МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОСИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.03.02 «ПРИКЛАДНАЯ АЛГЕБРА»

Направление

подготовки/специальность 02.03.02

Фундаментальная информатика и информационные технологии

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация *Математическое и программное обеспечение компьютерных технологий*

Программа подготовки академический бакалавриат

Форма обучения очная

Квалификация выпускника *бакалавр*

Рабочая программа дисциплины «Прикладная алгебра» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки (профиль) 02.03.02 Фундаментальная информатика и информационные технологии

Программу составил(а):

Лапина Ольга Николаевна, доцент, к. ф.-м. н.

Aug-

Рабочая программа дисциплины утверждена на заседании кафедры вычислительных технологий, протокол № 7 «07 » мая 2025 г. И.о. заведующего кафедрой (разработчика) Еремин А.А.

(фамилия, инициалы

подпись

Рабочая программа обсуждена на заседании кафедры вычислительных технологий № 7 «07 » мая 2025 г. И.о. заведующего кафедрой (выпускающей) Еремин А.А.

(фамилия, инициалы

подпись

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики протокол № 4 от «23» мая 2025 г.

Председатель УМК факультета

Коваленко А.В.

фамилия, инициалы

подпись

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физикоматематических наук.

Схаляхо Ч.А., доцент КВВУ им.С.М.Штеменко, к.ф.-м.н., доцент

1 ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Цель освоения дисциплины

Целью преподавания и изучения дисциплины Б1.В.ДВ.03.02 «Прикладная алгебра» является овладение студентами математическим аппаратом, применяемым в фундаментальной математике и информатике, и служащим основой для разработки информационных технологий.

При освоении дисциплины «Прикладная алгебра» вырабатывается: умение логически мыслить, проводить доказательство основных утверждений, устанавливать логические связи между понятиями.

Целью освоения прикладных разделов дисциплины является освоение студентами методов решения практически ориентированных задач в различных отраслях жизнедеятельности с использованием: кольца и поля, линейных кодов, циклических кодов, алгебраической полиграфии, элементов теории групп, блок-схем, систем Штейнера и так называемых латинских квадратов.

1.2. Задачи дисциплины.

Задачами изучения дисциплины «Прикладная алгебра» является реализация требований, установленных федеральными государственными образовательными стандартами высшего профессионального образования к уровню подготовки бакалавров по направлению «Фундаментальные информатика и информационные технологии (информатика и компьютерные науки)». Следует различать следующие задачи изучения дисциплины:

- 1. Дать студентам основы знаний по прикладной алгебре;
- 2. Научить применять алгебру в прикладных областях;
- 3. Показать связь прикладной алгебры с информатикой.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Прикладная алгебра» относится к дисциплинам по выбору базовой части ООП. Для изучения дисциплины необходимо знание курсов алгебры, дискретной математики, основ программирования, курса распределенных задач и алгоритмов. Знания, получаемые при изучении курса, используются при изучении программистских дисциплин профессионального цикла учебного плана бакалавра.

Место курса в профессиональной подготовке бакалавра определяется ролью алгебры в формировании высококвалифицированного специалиста по направлению «Фундаментальные информатика и информационные технологии (вычислительные технологии)».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций $(OK/O\Pi K/\Pi K)$

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))
деятельности современный мате	ть в научно-исследовательской и прикладной ематический аппарат, основные законы ыки программное
обеспечение; операционные системы	
ПК-1.1. Знает основы научно- исследовательской деятельности в области информационных технологий, имеет научные знания в теории информационных систем.	Знает основы теории групп и конечных полей, линейные и циклические коды, принципы построения криптосистем.
ПК-1.2. Умеет применять полученные знания в области фундаментальных научных основ теории информации и решать стандартные задачи в собственной научно-исследовательской деятельности.	Умеет применять теорию групп и конечных полей для разработки криптографических протоколов
ПК-1.3. Имеет практический опыт научно- исследовательской деятельности в области информационных технологий.	Имеет практический опыт реализации и анализа криптографических алгоритмов
<u>-</u>	ым руководством локальные исследования на
основе существующих методов деятельности	в конкретной области профессиональной
ПК-2.1 Знает принципы построения научной работы, методы сбора и анализа полученного материала, способы аргументации владеет навыками подготовки научных обзоров, публикаций, рефератов и библиографий по тематике проводимых исследований на русском и английском языке	Знает методы анализа научных источников, владеет методами подготовки научных обзоров по тематике прикладной алгебры
ПК-2.2 Умеет решать научные задачи в связи с поставленной целью и в соответствии с выбранной методикой	Умеет решать стандартные задачи прикладной алгебры
ПК-2.3 Имеет практический опыт выступлений и научной аргументации при анализе объекта научной и профессиональной деятельности	Имеет практический опыт выступлений и научной аргументации при анализе задач прикладной алгебры

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108 часов), их распределение по видам работ представлено в таблице

			Форма обучения			
	Всего	ОЧІ	ная	очная	очная	
Вид р	аботы	часов	6 семестр (часы)	X семестр (часы)	X семестр (часы)	X курс (часы)
Контактная раб	бота в том числе:	68,2	68,2			
Аудиторные зан	нятия (всего):	64	64			
В том числе:						
Занятия лекцион	ного типа	32	32			
Занятия семинар						
(семинары, прак						
Лабораторные за		32	32			
Иная контроль	•	4,2	4,2			
Контроль самостоятельной работы		4	4			
Промежуточная	аттестация (ИКР)	0,2	0,2			
Самостоятельная работа, в том числе		39,8	39,8			
В том числе:						
Курсовая работа	,					
Проработка уче (теоретического		19,8	19,8			
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)		10	10			
Реферат						
Подготовка к текущему контролю		10	10			
Контроль: зачет						
Общая	в час	108	108			
трудоемкость	в т.ч. контактная работа	68,2	68,2			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 6 семестре *(очная форма)*

$N_{\underline{0}}$	Наименование разделов	Количество часов				
раздела		Всего	Ауди	торная ј	работа	Внеаудито
						рная
						работа
			Л	ЛР	КСР	CPC
1	2	3	4	5	6	7
1	Кольца и поля	14	4	4		6
2	Линейные коды	20	6	6	2	6
3	Циклические коды	14	4	4	2	4
4	Алгебраическая полиграфия	20	6	6		8
5	Элементы теории групп	12	4	4		4
6	Основы теории полей	14	4	4		6
7	Блок-схемы	13,8	4	4		5,8
	ИКР	0,2				
	Итого:	108	32	32	4	39,8

Примечание: Л - лекции, ПЗ - практические занятия / семинары, ЛР - лабораторные занятия, СРС - самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

No	Наименование раздела	Содержание раздела	Форма
			текущего
			контроля
1	2	3	4
1	Кольца и поля	Кольца, идеалы, гомоморфизмы, фактор-кольца, многочлены, поля, поля разложения, конечные поля, теорема о цикличности группы ненулевых элементов конечного поля, неприводимые многочлены над конечными полями, автоморфизмы	ЛР
		конечными полями, автоморфизмы конечных полей.	
2	Линейные коды	Определение, примеры, расстояние Хэмминга, связь минимального расстояния с числом исправляемых ошибок, граница Хэмминга кода, исправляющего t ошибок, граница Гилберта-Варшамова, декодирование вектора по лидеру смежного класса, бинарный код Хэмминга, дуальный линейный код.	ЛР, РГЗ
3	Циклические коды	Определение, характеризация, примеры (код Хэмминга), БЧХ – код, код Рида-Соломона, алгоритмы кодирования и декодирования БЧХ-кода.	ЛР, РГЗ
4	Алгебраическая полиграфия	Криптосистемы с единым ключом (шифры Цезаря, Виженера, Хилла), криптосистемы с публичными	ЛР, РГЗ

		ключами (РША – криптосистема,	
		метод рюкзака-ловушки), линейные	
		рекуррентные последовательности (их	
		свойства) и их связь с криптосистемами	
		с бегущим ключом.	
5	Элементы теории групп.	Теорема Кэли, строение группы подстановок, стабилизаторы и орбиты элементов, теорема Бернсайда, цикловой индекс подстановки, многочлены цикловых индексов, теорема Пойа, примеры.	ЛР, РГЗ
6	Основы теории полей	Алгоритм Гольдвассера-Килиана проверки числа на простоту. Алгоритм Ленстры разложения чисел на множители. Алгоритм Берлекэмпа разложения многочлена на неприводимые многочлены над конечным полем.	
7	Блок-схема	Блок-схемы, системы Штейнера, латинские квадраты, шифр Виженера.	ЛР

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

$N_{\underline{0}}$	Номер	Наименование лабораторных работ	Форма
	раздела		текущего
			контроля
1	2	3	4
1	1	Основные алгебраические структуры: группы,	Решение
		кольца, поля.	задач
2	1	Конечные поля, формирование конечных полей.	Решение
			задач
3	2	Линейные коды, границы параметров	Решение
			задач
4	2	Бинарный код Хэмминга	Решение
			задач
5	2	Дуальный линейный код.	Решение
			задач
6	3	БЧХ-код	Решение
			задач
7	3	Коды Рида-Соломона и код Хемминга	Решение
			задач
8	4	Криптосистемы с открытым ключом (RSA-	Решение
		алгоритм, метод рюкзака-ловушки)	задач
9	4	Криптосистемы с единым ключом (шифры	Решение
		Цезаря, Виженера, Хилла)	задач
10	4	Группа точек эллиптической кривой	Решение
			задач
11	5	Группа подстановок	Решение
			задач

12	5	Цикловой индекс подстановки	Решение
			задач
13	6	Алгоритм Гольдвассера-Килиана проверки	Решение
		числа на простоту, алгоритм Ленстры	задач
		разложения чисел на множители	
14	6	Алгоритм Берлекампа факторизации	Решение
		многочленов над конечным полем	задач
15	7	Системы Штейнера	Решение
			задач
16	7	Латинские квадраты. Шифр Виженера.	Решение
			задач

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Кольца и поля	Основная литература [1]
		Дополнительная литература [1]
2	Линейные коды	Основная литература [2]
		Дополнительная литература [2]
3.	Циклические коды	Основная литература [3]
		Дополнительная литература [1-2]
4	Алгебраическая полиграфия	Основная литература [1]
		Дополнительная литература [1-3]
5	Элементы теории групп	Основная литература [2]
		Дополнительная литература [2]
6	Основы теории полей	Основная литература [2]
		Дополнительная литература [2]
7	Блок-схемы	Основная литература [3-4]
		Дополнительная литература [2-3]

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Используемые интерактивные образовательные технологии:

- Компьютерные презентации и обсуждение.
- Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов).

Лекции, лабораторные занятия, тестирование.

К образовательным технологиям относятся интерактивные методы обучения. Интерактивность подачи материала по дисциплине «Прикладная алгебра» предполагает не только взаимодействия вида «преподаватель-студент» и «студент-преподаватель», но и «студент-студент». Все эти виды взаимодействия хорошо достигаются при изложении материала, как на лекционных так и на лабораторных занятиях.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

3.1 Дискуссия

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно излагать мысли. Полезны следующие задания: составление плана решения задачи, поиск другого способа решения, сравнение различных способов решения, проведение выкладок для решения задачи и выкладок для проверки правильности полученного решения.

Студентам предлагается проанализировать варианты решения, высказать своё мнение. Основной объем использования интерактивных методов обучения реализуется именно в ходе дискуссий, как на лекционных, так и на практических занятиях.

Общие вопросы, которые выносятся на дискуссию:

- 1. Составления плана решения задачи.
- 2. Определение возможных способов решений задачи.
- 3. Выбор среди рассматриваемых способов наиболее рационального.
- 4. Самостоятельное составление студентами опорных заданий по теме, характеризующих глубину понимания студентами соответствующего материала.

4. Оценочные и методические материалы.

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной успеваемости студентов.

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной (зачета в 6-м семестрах).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- ответа на зачете (для выявления знания и понимания теоретического материала дисциплины).

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

– при необходимости инвалидам и лицам с ограниченными возможностями здоровья

предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводится в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура фонда оценочных средств для текущей и промежуточной аттестации

	Код и наименование		Наименование оце	еночного средства
№ п/п	код и наименование индикатора	Результаты обучения	Текущий контроль	Промежуточная аттестация
1	ПК-1.1. Знает основы научно- исследовательской деятельности в области информационных технологий, имеет научные знания в теории информационных систем.	Знает основы теории групп и конечных полей, линейные и циклические коды, принципы построения криптосистем.	опрос по теме, лабораторная работа	Вопросы на зачеты
2	ПК-1.2. Умеет применять полученные знания в области фундаментальных научных основ теории информации и решать стандартные задачи в собственной научно-исследовательской деятельности.	Умеет применять теорию групп и конечных полей для разработки криптографических протоколов	опрос по теме, лабораторная работа	Вопросы на зачете
3	ПК-1.3. Имеет практический опыт научно- исследовательской деятельности в области информационных технологий.	Имеет практический опыт реализации и анализа криптографических алгоритмов	опрос по теме, лабораторная работа	Решение задач на зачете
4	ПК-2.1 Знает принципы построения научной работы, методы сбора и анализа полученного материала, способы аргументации владеет навыками	Знает методы анализа научных источников, владеет методами подготовки научных обзоров по тематике прикладной алгебры	опрос по теме, лабораторная работа	Вопросы на зачете

	подготовки научных обзоров, публикаций, рефератов и библиографий по тематике проводимых исследований на русском и английском языке			
5	ПК-2.2 Умеет решать научные задачи в связи с поставленной целью и в соответствии с выбранной методикой	Умеет решать стандартные задачи прикладной алгебры	опрос по теме, лабораторная работа	Решение задач на зачете
6	ПК-2.3 Имеет практический опыт выступлений и научной аргументации при анализе объекта научной и профессиональной деятельности	Имеет практический опыт выступлений и научной аргументации при анализе задач прикладной алгебры	опрос по теме, лабораторная работа	Вопросы на зачете

Типовые контрольные материалы или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы:

Перечень вопросов, которые выносятся на зачет в 6 семестре

Код оцениваемых компетенций – ПК-1, ПК-2.

- 1. Кольца, идеалы, определение, примеры;
- 2. Гомоморфизмы, фактор-кольца;
- 3. Многочлены, поля, поля разложения, конечные поля;
- 4. Теорема о цикличности группы ненулевых элементов конечного поля.
- 5. Неприводимые многочлены над конечными полями;
- 6. Автоморфизмы конечных полей;
- 7. Алгоритм Берлекэмпа разложения многочлена на неприводимые многочлены;
- 8. Линейные коды: определение, примеры;
- 9. Расстояние Хэмминга, связь минимального расстояния с числом исправляемых ошибок;
- 10. Граница кода Хэмминга, исправляющего t ошибок;
- 11. Граница Гилберта-Варшамова, декодирование вектора по лидеру смежного класса;
- 12. Бинарный код Хэмминга;
- 13. Дуальный линейный код;
- 14. Циклические коды: определение, характеристика, примеры (код Хэмминга);
- 15. БЧХ код, код Рида-Соломона;
- 16. Алгоритмы кодирования и декодирования БЧХ-кода;
- 17. Алгебраическая полиграфия, криптосистемы с единым ключом (шифры Цезаря, Виженера, Хилла);

- 18. Криптосистемы с публичными ключами (РША криптосистема, метод рюкзакаловушки);
- 19. Линейные рекуррентные последовательности (их свойства) и их связь с криптосистемами с бегущим ключом;
- 20. Элементы теории групп, теорема Кэли;
- 21. Строение группы подстановок;
- 22. Стабилизаторы и орбиты элементов;
- 23. Теорема Бернсайда;
- 24. Цикловой индекс подстановки, многочлены цикловых индексов;
- 25. Теорема Пойа, примеры;
- 26. Блок-схемы, системы Штейнера;
- 27. Блок-схемы и связь с латинскими квадратами.

Критерии оценивания к зачету

Оценка "зачтено" - практические задания выполнены в срок в объеме не менее 60%. студент демонстрирует правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при аргументации ответов на вопросы при защите лабораторных.

Оценка «не зачтено» - практические задания не выполнены либо предоставлены не в срок в объеме менее 60%, студент демонстрирует наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей:

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Рацеев, С. М. Реализации некоторых криптосистем и корректирующих кодов / С. М. Рацеев. Санкт-Петербург: Лань, 2024. 288 с. ISBN 978-5-507-47919-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/356009?category=1545
- 2. Мартынов, Л. М. Алгебра и теория чисел для криптографии / Л. М. Мартынов. 3-е изд., стер. Санкт-Петербург: Лань, 2024. 456 с. ISBN 978-5-507-48774-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/362942?category=1545
- 3. Введение в теоретико-числовые методы криптографии : учебное пособие для вузов / М. М. Глухов, И. А. Круглов, А. Б. Пичкур, А. В. Черемушкин. 2-е изд., стер. Санкт-Петербург : Лань, 2024. 396 с. ISBN 978-5-507-47610-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/397286?category=1545
- 4. Рацеев, С. М. Элементы высшей алгебры и теории кодирования / С. М. Рацеев. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2023. 684 с. ISBN 978-5-507-47915-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/336809?category=1545
- 5. Рацеев, С. М. Математические методы защиты информации и их основы. Сборник задач / С. М. Рацеев. Санкт-Петербург : Лань, 2023. 140 с. ISBN 978-5-507-45198-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/292910?category=1545

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Введение в теоретико-числовые методы криптографии : учебное пособие / М. М. Глухов, И. А. Круглов, А. Б. Пичкур, А. В. Черемушкин. Санкт-Петербург : Лань, 2022. 400 с. ISBN 978-5-8114-1116-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/210746?category=1545
- 2. Каргаполов, М. И. Основы теории групп / М. И. Каргаполов, Ю. И. Мерзляков. 7-е изд., стер. Санкт-Петербург : Лань, 2024. 288 с. ISBN 978-5-507-49012-

- 7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/367511?category=907
- 3. Ермолаева, Н. Н. Практические занятия по алгебре. Элементы теории множеств, теории чисел, комбинаторики. Алгебраические структуры: учебное пособие / Н. Н. Ермолаева, В. А. Козынченко, Г. И. Курбатова. Санкт-Петербург: Лань, 2022. 112 с. ISBN 978-5-8114-1657-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/211595?category=907
- **4.** Иванов, Б. Н. Дискретная математика. Алгоритмы и программы. Расширенный курс : учебное пособие для вузов / Б. Н. Иванов. 2-е изд., стер. Санкт-Петербург : Лань, 2024. 668 с. ISBN 978-5-507-49205-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/382373?category=914
- **5.** Иорданский, М. А. Кодирование комбинаторных объектов / М. А. Иорданский. 2-е изд., стер. Санкт-Петербург: Лань, 2023. 92 с. ISBN 978-5-507-46502-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/310214?category=914

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. **Консультант Плюс** - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, и лабораторных работ, во время которых закрепляется теоретический материал решением задач.

На лабораторных занятиях проводится стандартная работа по решению задач по алгебраическим структурам. По отдельным темам студентам поручается подготовить презентации и выступить с докладами на занятиях.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников.

Для лучшего освоения дисциплины при ответах на ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО)	
2.	Лабораторные занятия	Лаборатория, укомплектованная специализированной мебелью и техническими средствами обучения	
3.	Групповые (индивидуальные) консультации	Аудитория с учебной мебелью (доски, столы, стулья)	
4.	Текущий контроль, промежуточная аттестация	Аудитория с учебной мебелью	
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.	