Аннотация к рабочей программы дисциплины «Б1.О.07 «Криптография и сетевая безопасность»»

Объем трудоемкости: 5 зачетных единиц **Цель дисциплины**:

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки 01.04.02 Прикладная математика и информатика, в рамках которой преподается дисциплина. Преподавание дисциплины Б1.О.07 «Криптография и сетевая безопасность» строится исходя из требуемого уровня базовой подготовки студентов магистратуры, обучающихся по направлению 01.04.02 Прикладная математика и информатика.

В современном мире безопасность информационных систем является важным аспектом стабильной и успешной работы в различных сферах деятельности человека, предприятий, государств, содружеств и т. д.

Конечными целями преподавания дисциплины являются:

- основы обеспечения компьютерной и сетевой безопасности;
- основы безопасности информационных экономических систем предприятия;
- знание федеральных законов по обеспечения информационной безопасности, обработки персональных данных;
- владение основными алгоритмами математики криптографии; знание и использование различных криптосистем шифрования.

Основа изучения дисциплины Б1.О.07 «Криптография и сетевая безопасность» — реализация требований, установленных Федеральным государственным образовательным стандартом высшего профессионального образования к подготовке студентов бакалавриата, обучающихся по направлению 01.04.02 Прикладная математика и информатика.

Задачи дисциплины:

- научить студентов использовать в своей практической деятельности различные алгоритмы шифрования;
- ознакомить с компьютерными технологиями в области персональной и сетевой безопасности;
- привить студентам умения и навыки самостоятельного изучения специальной литературы по информационной безопасности.

Место дисциплины в структуре образовательной программы

Дисциплина Б1.О.07 «Криптография и сетевая безопасность» относится к обязательной части, формируемой участниками образовательных отношений Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина изучается в 1-м семестре и использует разносторонние знания, полученные в предыдущих семестрах. Преподавание дисциплины ведется в виде лекций, лабораторных и самостоятельных занятий. Большая часть лекционного материала дается в интерактивном режиме. Основная цель лабораторных занятий — практическая реализация изученных методов.

Студенты, обучающиеся дисциплине «Криптография и сетевая безопасность» должны владеть навыками логического мышления. Обязательным для них является знание основ безопасности информационных систем. Студент должен уметь использовать навыки работы с алгоритмами защиты информации, технологиями и программами для решения изобретательских и нестандартных задач в области безопасности, в частности безопасности предприятия. Слушатель должен быть готов использовать знания, полученные в рамках дисциплины «Криптография и сетевая безопасность» в своей практической и научнотеоретической деятельности.

Требования к уровню освоения дисциплины

Код и наименование индикатора* достижения компетенции

Результаты обучения по дисциплине

ОПК-1 Способен находить, формулировать и решать актуальные проблемы прикладной математики, фундаментальной информатики и информационных технологий

ИОПК-1.1 Анализирует проблемы и формулирует задачи исследования. в области фундаментальной и прикладной математики

Знает:

-основные теоретические основы криптографии и сетевой безопасности, связанные с математическими понятиями (теория чисел, алгебра, теория групп, теория вероятностей, комбинаторика и теория информации).

-современные исследовательские направления и актуальные проблемы в области криптографических алгоритмов и протоколов.

-методы анализа сложности и защищенности криптографических систем.

Умеет

-анализировать существующие математические модели и алгоритмы, используемые в криптографии и сетевой безопасности.

-выявлять актуальные проблемы и недостатки в существующих методах и протоколах.

-формулировать конкретные задачи исследования на основе анализа актуальных проблем и научных данных.

-оценивать степень актуальности и практической значимости предстоящего исследования.

Владеет:

-навыками критического анализа проблем, связанных с безопасностью информации, и их формулировки.

-способностью определять приоритетные направления исследований в области математических основ криптографии и сетевой безопасности.

ИОПК-1.2 Решает актуальные задачи фундаментальной и прикладной математики

Знает

-основные математические методы и алгоритмы, применяемые для решения задач криптографии и сетевой безопасности — например, факторизация, дискретный логарифм, криптографические протоколы, теория информации и теория графов.

-современные подходы к моделированию и анализу защищенности криптографических систем.

-методы численного и теоретического анализа сложности алгоритмов и оценки их стойкости.

Умеет

-применять математические методы при решении конкретных задач, связанных с криптографией и безопасностью сетей.

-разрабатывать и реализовывать алгоритмы для решения поставленных задач (например, генерация ключей, создание криптоустойчивых протоколов).

-анализировать эффективность, безопасность и надежность криптографических решений.

-оценивать риск уязвимостей и эффективности решений на основе математического анализа.

Владеет

-навыками практического применения математических методов для решения актуальных задач в области криптографической защиты информации и сетевой безопасности.

-умением самостоятельно интерпретировать результаты математического анализа в контексте безопасности системы.

-способностью искать пути улучшения и оптимизации существующих криптографических решений в соответствии с актуальными требованиями.

ОПК-3 Способен разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности

ИОПК-3.1 Анализирует проблемную область и разрабатывает математические модели для решения прикладных задач профессиональной деятельности

Знает:

-основные понятия и требования к моделированию прикладных задач в области информационной безопасности, такие как моделирование угроз, анализ уязвимостей, оценка безопасности и эффективности криптографических протоколов.

-стандартные математические методы и подходы для построения моделей — например, теория графов, математическая логика, теория вероятностей, теория информации, комбинаторика.

-современные криптографические стандарты и протоколы, особенности их уязвимостей и анализа.

Умеет

- -анализировать исходные данные прикладной задачи, выделять ключевые параметры и угрозы.
- -формулировать математическую модель, отражающую сущность и критериографии решения задач безопасности (например, моделирование атак, анализ вероятности уязвимостей).
- -разрабатывать алгоритмы и методы решения поставленных задач на основе выбранной модели.
- -оценивать эффективность и безопасность разработанных моделей и решений, интерпретировать полученные результаты.

Владеет:

- -навыками профессионального анализа проблемной области и постановки конкретных прикладных задач.
- -умением разрабатывать адекватные математические модели, учитывающие специфику задач криптографии и сетевой безопасности.
- -способностью применять разработанные модели для тестирования криптографических протоколов, оценки уязвимостей и нахождения решений.
- -умением представлять результаты моделирования для последующей оценки и принятия решений специалистами по безопасности.

ИОПК-3.2 Исследует применимость и анализирует эффективность модели для решения прикладных задач профессиональной деятельности

Знает:

Основные критерии эффективности криптографических моделей и протоколов. Методы анализа применимости и производительности решений.

Умеет:

Оценивать актуальность модели для конкретных задач в области безопасности. Анализировать эффективность и уязвимости модели на практике.

Владеет:

Навыками тестирования и оценки эффективности разработанных решений и молелей.

	Умением делать выводы о целесообразности использования модели в профессиональной деятельности.
ИОПК-3.3 Разрабатывает и реализует алгоритмы, структуры данных и программные модули для решения прикладных задач, исходя из требований проекта и особенностей задачи.	Знает: Основные алгоритмы криптографической защиты и принципы их реализации. Структуры данных и программные методы для обеспечения безопасности. Требования к пользовательским и системным криптографическим компонентам.
	Умеет: Анализировать прикладную задачу, выявлять требования безопасности. Проектировать и реализовать алгоритмы и модули, соответствующие поставленной задаче и требованиям проекта. Использовать языки программирования и средства разработки для интеграции криптографических решений.
	Владеет: Навыками написания программных модулей для криптографических приложений. Умением учитывать особенности и ограничения криптографических алгоритмов при кодировании. Способностью тестировать и оптимизировать реализованные криптоалгоритмы и модули.

Содержание дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

No	Наименование тем			Количест	во часов	СОВ	
J1 <u>≥</u>	таименование тем	Danna	Аудиторная работа			Внеаудиторная	
		Всего	Л	ПЗ	ЛР	работа СРС	
1	2	3	4	5	6	7	
1.	Введение в дисциплину	21	4		4	13	
2.	Математика криптографии	22	4		4	14	
3.	Алгоритмы шифрования	22	4		4	14	
4.	Безопасность информационных систем предприятия	22	4		4	14	
5.	Алгоритмы реализации электронно- цифровой подписи	22	4		4	14	
6.	Безопасность корпоративной сети	22	4		4	14	

7.	Безопасность в клиентско-серверных приложений	22	4	4	14
	Итого по разделам:	153	28	28	97
	Промежуточная аттестация (ИКР)	0,3			
	Контроль самостоятельной работы (КСР)				
	Подготовка к экзамену	26,7			
	ИТОГО по дисциплине	180			

Курсовые работы: курсовые работы не предусмотрены. **Форма проведения аттестации по дисциплине:** экзамен

Автор Осипян В. О., проф. кафедры анализа данных и искусственного интеллекта, доктор физ.-мат. наук