4 = 10$$
Omeem (1; 2; 1; 2)

Вариант 2

$$x_1 + 4x_2 + 8x_3 - 5x_4 = 1$$

 $4x_1 + 2x_2 - 3x_3 - x_4 = 2$
 $5x_1 + 8x_2 + x_3 - 3x_4 = 0$
 $2x_1 - x_2 - 3x_3 - 4x_4 = -2$
Omsem (2; -1; 1; 1)

Вариант 3

$$x_{1} + 4x_{2} - 9x_{3} + 7x_{4} = -11$$

$$2x_{1} + x_{2} + 7x_{3} - 5x_{4} = 20$$

$$3x_{1} + 8x_{2} + 3x_{3} + x_{4} = 29$$

$$-x_{1} + x_{2} + 2x_{3} + 3x_{4} = 10$$

Ответ (1; 2; 3; 1)

Вариант 5

$$x_1$$
 +8 x_2 -7 x_3 +3 x_4 = 1
 $2x_1$ +3 x_2 + x_3 +2 x_4 = 8
- x_1 +4 x_2 +2 x_3 -6 x_4 = 9
11 x_1 -5 x_2 -3 x_3 -7 x_4 = 32
Ombeta (3; 1; 1; -1)

Вариант 7

$$7x_{1} -3x_{2} +12x_{3} -x_{4} = 20$$

$$3x_{1} +5x_{2} -6x_{3} +2x_{4} = 11$$

$$2x_{1} +x_{2} +5x_{3} +3x_{4} = 19$$

$$-5x_{1} +9x_{2} +x_{3} -11x_{4} = -33$$

Ответ (2; 1; 1; 3)

Вариант 9

$$2x_1 + 3x_2 - 5x_3 = 8$$

$$3x_1 - x_2 + 2x_3 + 5x_4 = 10$$

$$-4x_1 + 5x_2 + 3x_3 + x_4 = 11$$

$$2x_1 - 7x_2 + 4x_3 + 2x_4 = -11$$
Ombeem (2; 3; 1; 1)

Вариант 11

$$5x_1 + x_2 + 2x_3 + x_4 = 2$$

 $7x_1 + 3x_2 - 5x_3 + 2x_4 = -10$
 $3x_1 + 4x_2 + 7x_3 + x_4 = 17$
 $2x_1 - 6x_2 + 2x_3 + 11x_4 = -2$
Omsem (-1; 1; 2; 2)

Вариант 13

$$x_1 + 2x_2 + 3x_3 + 5x_4 = 8$$

 $7x_1 - 5x_2 - 4x_3 - x_4 = 7$
 $3x_1 + 4x_2 + x_3 + 9x_4 = 22$
 $7x_1 + x_2 + 8x_3 + 3x_4 = 11$
Omeem (2; 2; -1; 1)

Вариант 4

$$x_1$$
 $-5x_2$ $+6x_3$ $+2x_4$ = 22
 $-3x_1$ $-x_2$ $+5x_3$ $-x_4$ = 6
 $4x_1$ $+9x_2$ $+x_3$ $+x_4$ = -1
 $-2x_1$ $+3x_2$ $+5x_3$ $-3x_4$ = -1
Omeem (1; -1; 2; 2)

Вариант 6

$$x_1 + 3x_2 - 5x_3 + 7x_4 = 16$$

 $2x_1 + 4x_2 - 3x_3 + x_4 = -4$
 $5x_1 + 8x_2 - 9x_3 + 3x_4 = -9$
 $3x_1 + 14x_2 - 10x_3 + 5x_4 = -11$
Ombem (1; -1; 2; 4)

Вариант 8

$$5x_{1} + 4x_{2} - 8x_{3} + x_{4} = -17$$

$$2x_{1} + 7x_{2} + 3x_{3} + 4x_{4} = -7$$

$$-3x_{1} + 2x_{2} - 74x_{3} - 5x_{4} = -9$$

$$x_{1} + x_{3} + 2x_{4} = -1$$

Ответ (1; -1; 2; -2)

Вариант 10

$$5x_1 + 8x_2 - 9x_3 + x_4 = 2$$

 $-7x_1 + 11x_2 - 3x_3 + 7x_4 = 41$
 $2x_1 + 4x_2 + x_3 - 9x_4 = 3$
 $3x_1 + 8x_2 + 4x_3 + 3x_4 = 32$
Omeem (-1; 3; 2; 1)

Вариант 12

$$3x_1 + 9x_2 - 5x_3 + x_4 = 0$$

 $2x_1 + 4x_2 + 3x_3 - 7x_4 = -7$
 $x_1 + x_3 = 5$
 $-x_1 + 2x_2 + x_3 + 8x_4 = 11$
Omeem (4; -1; 1; 2)

Вариант 14

$$2x_1 + x_2 + 7x_3 + 4x_4 = 7$$

 $x_1 + 9x_2 + 3x_3 - 5x_4 = 31$
 $x_1 - x_2 + 5x_3 = -6$
 $4x_1 + 7x_2 + 2x_3 + x_4 = 39$
Omeem (3; 4; -1; 1)

Вариант 15

$$3x_1 + 4x_2 - 5x_3 - 7x_4 = -5$$

 $2x_1 + 7x_2 - 9x_3 + 4x_4 = 4$
 $13x_1 - 7x_2 + 5x_3 - 4x_4 = 7$
 $2x_1 + 3x_2 + 6x_3 - x_4 = 10$
Omeem (1; 1; 1; 1)

Вариант 16

$$x_1 + 2x_2 + x_4 = 2$$

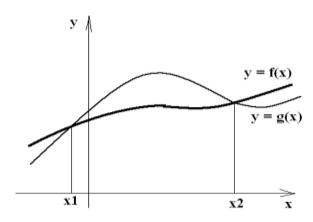
 $2x_1 + 3x_2 - 5x_3 + x_4 = -12$
 $3x_1 - 7x_2 + 6x_3 - 3x_4 = 4$
 $2x_1 + 4x_2 - 9x_3 + 6x_4 = -27$
Ombem (-1; 2; 3; -1)

Задания к ЛР раздела № 7 – Численное решение ОДУ (ЛР №№ 10,11)

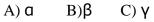
№ варианта	Уравнение	Начальное приближение y ⁰	Отрезок интегрирования
1	$y' = x + \cos\frac{y}{\sqrt{5}}$	$y^0(1,8)=2,6$	[1,8;2,8]
2	$y' = x + \cos\frac{y}{3}$	y ⁰ (1,6)=4,6	[1,6;2,6]
3	$y' = x + \cos\frac{y}{\sqrt{10}}$	y ⁰ (0,6)=0,8	[0,6;1,6]
4	$y' = x + \cos\frac{y}{\pi}$	y ⁰ (0,5)=0,6	[0,5;1,5]
5	$y' = x + \cos\frac{y}{2,25}$	$y^0(1,7)=5,3$	[1,7;2,7]
6	$y' = x + \cos\frac{y}{e}$	$y^0(1,4)=2,2$	[1,4;2,4]
7	$y' = x + \cos\frac{y}{\sqrt{2}}$	$y^0(1,4)=2,5$	[1,4;2,4]
8	$y' = x + \cos\frac{y}{\sqrt{5}}$	$y^0(0,8)=1,4$	[0,8;2,8]
9	$y' = x + \cos\frac{y}{\sqrt{8}}$	$y^0(1,2)=2,1$	[1,2;2,2]
10	$y' = x + \cos\frac{y}{\sqrt{11}}$	$y^0(2,1)=2,5$	[2,1;3,1]
11	$y' = x + \sin \frac{y}{\sqrt{5}}$	$y^0(1,8)=2,6$	[1,8;2,8]
12	$y' = x + \sin\frac{y}{3}$	y ⁰ (1,6)=4,6	[1,6;2,6]
13	$y' = x + \sin\frac{y}{\sqrt{10}}$	y ⁰ (0,6)=0,8	[0,6;1,6]
14	$y' = x + \sin \frac{y}{\sqrt{7}}$	$y^0(0,5)=0,6$	[0,5;1,5]
15	$y' = x + \sin\frac{y}{\pi}$	$y^0(1,7)=5,3$	[1,7;2,7]
16	$y' = x + \sin \frac{y}{\sqrt{2.8}}$	$y^0(1,4)=2,2$	[1,4;2,4]
17	$y' = x + \sin\frac{y}{\sqrt{e}}$	$y^0(0,8)=1,3$	[0,8;2,8]

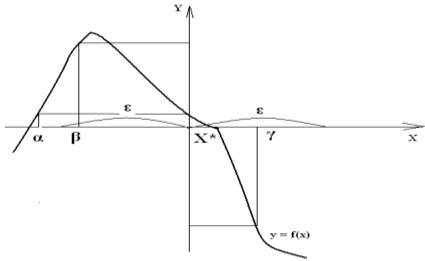
18	$y' = x + \sin \frac{y}{\sqrt{1,25}}$	$y^0(1,1)=1,5$	[1,1;2,1]
19	$y' = x + \sin\frac{y}{1,5}$	$y^0(0,6)=1,2$	[0,6;1,6]
20	$y' = x + \sin \frac{y}{15}$	$y^0(0,5)=1,8$	[1,8;2,8]

4.3 Примерные задания для тестирования учащихся

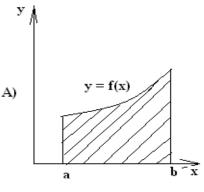

Контроль знаний студентов на всех этапах осуществляется путем компьютерного тестирования. Выдаваемый каждому студенту индивидуальный тест включает порядка 20 заданий и генерируется с помощью специальной программы. Суммарное время проведения тестирования составляет, как правило, 60 мин. Ниже приведены примеры демо-версий тестов.

Бланк заданий

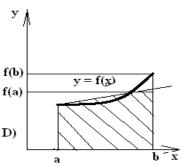

- 1. Какое требование является обязательным при построении интерполяционного многочлена Лагранжа:
 - А) узлы интерполяции располагаются на равном расстоянии друг от друга;
 - В) крайние узлы интерполяции совпадают с концами отрезка интерполирования;
 - С) количество точек интерполяции равно степени интерполяционного многочлена;
 - D) интерполяционный многочлен в узлах интерполяции принимает значения интерполируемой функции.

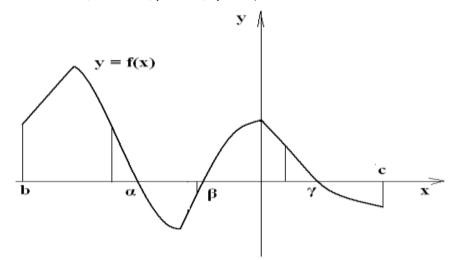

2. Пусть т	очное значение А	i = 500, а приолиженн	a = 500,50.	
Относи	тельная погрешно	ость приближенного ч	исла а равна:	
	A) 0,001	B) 0,01	C) 0,1	D) 0,5

- 3. Пусть дана система линейный алгебраических уравнений, у которой существует единственное решение. При использовании метода простой итерации для её решения в промежуточных вычислениях допущена ошибка. Тогда приближенное решение системы:
 - А) найти невозможно;
 - В) найти можно только если задано достаточно близкое к точному решению начальное приближение;
 - С) найти можно только в случае, когда в матрице системы нет нулевых элементов;
 - D) найти можно.
- 4. Какое из условий не является обязательным в определении интерполяционного кубического сплайна?
 - А) первая производная на каждом частичном отрезке является полиномом степени не выше второй;
 - В) вторая производная непрерывна на всем отрезке;
 - С) третья производная непрерывна в точках «склейки»;
 - D) значения сплайна заданы в нескольких точках.
- 5. Какое из следующих утверждений верно:


- А) функция y = g'(x) приближает функцию y = f'(x) в точке x_1 лучше, чем в точке x_2 ;
- В) функция y = g'(x) приближает функцию y = f'(x) в точке x_1 так же хорошо, как и в точке x_2 ;
- С) функция y = g'(x) приближает функцию y = f'(x) в точке x_1 хуже, чем в точке x_2 .
- 6. Пусть *A* точное значение некоторой величины. Абсолютной погрешностью приближённого числа *a* называется:
 - A) наименьшее доступное число Δa , не превосходящее |A-a|;
 - В) наименьшее доступное число Δa , не меньшее |A a|;
 - С) наибольшее доступное число Δa , не меньшее |A a|;
 - D) наибольшее доступное число Δa , не превосходящее |A-a|.
- 7. Какой из методов не относится к точным методам решения систем линейных уравнений?
 - А) метод Гаусса;
 - В) метод Зейделя;
 - С) метод Крамера;
- D) метод прогонки.
- 8. Пусть x^* точный, а α , β , γ приближённые корн уравнения f(x) = 0. По рисунку определите, какая из точек является лучшим приближением к корню?




- 9. Какое из чисел не является приближением числа 1,67352 по недостатку:
 - A) 1,6;
- B) 1,67;
- C) 1, 674;
- D) 1,6735.
- 10. Какую из функций нельзя построить по 20 точкам?
 - А) интерполяционный кубический сплайн;


- В) многочлен пятой степени, дающий наилучшее приближение по методу наименьших квадратов;
- С) алгебраический полином степени не выше 19;
- D) единственный интерполяционный многочлен степени 20.
- 11. Какой рисунок соответствует геометрической интерпретации метода трапеций чис ленного интегрирования?

- 13. При замене краевой задачи сеточной используются формулы:
 - А) интерполирования многочленами;
 - В) численного интегрирования;
 - С) численного дифференцирования;
 - D) приближения по методу наименьших квадратов.
- 14. Определите количество значащих цифр в числе 0,000012305613

,	C) нет, т.к. во 2-ой D) нет, т.к. в 3-ой с	строке нарушается строке нарушается	условие преобладания условие преобладания условие преобладания условие преобладания	ия главной диагонали; я главной диагонали;
16.	Точное значение A верных цифр в числ		ижённое а = 521500. С	Определите количество
	A) 6;	B) 5;	C) 4;	D) 3.
17.		-	иближённое а = 0,0046 щих цифр в числе а? С) 3;	D) 2.
18.	Какое из чисел имее A) 0,008;	т такой же порядо В) 10 ⁻² ;	к, как и число 2,5*10 ⁻³ С) 0,56*1	10 ⁻⁴ ; D) 0,00025.
19.	формул даёт точное	значение?	(x) и точки: x_0 , $x_1 = x_1$ B) $y'(x_1) = \frac{y(x_2) - y_1}{2h}$ D) $y'(x_1) = \frac{y(x_2) - y_2}{h}$	$x_0 + h$, $x_2 = x_1 + h$. Какая из $\frac{-y(x_0)}{h}$;
20.				V = 1-2(x-1)+3(x-1)(x-3). из точек интерполяции? D) 29
21.	задать одно начальн А) метод хорд;	ое приближение: В) метод секуп	ов отыскания корня ур цих; половинного деления	
- - -	A) метод Эйлера имо B) метод Эйлера явл C) метод Эйлера явля	еет второй порядо яется частным слу чется частным слу ачений приближё	к точности; чаем метода Рунге-Ку чаем метода разложен	пи не является верным: утты; ия решения в ряд Тейлора; реходе к следующей точке
23.	Какой из методов реговым? А) метод Адамса; С) метод Рунге-Ку	В) метод	разложения по форму	= y ₀ является многоша- уле Тейлора;

A) 3; B) 7; C) 8; D) 12.

15. Является ли матрица $\begin{pmatrix} 2 & -0.2 & 0.3 & 0.4 \\ 0.3 & -3 & 1 & -1.4 \\ 0.7 & -0.8 & 4 & 2.6 \\ -0.5 & 1.2 & -2.5 & -5 \end{pmatrix}$ матрицей с преобладающей главной

- 24. Интерполяционный многочлен какой степени используется для построения квадратуры Симпсона численного интегрирования?
- 25. Как называется процесс установления промежутков, в каждом из которых содержится ровно один корень уравнения?
- 26. Пусть заданы значения функции на равномерной сетке узлов $x_0, x_1, ..., x_n, n \ge 2$. Сколько конечных разностей второго порядка можно вычислить?
- 27. Существует ли полином, который при использовании метода наименьших квадратов для аппроксимации таблично заданной функции проходит через все заданные точки?
- 28. Пусть для отыскания корня уравнения f(x) = 0 на отрезке [α ; β] используется метод половинного деления. Какое минимальное количество итераций потребуется для того, чтобы найти корень уравнения с точностью ϵ ?
- 29. Пусть заданы узлы $x_0 = 0$, $x_1 = 0.5$ и $x_2 = 1$. Установите соответствие между названиями многочленов и их формулами:

2) ИМН для интерполирования «вперёд» В) 1+6x-4x(x-0.5);

 Γ) 4+4(x-0,5)-4(x-0,5)²;

3) ИМН для интерполирования «назад» Д) 5+2(x-1)-4(x-1)(x-0,5);

E) 10x(x-0.5)-16x(x-1)+2(x-0.5)(x-1).

- 30. При решении уравнения f(x) = 0 приближённым методом левая часть уравнения заменяется новой функцией. Установите соответствие между названиями методов и геометрической интерпретацией функции, заменяющей исходную:
- 1) метод Ньютона;
- A) прямая, параллельная касательной в заданной точке и проходящая через текущее приближение;
- Б)касательная в точке, являющейся текущим приближением;
- 2) метод хорд; В) прямая, проходящая через точки, абсциссы которых представляют собой два последовательных приближения к кор-

ню;

3) метод секущих; Г) прямая, проходящая через точки, абсциссы которых являются концами отрезка, на котором содержится корень

исходной функции.

- 31. Выберите нужные утверждения и расположите в правильной последовательности эта пы практической оценки погрешности численного интегрирования по правилу Рунге:
 - А) разбиение отрезка интегрирования на n равных частей и вычисление интеграла I_n по некоторой численной формуле;
 - Б) вычисление интеграла *I* по формуле Ньютона-Лейбница;
 - В) вычисление интеграла J_n по новой численной формуле;
 - Γ) разбиение отрезка интегрирования на 2n равных частей и вычисление интеграла I_{2n} по той же численной формуле;
 - Д) разбиение отрезка интегрирования на 2n равных частей и вычисление интеграла I_{2n} по новой численной формуле;
 - Е) выбор точности ε и числа разбиений n;
 - Ж) выбор числа точности n и вычисление точности ε по числу n;

- 3) выбор новой точности ε ;
- \mathbf{W}) изменение числа разбиений n и повторение вычислений;
- К) окончание вычислений в случае выполнения $|I_n J_n| \le \varepsilon$ или переход к следующему шагу в противном случае;
- Л) окончание вычислений в случае выполнения $|I_n I| \le \varepsilon$ или переход к следующему шагу в противном случае;
- М) окончание вычислений в случае выполнения $|I_n J_{2n}| \le \varepsilon$ или переход к следующему шагу в противном случае;
- H) окончание вычислений в случае выполнения $|I_{2n} J_n| \le \varepsilon$ или переход к сле дующему шагу в противном случае.
- 32. Определить количество разбиений отрезка, достаточное для вычисления интеграла $\int_1^3 \ln x dx$ методом трапеций с точностью $\varepsilon = 0.01$;.

4.4 Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен)

4.4.1 Примерный перечень вопросов к экзамену

- 1. История и этапы развития вычислительной математики, и её роль в прикладных науках.
- 2. Приближённые числа, их абсолютные и относительные погрешности.
- 3. Сложение и вычитание приближённых чисел. Умножение и деление приближённых чисел.
- 4. Погрешности вычисления значений функции. Определение допустимой погрешности аргументов по допустимой погрешности функции.
- 5. Аппроксимация сеточных функций. Интерполирование.
- 6. Сплайн-интерполяция. Метод наименьших квадратов.
- 7. Интерполяционный многочлен Лагранжа.
- 8. Интерполяционный многочлен Ньютона.
- 9. Схема Эйткена.
- 10. Основные понятия численного решения СЛАУ. Постановка задачи. Метод Гаусса. Схема Гаусса с выбором главного элемента.
- 11. Компактная схема Гаусса для решения СЛАУ.
- 12. Вычисление определителей матриц.
- 13. Вычисление элементов обратной матрицы методом Гаусса.
- 14. Решения СЛАУ методом простой итерации.
- 15. Метод Зейделя решения СЛАУ.
- 16. Метод Ньютона для системы двух нелинейных уравнений.
- 17. Метод простой итерации для системы двух нелинейных уравнений.
- 18. Формулы численного дифференцирования. Погрешности, возникающие при численном дифференцировании.
- 19. Выбор оптимального шага численного дифференцирования.
- 20. Численное интегрирование. Квадратурные формулы с равноотстоящими узлами. Формула трапеций, формула Симпсона, формула Ньютона.
- 21. Выбор шага интегрирования. Квадратурные формулы Гаусса.
- 22. Интегрирование с помощью степенных рядов. Интегралы от разрывных функций. Интегралы с бесконечными пределами.
- 23. Задача Коши для ОДУ. Метод последовательных приближений.
- 24. Задача Коши для ОДУ. Метод Эйлера и его модификации.
- 25. Задача Коши для ОДУ. Метод Рунге-Кутта.
- 26. Задача Коши для ОДУ. Метод Адамса.

- 27. Решение краевых задач для ОДУ. Постановка задачи. Метод конечных разностей для линейных дифференциальных уравнений второго порядка.
- 28. Решение краевых задач для ОДУ. Метод прогонки.
- 29. Решение краевых задач для ОДУ. Метод Галёркина.
- 30. Решение краевых задач для ОДУ. Метод коллокации.
- 31. Метод сеток для уравнений с частными производными.
- 32. Метод сеток для задачи Дирихле.
- 33. Метод прогонки для уравнения теплопроводности.
- 34. Метод сеток для уравнений параболического типа.
- 35. Метод сеток для уравнений гиперболического типа.

4.4.2 Примерный перечень практических заданий к экзамену

- 1. Величина 1/3 приближенно 0.3. представлена как Определить абсолютную и относительную погрешности представления.
- представлена приближенно 0.001_2 . 2. Величина 0.2_{10} Определить абсолютную и относительную погрешности представления.
- $A = \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}_{2}$ 3. Устойчива ли задача вычисления ранга / определителя матрицы Обосновать.
- 4. Устойчива ли задача вычисления корней уравнения $x^2 + 1 = 2x$? Входными данными здесь являются коэффициенты многочлена. Обосновать.
- 5. Определить нормы $\|x\|_1$, $\|x\|_2$, $\|x\|_\infty$ вектора $x = \{2; -1; \sqrt{5}\}^T$. Допустимая абсолютная погрешность вычислений $\Delta = 0.1$.
- 6. Определить норму $\|A\|_{1/} \|A\|_{\infty}$ матрицы $A = \begin{pmatrix} 10 & 1 & -1 \\ 0 & 5 & 1 \\ -2 & 0 & 1 \end{pmatrix}$
- $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ 7. Определить число обусловленности матрицы
- 8. Решить СЛАУ с помощью метода Гаусса с постолбцевым выбором ведущего

$$\begin{cases} x_1 - 2x_2 + 2x_3 = 4 \\ 2x_1 + x_2 + 4x_3 = 3 \\ x_1 - x_2 - x_3 = 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & -1 \end{pmatrix}$$

- 9. Найти определитель матрицы методом Гаусса:
- 10. Решить СЛАУ с помощью LU-разложения матрицы коэффициентов:

$$\begin{cases} x_1 - 2x_2 = 3 \\ 2x_1 + x_2 = 1 \end{cases}$$

$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$

- 11. Найти определитель матрицы с помощью LU-разложения:
- 12. Выполнить 3 итерации решения СЛАУ линейным методом Якоби / Зейделя. В качестве начального приближения взять (1; 1).

$$\begin{cases} x_1 - 2x_2 = 3 \\ 2x_1 + x_2 = 1 \end{cases}$$

13. Построить интерполяционный многочлен Лагранжа / Ньютона таблично заданной функции у:

T J -		- <i>J</i> ·	
х	-1	1	2
у	0	0	3

14. Найти корень нелинейного уравнение $x^2 - 3x = 0$ методом бисекции / Ньютона на отрезке [-1; 2] с абсолютной погрешностью 0.2.

15. Выполнить 2 итерации решения нелинейной системы уравнений методом Якоби / Зейделя / Ньютона (или Ньютона-Рафсона). В качестве начального приближения взять (0.5; 1).

$$\begin{cases} x_1 - x_2^2 = 0 \\ x_1^2 - x_2 = 0 \end{cases}$$

16. Вычислить приближенно 1-ю/2-ю производную таблично заданной функции у в узлах сетки с 1-м/2-м/максимальным порядком точности:

х	-1	0	1	2
у	0	1	0	3

 $f(x) = x^2 - 3x$ 17. Вычислить приближенно 1-ю/2-ю производную функции отрезке [-1; 1] с шагом 0.5 с 1-м/2-м/максимальным порядком точности.

18. Определить погрешность аппроксимации є формулы вычисления производной

Определить $\tilde{f}_i' = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h}$ на равномерной сетке.

 $f(x) = 3x^2$ функцию 19. Проинтегрировать методом прямоугольников (левых/правых/средних) / трапеций / Симпсона на отрезке [0; 2] с шагом 0.5.

20. Для уравнения y' = y - x вычислить значения y методом Эйлера/предиктор-

Kop	рскі	op/r y	/HI C-I	Хутта	
х	0	0.1	0.2	0.3	0.4
ν	1				

4.5 Критерии оценивания результатов обучения

Оценка	Критерии оценивания по экзамену
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки.
Пороговый уровень «3» (удовлетворите льно)	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к
,	минимальному, некоторые практические навыки не сформированы.

Минимальный
уровень «2»
(неудовлетвори
тельно)

оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть дополнен и конкретизирован в зависимости от контингента обучающихся.

5 Перечень учебной литературы, информационных ресурсов и технологий

5.1 Учебная литература

Основная

- 1. Амосов А.А. Вычислительные методы [Электронный ресурс]: учебное пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. 5-е изд. СПб.: Лань, 2024. 672 с. URL: https://e.lanbook.com/book/327497.
- 2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.Г. Численные методы [Электронный ресурс]: учебное пособие для студентов вузов. 9-е изд. М.: Лаборатория знаний, 2020. 639 с. URL: https://e.lanbook.com/book/126099.
- 3. Шевцов Г.С. Численные методы линейной алгебры [Электронный ресурс]: учеб. пособие / Г.С. Шевцов, О.Г. Крюкова, Б.И. Мызникова. 2-е изд., испр. и доп. СПб.: Лань, 2022. 496 с. URL: https://e.lanbook.com/book/210647.
- 4. Фаддеев Д. К. Вычислительные методы линейной алгебры [Электронный ресурс]: учебник / Д.К. Фаддеев, В.Н. Фаддеева. 4-е изд. СПб.: Лань, 2022. 736 с. URL: https://e.lanbook.com/book/210368.
- 5. Зализняк В.Е. Численные методы. Основы научных вычислений [Электронный ресурс]: учебник и практикум для академического бакалавриата. 2-е изд., перераб. и доп. М.: Юрайт, 2022. 356 с. URL: https://urait.ru/bcode/468584.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Дополнительная

- 1. Вержбицкий В.М. Численные методы. Линейная алгебра и нелинейные уравнения [Текст]: учебное пособие для студентов мат. и инженерных спец. вузов. М.: Высшая школа, 2000. 266 с. (16 экз.)
- 2. Вержбицкий В.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения [Текст]: учебное пособие для студентов вузов. М.: Высшая школа, 2001. 382 с. (7 экз.)
- 3. Бахвалов Н.С. Численные методы. Решения задач и упражнения [Электронный ресурс]: учеб. пособие / Н.С. Бахвалов, А.А. Корнев, Е.В. Чижонков. М.: Издательство "Лаборатория знаний", 2016. 355 с. URL: https://e.lanbook.com/book/90239.
- 4. Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. Численные методы [Электронный ресурс]: учебное пособие. Кемеровский государственный университет, 2011. 238 с. Режим доступа: http://biblioclub.ru/index.php?page=book_view_red&book_id=232352.
- 5. Соболева О.Н. Введение в численные методы [Электронный ресурс]: учебное пособие. Новосибирск: НГТУ, 2011. 64 с. Режим доступа: http://biblioclub.ru/index.php?page=book_view_red&book_id=229144.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
- 10. Springer Journals https://link.springer.com/

- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 11. Служба тематических толковых словарей http://www.glossary.ru/;
- 12. Словари и энциклопедии http://dic.academic.ru/;
- 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6 Методические указания для обучающихся по освоению дисциплины

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и

индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе.

Перечень учебно-методического обеспечения для самостоятельной работы обучающегося по дисциплине приведен выше, в подразделе 2.4.

По желанию студента предлагается написание реферата на выбранную им тему (по согласованию с преподавателем). Для написания реферата необходимо подобрать литературу. Общее количество литературных источников, включая тексты из Интернета, (публикации в журналах), должно составлять не менее 10 наименований. Учебники, как правило, в литературные источники не входят.

Рефераты выполняют на листах формата А4. Страницы текста, рисунки, формулы нумеруют, рисунки снабжают порисуночными надписями. Текст следует печатать шрифтом №14 с интервалом между строками в 1,5 интервала, без недопустимых сокращений. В конце реферата должны быть сделаны выводы.

В конце работы приводят список использованных источников.

Реферат должен быть подписан студентом с указанием даты ее оформления.

Работы, выполненные без соблюдения перечисленных требований, возвращаются на доработку.

Выполненная студентом работа определяется на проверку преподавателю в установленные сроки. Если у преподавателя есть замечания, работа возвращается и после исправлений либо вновь отправляется на проверку, если исправления существенные, либо предъявляется на ее защите.

Примерные темы рефератов:

- 1. Метод прогонки при решении СЛАУ.
- 2. Нахождение собственных значений матрицы.
- 3. Интерполяция с неравноотстоящими узлами.
- 4. Численное дифференцирование.
- 5. Метод Монте-Карло при численном интегрировании.
- 6. Метод Ньютона при решении нелинейного уравнения или системы уравнений.
- 7. Неявные методы Милна и Гира при решении ОДУ.
- 8. Численные методы оптимизации.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Методические указания для подготовки к лекционным и семинарским занятиям, утверждены на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол № 10 от 18.05.2023 г.

7 Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель.	Операционная система Windows
проведения занятий лекционного	Технические средства обучения:	10, пакет Microsoft Office

типа (аудитории: 129, 131, 133, A305, A307)	экран, проектор, компьютер/ноутбук	
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (аудитории: 129, 131, 133, A305, A307, 147, 148, 149, 150, 100C, A3016, A512)	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер/ноутбук	Операционная система Windows 10, пакет Microsoft Office
Учебные аудитории для проведения лабораторных работ. Компьютерные классы ФКТиПМ (ауд. 102-107, A301a)	Мебель: специализированная учебная мебель. Технические средства обучения: доска, компьютеры с выходом в глобальную сеть Интернет из расчета не менее 1 ПК на 1 обучающегося, а также компьютер преподавателя	Операционная система Windows 10, пакет Microsoft Office, среды программирования на языках C++, Java, Python

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную

информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель.	Операционная система Windows
работы обучающихся (читальный	Комплект специализированной	10, пакет Microsoft Office
зал Научной библиотеки)	мебели: компьютерные столы	
,	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель.	Операционная система Windows
работы обучающихся (ауд	Комплект специализированной	10, пакет Microsoft Office
аудитория 102а)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	