Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ К.М.01.02 «Алгоритмы цифровой обработки мультимедиа»

Направление подготовки/специальность <u>02.03.02</u> <u>Фундаментальная</u> <u>информатика и информационные технологии</u>

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация Математическое и программное обеспечение компьютерных технологий

Программа подготовки *академический бакалавриат*

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «Алгоритмы цифровой обработки мультимедиа» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Программу составили:

<u>Крамаренко Андрей Александрович, ст. преподаватель</u> Ф.И.О., должность, ученая степень, ученое звание

Руденко Ольга Валентиновна, к. ф-м наук, доцент

Ф.И.О., должность, ученая степень, ученое звание

Рабочая программа дисциплины «Алгоритмы цифровой обработки мультимедиа» утверждена на заседании кафедры Вычислительных технологий протокол № 7 «07 » мая 2025 г.

И.о. заведующего кафедрой (разработчика) Еремин А.А. фамилия, инициалы

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики протокол № 4 от «23» мая 2024 г.

Председатель УМК факультета

Коваленко А.В.

фамилия, инициалы

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук.

Схаляхо Ч.А., доцент КВВУ им.С.М.Штеменко, к.ф.-м.н., доцент

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Цель освоения дисциплины

Цель дисциплины - дать базовую подготовку в области работы с цифровым изображением и видео, получаемых с помощью оптических цифровых приборов дальнего и ближнего действия. В рамках данной дисциплины студенты должны освоить основные методы и алгоритмы работы с цифровым изображением и видео, получаемыми цифровыми оптическими системами. Кроме того, дисциплина должна содействовать фундаментализации образования и развитию системного мышления студентов.

1.2 Задачи дисциплины

В результате освоения данной компетенции студент должен:
знать основные понятия, методы, алгоритмы и средства цифрового зрения
уметь применять теории, методы, алгоритмы цифрового зрения

владеть знаниями теории, методов, алгоритмов цифрового зрения для решения теоретических проблем фундаментальной информатики и практических задач информационных технологий.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Курс «Алгоритмы цифровой обработки мультимедиа» относится к обязательной части блока Б1 Дисциплины (модули) и является обязательной дисциплиной.

Для изучения дисциплины студент должен владеть знаниями, умениями и навыками полученными в дисциплинах - «Дискретная математика», «Алгебра», «Основы программирования», «Дифференциальное исчисление», «Теория графов и ее приложения», «Интегральное исчисление», «Методы программирования», «Функциональные последовательности и ряды».

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих профессиональных компетенций и соотнесенных с ними индикаторов достижения компетенций: ОПК-3; ОПК-5.

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))		
ОПК-3 Способен к разработке алгоритми	ических и программных решений в области		
системного и прикладного программиро	вания, математических, информационных и		
имитационных моделей, созданию инф	ормационных ресурсов глобальных сетей,		
образовательного контента, прикладных баз,	данных, тестов и средств тестирования систем и		
средств на соответствие стандартам и исходн	ым требованиям		
ОПК-3.1. Знает методы теории алгоритмов,	Знает математические методы анализа данных,		
методы системного и прикладного	методы и прикладные языки для разработки		
программирования, основные положения и	программных решений в области обработки		
концепции в области математических,	больших данных, математических,		
информационных и имитационных моделей;	информационных и имитационных моделей.		
ОПК-3.2. Умеет соотносить знания в	Умеет корректно построить архитектуру		
области программирования, интерпретацию	кроссплатформенного приложения.		
прочитанного, определять и создавать	Реализовать программу, включающую		
информационные ресурсы глобальных	реализацию сенсорно-моторной координации		

	Результаты обучения по дисциплине
Код и наименование индикатора*	(знает, умеет, владеет (навыки и/или опыт
код и наимспование индикатора	деятельности))
сетей, образовательного контента, средств	и пространственного позиционирования,
тестирования систем	алгоритмы извлечения и обработки данных,
	включая возможности автономного принятия
	решений на основе ИИ.
ОПК-3.3. Имеет практический опыт	Владеет языками системного и прикладного
применения разработки программного	программирования для разработки
обеспечения.	математических, информационных и
	имитационных моделей, для обработки
	информационных ресурсов глобальных сетей и
	прикладных баз данных.
ОПК-5 Способен инсталлировать и сопровож	дать программное обеспечение информационных
систем и баз данных, в том числе отечествени	юго происхождения, с учетом информационной
безопасности.	
ОПК-5.1. Знает современные	Знает стандартные библиотеки сред
методологические приемы для	разработки: средства для принятия
доказательства фактов и анализа задач в	алгоритмических и программных решений в
области математики и информатики,	области системного и прикладного
относящейся к соответствующей	программирования, математических,
специальности	информационных и имитационных моделей.
ОПК-5.2. Умеет объяснять логику	Умеет разрабатывать программные решения
доказательств и воспроизводить в нужной	для задач цифровой обработки изображений,
последовательности и взаимосвязи факты из	принимать программные решения в области
основных разделов математики и	системного и прикладного программирования,
информатики, относящихся к	математических, информационных и
соответствующей специальности	имитационных моделей.
ОПК-5.3. Владеет навыками модернизации	Владеет современным и системами
стандартных курсов с обновлением	программирования, математическими
методического сопровождения в области	пакетами для построения математических,
математики и информатики, относящейся к	информационных и имитационных моделей.
соответствующей специальности и	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разлелы лисциплины, изучаемые в 7 семестре (очная форма)

Вид учебной работы	Всего	Семестры		
	часов	(часы	<u>.</u>)	
		7		
Контактная работа в том числе:	72	72		
Аудиторные занятия (всего):	56,2	56,2		

В том числе:				
Занятия лекционного типа	16	16		
Занятия семинарского типа (семинары, практ. занятия)			
Лабораторные занятия		34	34	
Иная контрольная работа				
Контроль самостоятельной р	работы	6	6	
Промежуточная аттестация ((ИКР)	0,2	0,2	
Самостоятельная работа (в	15,8	15,8		
В том числе:				
Курсовая работа				
Проработка учебного (теор	7	7		
Выполнение индивидуальных	8,8	8,8		
Подготовка к текущему кон	тролю			
Контроль:				
Подготовка к экзамену:				
Общая трудоемкость час		72	72	
	в т.ч. контактная работа	56,2	56,2	
	зач. ед.	2	2	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 7 семестре *(очная форма)*

2.3 Содержание разделов дисциплины:

			Количество часов				
№	Наименование разделов	Всего	A	работа орная		Внеаудит орная работа	
			Л	КСР	ЛР	CPC	
1	2	3	4	5	6	7	
1	Раздел 1. Обработка изображений и видео	71,8	16	6	34	15,8	
	Промежуточная аттестация (ИКР)	0,2					
	Итого по дисциплине:	72					

2.3.1 Занятия лекционного типа

№ раз-	Наименование раздела	Содержание раздела	Форма текущего контроля	Разработ ано с участием
дела			Koniposin	представ ителей работода телей
1	2	3	4	5
1	Раздел 1. Обработка изображений и видео	Введение в цифровую обработку изображений видео в реальном времени. Библиотека OpenCV. Использование совместно с ЯП Python и С++. Обработка видео с вебкамеры и IP-камеры. Цветовые модели RGB, HSV, Grayscale. Преобразования цветовых моделей. Запись видео. Алгоритм обнаружения движения.	ЛР, ИЗ	

Прямой доступ к пикселям изображения. Центральные моменты цифрового изображения. Инвариантные моменты Ху и Флассера к вращению и масштабированию. Определение ориентации изображения через центральные моменты Линейная пространственная фильтрация. Линейные сглаживающие фильтры и фильтры выделения	ЛР, ИЗ	
контура (фильтр Гаусса, фильтр Собеля). Детектор Канни. Морфологические операции. Разрушение и расширение (Erosion и Dilation). Фильтрация шума.		
Алгоритм определения топологической структуры изображения. Поиск контуров объектов. FindContours в OpenCV.		
Задача отслеживания перемещения контура объекта. Трекеры в OpenCV. Алгоритм КСГ (Kernelized Corellation Filters). Дискретное преобразование Фурье для цифрового изображения. Определение геометрического поворота основных компонентов изобажения.		
Алгоритм Medianflow. Распознавание объектов на изображениях. Понятие точности и полноты распознавания (precision, recall). Алгоритм TrackingLearning-Detection (TLD). Алгоритм Generic Object Tracking Using Regression Networks (GOTURN).		
Поиск объектов на изображении. Каскадный классификатор Хаара. Детектор лиц OpenCV. Сопоставление локальных особенностей и гомография. Глубокие нейронные сети. Сверточные сети для обработки изображений. Использование сверточных нейронных сетей для распознавания объектов на изображениях. Кегаз. Автообучение.	ИЗ	

2.3.2. Занятия семинарского типа

Занятия семинарского типа – не предусмотрены.

2.3.3. Лабораторные занятия

No	$N_{\underline{0}}$		Форма
работы	раздела	Наименование лабораторных работ	текущего
	дисциплины		контроля
1	2	3	4
1	1	Запуск программы OpenCV в Python и C++. Обработка изображений.	Решение задач
2	1	Работа с ІР и веб-камерой, запись видео.	Решение задач
3	1	Обнаружение движения и запись в файл	Решение задач
4	1	Отслеживание перемещения объекта по цвету.	Решение задач
5	1	Классификация цвета центрального пикселя прямым доступом к пикселям кадра.	Решение задач
6	1	Размытие изображения по Гауссу	Решение задач
7	1	Детектор границ Канни	Решение задач

8	1	Сравнение алгоритмов трекинга, Алгоритм КСГ.	Решение задач
9	1	Алгоритм TrackingLearning-Detection (TLD). Алгоритм Generic Object Tracking Using Regression Networks (GOTURN).	Решение задач
10	1	Сравнение алгоритмов трекинга, Алгоритм Medianflow.	Решение задач
11	1	Введение в нейронные сети	Решение задач
12	1	Поиск объектов сопоставлением локальных особенностей.	Решение задач
13	1	Системы оптического распознавания текста. Tesseract и Easy OSR	Решение задач
14	1	Обнаружение объектов на изображении. Обнаружение лиц на изображении с помощью каскадов Хаара	Решение задач
15	1	Классификация изображения с помощью обученной нейронной сети на датасете ImageNet.	Решение задач
16	1	Обучение нейронной сети и автообучение для классификации изображений двух классов CIFAR10.	Решение задач

2.3.3 Примерная тематика курсовых работ (проектов)

Учебным планом не предусмотрены.

2.3.4 Расчетно-графические задания

Учебным планом не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	• •	Источники основной и дополнительной литературы, ИЗ1

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Пример варианта индивидуальных заданий по дисциплине:

Индивидуальное задание № 1

Индивидуальное задание состоит в разборе и сравнительном анализе 3 методов трекинга на выбранных форматах видео:

- выбрать набор видео некоторого класса для анализа, на данных видео с помощью трекинга должна решаться конкретная практическая задача, определить основные параметры видео кодек, частота кадров, интенсивность объектов, длительность видео и выбрать 5 конкретных видео для примера;
- реализовать с помощью встроенных методов 3 различных метода трекинга, обосновать изначальный выбор именно этих методов, указать обоснование в презентации;
- запустить 3 реализации на 5 конкретных видео, получить 20 видеофайлов (начальные видео + 3 модификации)
- выбрать не менее 3 важных параметров оценка качества трекинга непосредственно для Вашей задачи (например, частота потери изображения, возвращение при выходе за границы экрана и тд);
- провести сравнительный анализ 3 реализаций на основе выбранных параметров, составить сводную таблицу
- разобрать математическую модель и алгоритм работы реализаций, построить самостоятельно реализацию одного из применяемых алгоритмов, или выбрать новый метод;
- обязательно подготовить описание выбранного метода, описание применяемых библиотек и методов, описание мат модели решения;
- сравнить свою реализацию с библиотечными, протестировать на тех же видео и по тем же параметрам.

Индивидуальное задание № 2.

Индивидуальное задание состоит в анализе применимости методов выявления границ объектов на изображении заданного типа. Для выполнения задания необходимо выполнить несколько задач:

- выбрать тип изображений для анализа, при этом анализ должен содержать практический аспект применения алгоритма (выявление контуров людей, автомобилей, контуры на медицинских, биологических, физических изображениях) и технические характеристики изображения (разрешение, качество и тд), в качестве рекомендации лучше максимально сузить область анализа);
- подготовить набор данных на проведения анализа, количество изображений варьируется от темы;
- протестировать алгоритм Канни с 3 различными параметрами размытия Гаусса, на 3-5 изображениях, выделить оптимальный параметр,
- протестировать алгоритм Канни для каждого из параметров прошлого пункта, выбрав по 3 различных пары пороговых значений, итого 9 тестов для каждого изображения, выявить оптимальные параметры (размытие, пороги фильтрации) для выявления границ для каждого из изображений.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Семестр	Вид занятия	Используемые интерактивные	Количество часов
	$(\Pi, \Pi P, \Pi P)$	образовательные технологии	

	Л	Компьютерные презентации и обсуждение	16
7	ЛР	Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов)	34
Итого:			50

4. ОЦЕНОЧНЫЕ СРЕДТСВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1 Фонд оценочных средств для проведения текущего контроля

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения задач на лабораторных работах, средств итоговой аттестации (зачет в 7 семестре).

Оценка успеваемости осуществляется по результатам: - выполнения лабораторных работ; - ответа на зачете (для выявления знания и понимания теоретического материала дисциплины).

Перечень вопросов, которые выносятся на зачет в 7 семестре:

- 1. Опишите, в чем заключается принцип операции размытия изображения и зачем ее применяют? Опишите алгоритм размытия по Гауссу.
- 2. Что такое операция свертки матрицы изображения? Приведите примеры операций над изображениями, в которых вы используете операцию свёртки.
- 3. Опишите известные вам морфологические операции над изображениями, поясните, зачем их применяют.
- 4. Опишите, в чем заключается задача выявления контуров, и области применения этой задачи. Опишите основные этапы алгоритма Канни.
- 5. На чем основываются градиентные методы выявления контуров? Что такое градиент пикселя изображения и какие могут возникнуть проблемы с его вычислением? Объясните почему они возникают. Зачем необходимы операторы? Какие операторы вы знаете и в чем их отличие друг от друга? Опишите принцип работы оператора Собеля и особенности его использования в алгоритме Канни. Каким образом и для чего осуществляется округление угла градиента? Опишите на примере матрицы изображения, зачем хранить угол и для чего его округлять. Поясните на чертеже, как происходит округление.
- 6. Алгоритм Канни: Опишите, в чем суть этапа подавление немаксимумов, покажите роль угла градиента в данном этапе. Опишите, в чем принцип двойной пороговой фильтрации.
 - 7. Опишите алгоритм выявления движения на видео.
- 8. Опишите, что такое операция бинаризации изображения, поясните, для чего она используется и какие вы знаете способы её выполнения в openCV
- 9. Объяснить, зачем применяется формат HSV, рассказать значения каждого из параметров, объяснить геометрическое представление форматов RGB и HSV, раскрыть смысл преобразования из RGB в HSV, формулы и геометрический смысл
- 10. Дать определения моментам объектов на изображении, Раскрыть алгоритм трекинга объекта на изображении, общий подход трекинга с помощью центральных моментов изображения
- 11. Описать принцип классификации изображения с помощью нейронной сети: вход, выход, возможный выбор архитектуры.
- 12. Опишите принцип работы сверточной нейронной сети для классификации изображения, опишите основные слои и принципы их работы.
 - 13. Опишите принцип обучения нейронной сети с учителем, смысл и место

применяемых функций ошибки и алгоритмов оптимизации.

- 14. Опишите разницу между обучением последовательным и пакетным, особенности реализации пакетного обучения в keras и функции ошибки для пакетного обучения в keras.
 - 15. Опишите известные способы решения задачи выявления объектов н изображении.
- 16. Опишите принцип алгоритма Виолы Джонса поиска объектов на изображении по их ключевым признакам. В какой модели он применяется, на каких задачах хорошо работает? Опишите, как вы пользовались этой моделью, принципы её обучения.
- 17. Опишите принципы архитектуры UNET, приведите примеры, опишите область её применения.
- 18. Опишите известные Вам ОСR модели, зачем они нужны, опишите достоинства и нелостатки.
- 19. Опишите приблизительно API OCR системы Tesseract, опишите, какие задачи она может выполнять, от каких параметров зависит, как происходит обучение.
- 20. Опишите модель YOLO на примере любой версии, поясните принципы работы, используемые датасеты и технологии, принципы обучения этой модели.

Критерии оценивания:

"Зачет" - изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой;

- наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности. Практические задания выполнены на 60-100%.

"Не зачет"- баллов (оценка неудовлетворительно) - ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы». Выполнено менее 60% практических заданий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Шапиро, Л. Компьютерное зрение : учебное пособие / Л. Шапиро, Д. Стокман ; под редакцией С. М. Соколова ; перевод с английского А. А. Богуславского. 4-е изд. Москва : Лаборатория знаний, 2020. 763 с. ISBN 978-5-00101-696-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/135496 (дата обращения: 24.05.2024). Режим доступа: для авториз. пользователей.
- 2. Селянкин, В. В. Компьютерное зрение. Анализ и обработка изображений / В. В. Селянкин. 3-е изд., стер. Санкт-Петербург : Лань, 2023. 152 с. ISBN 978-5-507-45583-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/276455 (дата обращения: 24.05.2024).
- 3. Клетте, Р. Компьютерное зрение. Теория и алгоритмы : учебник / Р. Клетте ; перевод с английского А. А. Слинкина. Москва : ДМК Пресс, 2019. 506 с. ISBN 978-5-97060-702-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/131691 (дата обращения: 24.05.2024).

5.2 Дополнительная литература:

- 1. Борисова, И. В. Компьютерное зрение. Цифровая обработка и анализ изображений: учебное пособие / И. В. Борисова. Новосибирск: НГТУ, 2022. 163 с. ISBN 978-5-7782-4851-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/404522 (дата обращения: 24.05.2024).
- 2. Кудрявцев, Н. Г. Практика применения компьютерного зрения и элементов машинного обучения в учебных проектах : учебное пособие / Н. Г. Кудрявцев, И. Н. Фролов. Горно-Алтайск : ГАГУ, 2022. 180 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/271100 (дата обращения: 24.05.2024).
- 3. Луцив, В. Р. Компьютерное зрение : учебное пособие : в 3 частях / В. Р. Луцив, М. А. Михалькова, В. О. Ячная. Санкт-Петербург : ГУАП, 2022 Часть 1 : Основные понятия и начала теории автоматического анализа изображений 2022. 157 с. ISBN 978-5-8088-1727-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/340955 (дата обращения: 24.05.2024).

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 3EC «BOOK.ru» https://www.book.ru

- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods: https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы $Ky \delta \Gamma Y$

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2.ЭлектроннаябиблиотекатрудовученыхКубГУhttp://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6

- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, лабораторных работ, контрольных работ, выполнение индивидуальных заданий зачета и экзамена.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников и методических указаний автора курса. Стоит отметить, что в рамках самостоятельной работы происходит разработка согласно Agile методологии и выполнение спринтов к четко обозначенным срокам.

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Наименование специальных помещений	Оснащенность	Перечень лицензионного программного обеспечения
помещении	специальных помещений	кинэрэпээоо
Учебные аудитории для проведения занятий лекционного типа (ауд. 129, 131, A305.)	Мебель: учебная мебель Технические средства обучения:	PowerPoint. ауд. 129, 131, A305.
	экран, проектор, компьютер	
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (ауд. 147,148)	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Аудитория, (кабинет) – компьютерный класс

Учебные аудитории для	Мебель: учебная	Лаборатория, укомплектованная	
проведения лабораторных	мебель	специализированными техническими	
работ. Лаборатория 102,105,106	Технические средства	средствами обучения – компьютерный класс, с	
	обучения: компьютер	возможностью подключения к сети «Интернет»,	
		программой экранного увеличения и	
		обеспеченный доступом в электронную	
		информационно-образовательную	
		среду университета.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно- образовательную среду образовательной организации, веб- камеры, коммуникационное оборудование, обеспечивающее	 OS Windows, MS Office, MS Visual Studio. OpenCV. Графический редактор GIMP. PyCharm, Python. ROS, Ubuntu.
	доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	
Помещение для самостоятельной работы обучающихся	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, вебкамеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	 OS Windows, MS Office, MS Visual Studio. OpenCV. Графический редактор GIMP. PyCharm, Python. ROS, Ubuntu.