Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.ДВ.01.02 «ТЕХНОЛОГИИ GRID ВЫЧИСЛЕНИЙ»

Направление

подготовки/специальность <u>02.03.02 Фундаментальная информатика и</u>

<u>информационные технологии</u>

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация *Математическое и программное обеспечение компьютерных технологий*

Программа подготовки академический бакалавриат

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «ТЕХНОЛОГИИ GRID ВЫЧИСЛЕНИЙ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Программу составил(а):

<u>Приходько Татьяна Александровна, доцент, к. т. н.</u> Ф.И.О., должность, ученая степень, ученое звание

подпись

Рабочая программа дисциплины Б1.В.ДВ.01.02 «ТЕХНОЛОГИИ GRID ВЫЧИСЛЕНИЙ» утверждена на заседании кафедры

<u>Вычислительных технологий</u> протокол № 7 «07 » мая 2025 г. И.о. заведующего кафедрой (разработчика) Еремин.А.А.

фамилия, инициалы

подпись

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики

протокол № 4 от «23» мая 2024 г

Председатель УМК факультета

Коваленко А.В.

фамилия, инициалы

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук.

Схаляхо Ч.А., доцент КВВУ им.С.М.Штеменко, к.ф.-м.н., доцент

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Цель освоения дисциплины

Цель дисциплины: Целью преподавания и изучения дисциплины «ТЕХНОЛОГИИ GRID ВЫЧИСЛЕНИЙ» является овладение студентами математическим аппаратом и алгоритмами проектирования и программирования grid-систем, получение практических навыков решения различных задач в сетевой распределенной среде grid-архитектуры.

1.2 Задачи дисциплины: Основные задачи освоения дисциплины.

Студент должен знать основные понятия, методы, алгоритмы и программные средства распределенной обработки информации, а также правовые и этические ограничения такой обработки; уметь применять аналитические методы и методы имитационного моделирования для разработки и верификации алгоритмов функционирования grid-сетей; владеть методами и технологиями и системным и прикладным программным обеспечением для решения задач проектирования и программирования grid-систем.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «ТЕХНОЛОГИИ GRID ВЫЧИСЛЕНИЙ» относится к дисциплинам по выбору вариативной части блока Б1 учебного плана. Для изучения дисциплины необходимо знание основ архитектуры вычислительных систем, объектно- ориентированного проектирования и программирования, компьютерных сетей. Знания, получаемые при изучении распределенных алгоритмов, используются при изучении таких дисциплин учебного плана бакалавра как «Облачные вычисления», «Оценка сложности алгоритмов», а также при работе над магистерской диссертацией.

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующими **профессиональными компетенциями и соотнесенные с ними индикаторы** достижения компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))		
<u> </u>	о-исследовательской и прикладной деятельности современный естествознания, современные языки программирования и мы и сетевые технологии		
ПК-1.1. Знает основы научно- исследовательской деятельности в области информационных технологий, имеет научные знания в теории информационных систем	Системные методологии и концепции языков программирования распределенных приложений, принципы конструирования клиент-серверных приложений, с учетом особенностей различных операционных систем и принципов сетевых коммуникаций.		
ПК-1.2. Умеет применять полученные знания в области фундаментальных научных основ теории информации и решать стандартные задачи в собственной научно-исследовательской деятельности	Разрабатывать архитектурные проекты сетевых информационных систем, алгоритмы и программы, предназначенные для работы в компьютерных сетях, понимать принципы их функционирования, выполнять рефакторинг и поддержку чужих распределенных программ		

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))			
ПК-1.3. Имеет практический опыт научно- исследовательской деятельности в области информационных технологий	Владеет методологией использования современных инструментальных и вычислительных средств в сфере распределенных систем (в соответствии с профилем подготовки) в составе научно- исследовательского и производственного коллектива			
последующей профессиональной де	е основных методов искусственного интеллекта в еятельности в качестве научных сотрудников, рганизаций высшего образования, инженеров,			
ПК-5.1. Знает основные принципы и методы анализа данных	Современные международные и профессиональные стандарты информационных технологий, современные парадигмы и методологии, инструментальные и вычислительные средства разработки распределенных приложений.			
ПК-5.2. Умеет применить методы анализа данных и машинного обучения для решения задач профессиональной деятельности	Умеет применять в профессиональной деятельности современные языки программирования и методы параллельной обработки данных и методы машинного обучения, для разработки распределенных приложений, электронных библиотек и пакетов программ.			
ПК-5.3. Имеет практический опыт применения методов искусственного интеллекта для получения новых аналитических результатов в решении задач профессиональной деятельности	Современными средствами разработки распределенных приложений, электронных библиотек и пакетов программ на основе языков программирования Java, C++, Phython и др., владеть навыками работы с сетевыми базами данных, применять в профессиональной деятельности методы искусственного интеллекта			
ПК-7 Способность к анализу требовани информационной системы; способность информационной системы в конкретной	й и разработке вариантов реализации к оценке качества, надежности и эффективности			
ПК-7.1. Знает методику анализа требований и вариантов реализации информационных систем.	Современные международные и профессиональные стандарты информационных технологий, современные парадигмы и методологии, инструментальные и вычислительные средства разработки распределенных приложений.			
ПК-7.2. Умеет оценивать качество, надежность и эффективность информационной системы.	Умеет применять в профессиональной деятельности современные языки программирования и методы параллельной обработки данных для разработки распределенных приложений, электронных библиотек и пакетов программ. Умеет оценивать качество, надежность и эффективность информационной системы.			
ПК-7.3. Имеет практический опыт разработки вариантов реализации информационных систем.	Современными средствами проектирования и разработки распределенных приложений, электронных библиотек и пакетов программ на основе языков программирования Java, C++, Phython и др., владеть навыками работы с сетевыми базами данных.			

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 4 зач.ед. (144 часов), их распределениепо видам работ представлено в таблице (для студентов ОФО)

Вид учебной работы	Всего	Семес	тры
	часов	(часі	ы)
		7	
Контактная работа в том числе:	72,3	72,3	
Аудиторные занятия (всего):	72	72	
В том числе:			
Занятия лекционного типа	34	34	
Занятия семинарского типа (семинары, практ. занятия)			
Лабораторные занятия	34	34	
Иная контрольная работа			
Контроль самостоятельной работы	4	4	
Промежуточная аттестация (ИКР)	0,3	0,3	
Самостоятельная работа (всего)	36	36	
В том числе:			
Курсовая работа			
Проработка учебного (теоретического) материала	14	14	
Выполнение индивидуальных заданий (подготовка	16	16	
сообщений, презентаций)			
Реферат	_	_	
Подготовка к текущему контролю	6	6	
Контроль:			
Подготовка к экзамену:	35,7	35,7	
Общая трудоемкость час	144	144	
в т.ч. контактная работа	72,3	72,3	
зач. ед.	4	4	

2.1 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в <u>7</u> семестре (очная форма)

			Количество часов			
№	Наименование разделов	Всего	A	Аудитор работ	ная	Внеаудит орная работа
			Л	КСР	ЛР	CPC
1	2	3	4	5	6	7
1.	Тема 1. Классификации высокопроизводительных вычислительных систем	20	4		8	8
2.	Тема 2. Модели вычислений и оценки производительности систем	25	8	1	8	8

3.	Тема 3. Вычислительные системы с общей и распределенной памятью	25	8	1	8	8
4.	Тема 4. Суперкомпьютеры, элементы высокопроизводительных систем, вычислительные системы с нетрадиционной архитектурой	16	8		4	4
5.	Тема 5. Организация и программирование вычислительных кластеров	22	6	2	6	8
	Итого:	108	34	4	34	36
	Контроль	35,7				
	ИКР	0,3				
	Итого по дисциплине:	144				

Примечание: Л - лекции, КСР - контрольные и самостоятельные работы, ЛР - лабораторные занятия, СРС - самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№ раз-	Наименование раздела	Содержание раздела	Форма текущего контроля
дела			Фо теку конт
1	2	3	4
1	Тема 1. Классификации высокопроизводитель ныхвычислительных систем	История развития многопроцессорной вычислительной техники. Важнейшие архитектурные решения для повышения производительности вычислительных устройств. Многопроцессорность и многоядерность. Классификация многопроцессорных вычислительных устройств. Особенности организациирабочих станций, суперкомпьютеров, кластеров. Скалярная, конвейерная, многопроцессорная обработка. Классификации вычислительных устройств. Классификации по Флинну, Фенгу, Хендлеру, Хокни, Шнайдеру, Скилликорну.	ЛР
2	Тема 2. Модели вычислений и оценки производительно сти систем	Вычислительные системы с распределенной памятью. Компьютеры CRAYT3D, T3E. Управляющие и Векторно-конвейерные компьютеры. CRAY-90. Структура оперативной памяти. Регистровая структура. Функциональные устройства. Пиковая и реальная производительность. Производительность параллельных компьютеров. Сравнение вычислительных систем. Пиковая производительность и формат данных. Вычислительные и коммуникационные ядра.	ЛР

3	Тема 3. Вычислительные системы с общей и распределенной памятью	Параллельные компьютеры с общей памятью. Компьютеры HPSuperdome. Ячейка компьютера. Локальные и удаленные ячейки. Процессор PA8700. Работа с памятью. Вычислительные системы с распределенной памятью. Компьютеры CRAYT3D, T3E. Управляющие и вычислительные узлы. Процессорный элемент. Сетевой интерфейс. Сетевой маршругизатор. Коммуникационная сеть. Память. Кластерные проекты.	ЛР
4	Тема 4. Суперкомпьютеры, элементы высокопроизводитель ныхсистем, вычислительные системы с нетрадиционной архитектурой	Концепция GRID и метакомпьютинг. Метакомпьютер как распределенная система. Особенностираспределения задач и передачи данных. Различные проекты. Концепция GRID.	ЛР
5	Тема 5. Организация и программирование вычислительных кластеров	Производительность параллельных компьютеров. Сравнение вычислительных систем. Вычислительные и коммуникационные ядра. История развития вычислений на видео ускорителях. Препятствия на пути программиста допоявления архитектуры СUDA. Формулирование технической задачи как традиционного рендеринга. Особенности архитектуры и программирования СUDA. Схема программы с использованием СUDA. Сетка, блок, варп, нить. Расширения языка Си для платформы СUDA. Спецификаторы функций и переменных. Добавленные типы данных, переменные и функции. Директивы вызова ядра. Получение информации о возможностях видеоускорителя. Замеры времени на GPU. CUDA events. Иерархия памяти CUDA. Расположение, уровень доступа. Особенности работы с глобальной памятью CUDA. Оптимизация использования глобальной памяти.	

2.3.2 Лабораторные занятия

Одна лабораторная работа выполняется в течение 4 аудиторных часов.

№	№ раздела	Наименование лабораторных работ	Форма
работы	дисциплины		текущего
			контроля

1	3	Программирование при работе с интерфейсом	Отчет по
		SMP. Решение системы ОДУ методом Эйлера и	лаборатор-
		Рунге-Кутта 2.	ной работе
2	3	Программирование при работе с интерфейсом	-//-
		МРР. Численное интегрирование методами	
		Симпсона и Монте-Карло.	
3	4	Работа на архитектуре CUDA. Моделирование	-//-
		процессов теплопередачи.	
4	5	Особенности работы на архитектуре CUDA.	-//-
		Моделирование работы нейронной сети.	

2.3.4 Примерная тематика курсовых работ (проектов)

Учебным планом не предусмотрены.

2.3.5 Расчетно-графические задания

Учебным планом не предусмотрены.

2.4. Перечень учебно-методического обеспечения для самостоятельной работыобучающихся по дисциплине

№	Вид СРС	Перечень учебно- методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Раздел 2. Оценка ускорения при параллельной модели вычислений; Командные и информационные структуры на информационном графе; Граф потоков данных; Яруснопараллельная форма информационного графа;	Основная литература 1, 2
2	Раздел 3. Системы команд и задание последовательности выполнения операторов. Универсальные единицы измерения производительности (MIPS, MFLOPS); Тест UNPACK, прочие универсальные тесты производительности систем; Системы команд и задание последовательности выполнения операторов. Универсальные единицы измерения производительности (MIPS, MFLOPS); Тест UNPACK, прочие универсальные тесты производительности систем.	Основная литература 1, 2,3,4
3	Раздел 4. Методы и способы оценки быстродействия вычислительных систем; Способы измерения производительности вычислительных систем; Тесты производительности параллельных вычислительных систем SPEC, TPC.	Дополнительная литература 3, 4

4. Раздел 5. Масштабируемая балансировка нагрузки на распределенные web-серверы с использованием мобильных агентов. Политики балансировки (клиентская, серверная, основанная на DNS, основанная на диспетчеризации). Методы и способы обеспечения когерентности кэш-памяти. Достоинства и недостатки модели архитектуры с общей памятью; Примеры систем с общей памятью с архитектурой SMP и NUMA. Топологии вычислительных систем с распределенной памятью, свойства топологий, влияние топологии на скорость передачи сообщений.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа, для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Семестр	Вид занятия	Используемые интерактивные	Количество
	(Л, ПР, ЛР) образовательные технологии		часов
	Л	Компьютерные презентации и обсуждение	34
7	ЛР	Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов)	34
7	КРС	Контрольная работа	4
Итого:			72

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для лиц с ограниченными возможностями здоровья предусмотрена организацияконсультаций с использованием электронной почты.

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ИПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1 Фонд оценочных средств для проведения текущего контроля

Фонд оценочных средств дисциплины состоит из средств текущего контроля

выполнения лабораторных работ, контрольной работы, средств для итоговой аттестации (экзамена в 7 семестре).

No	Код и			ие оценочного дства
п/п	наименование индикатора	Результаты обучения	Текущий контроль	Промежуточная аттестация
1	ПК-1.1. Знает основы научно- исследовательской деятельности в области информационных технологий, имеет научные знания в теории информационных систем	Системные методологии и концепции языков программирования распределенных приложений, принципы конструирования клиент-серверных приложений, с учетом особенностей различных операционных систем и принципов сетевых коммуникаций.	Опрос по теме лабораторных работ.	Вопросы 1-43
2	ПК-1.2. Умеет применять полученные знания в области фундаментальных научных основ теории информации и решать стандартные задачи в собственной научно-исследовательской деятельности	Разрабатывать архитектурные проекты сетевых информационных систем, алгоритмы и программы, предназначенные для работы в компьютерных сетях, понимать принципы их функционирования, выполнять рефакторинг и поддержку чужих распределенных программ	Опрос по теме лабораторных работ.	Вопросы 1-43, выносимые на экзамен
3	ПК-1.3. Имеет практический опыт научно-исследовательской деятельности в области информационных технологий	Владеет методологией использования современных инструментальных и вычислительных средств в сфере распределенных систем (в соответствии с профилем подготовки) в составе научно-исследовательского и производственного коллектива	Опрос по теме лабораторных работ.	Вопросы 1-46, выносимые на экзамен
4	ПК-5.1. Знает основные принципы и методы анализа данных	Современные международные и профессиональные стандарты информационных технологий, современные парадигмы и методологии, инструментальные и вычислительные средства разработки распределенных	Опрос по теме лабораторных работ.	Вопросы 30-46, выносимые на зачет

		приложений.		
	THE CONT	***		D 20 45
	ПК-5.2. Умеет	Умеет применять в	Опрос по	Вопросы 30-46,
	применить методы	профессиональной	теме	выносимые на
	анализа данных и	деятельности современные	лабораторных	экзамен
	машинного	языки программирования и методы параллельной	работ.	
5	обучения для решения задач	методы параллельной обработки данных и методы		
	профессиональной	машинного обучения, для		
	деятельности	разработки распределенных		
	деятельности	приложений, электронных		
		библиотек и пакетов		
		программ.		
	ПК-5.3. Имеет	Современными средствами	Опрос по	Вопросы 30-46,
	практический	разработки распределенных	теме	выносимые на
	опыт применения	приложений, электронных	лабораторных	экзамен
	методов	библиотек и пакетов программ	работ.	
	искусственного	на основе языков		
6	интеллекта для	программирования Java, C++,		
	получения новых	Phython и др., владеть		
	аналитических	навыками работы с сетевыми		
	результатов в	базами данных, применять в		
	решении задач профессиональной	профессиональной деятельности методы		
	деятельности	искусственного интеллекта		
	ПК-7.1. Знает	Современные международные	Опрос по	Вопросы 30-46,
	методику анализа	и профессиональные	теме	выносимые на
	требований и	стандарты информационных	лабораторных	экзамен
	вариантов	технологий, современные	работ.	
7	реализации	парадигмы и методологии,		
	информационных	инструментальные и		
	систем.	вычислительные средства		
		разработки распределенных		
	HI 7.2 X	приложений.		D 20.46
	ПК-7.2. Умеет	Умеет применять в	Опрос по	Вопросы 30-46,
8	оценивать	профессиональной	теме	выносимые на
	качество,	деятельности современные	лабораторных работ.	экзамен
	надежность и эффективность	языки программирования и методы параллельной	pa001.	
	информационной	обработки данных для		
	системы.	разработки распределенных		
		приложений, электронных		
		библиотек и пакетов		
		программ. Умеет оценивать		
		качество, надежность и		
		эффективность		
		информационной системы.		
	ПК-7.3. Имеет	Современными средствами	Опрос по	Вопросы 30-46,
9	практический	проектирования и разработки	теме	выносимые на
	опыт разработки	распределенных приложений,	лабораторных	экзамен
	вариантов	электронных библиотек и	работ.	
	реализации	пакетов программ на основе		

информационных	языков программирования	
систем.	Java, C++, Phython и др.,	
	владеть навыками работы с	
	сетевыми базами данных.	

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ компьютерных программ, сопровождаемой вопросами по теоретической части предмета;
- -контрольной работы;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

Текущий контроль включает контрольную работу по итогам первой половины курса.

Перечень вопросов, которые выносятся на зачет

- 1. Классификация Флинна;
- 2. Обзор основных классов архитектур современных параллельных компьютеров
- 3. Понятие кластерных вычислительных систем, примеры.
- 4. Классификации Ванга и Бриггса, Хокни, Шора, Джонсона, Базу, Кришнамарфи, Хендлера, Скилликорна.
- 5. Архитектура SMP;
- 6. Архитектура МРР;
- 7. Архитектура NUMA.
- 8. Информационный граф (описание, свойства);
- 9. Модели параллельных алгоритмов.
- 10. Оценка ускорения при параллельной модели вычислений;
- 11. Командные и информационные структуры на информационном графе;
- 12. Граф потоков данных;
- 13. Ярусно-параллельная форма информационного графа;
- 14. Системы команд и задание последовательности выполнения операторов.
- 15. Универсальные единицы измерения производительности (MIPS, MFLOPS);
- 16. Тест LINPACK, прочие универсальные тесты производительности систем;
- 17. Методы и способы оценки быстродействия вычислительных систем;
- 18. Способы измерения производительности вычислительных систем;
- 19. Тесты производительности параллельных вычислительных систем SPEC, TPC и др.
- 20. Особенности систем с общей памятью (гранулярность вычислений, способ взаимодействия процессов через общую память, операционные системы, моделивычислений);
- 21. Особенности систем с распределенной памятью;
- 22. Методы и способы обеспечения когерентности кэш-памяти;
- 23. Достоинства и недостатки модели архитектуры с общей памятью;
- 24. Примеры систем с общей памятью с архитектурой SMP и NUMA.
- 25. Примеры систем с общей памятью с архитектурой SMP и NUMA.
- 26. Топологии вычислительных систем с распределенной памятью, свойства топологий, влияние топологии на скорость передачи сообщений;
- 27. Методы коммутации сообщений (пакетов) и каналов;

- 28. Достоинства и недостатки модели архитектуры с распределенной памятью;
- 29. Примеры систем с общей памятью с архитектурой МРР.
- 30. Архитектура одноядерных и 2-ядерных процессоров (на примере процессоров Intelapхитектуры SMP);
- 31. Архитектура многоядерных процессоров AMD и систем на их основе (применениеархитектуры NUMA);
- 32. Способы повышения производительности процессоров
- 33. Рейтинг ТОР 500, примеры систем, краткое рассмотрение архитектур систем.
- 34. Организация высокопроизводительных систем с нетрадиционной архитектурой. Векторные и векторно-конвейерные системы: классы R-R, S-S, операционный конвейер, особенности архитектуры.
- 35. Систолические системы: особенности архитектуры, пример вычислений.
- 36. Машины потоков данных (МПД), граф потоков данных (ГПД), механизмыквитирования, раскраски и др.
- 37. Волновые системы: особенности архитектуры, пример вычислений.
- 38. Матричные системы: особенности архитектуры, процессорный элемент, топология.
- 39. Особенности организации кластеров, инфраструктура кластерных систем;
- 40. Особенности и средства программирования кластеров.
- 41. Сетевые решения для кластерных систем;
- 42. Основные критерии оценки кластерных систем;
- 43. Типичный набор программно-аппаратного обеспечения кластеров;
- 44. Выполнение задач на кластерах;
- 45. Особенности запуска задач на кластерах;
- 46. Интегрированные наборы кластерного программного обеспечения.
- 47. Методы передачи данных, оценка времени выполнения коммуникационных операций;
- 48. Оценка трудоемкости операций передачи данных для кластерных систем. МодельХокни.
- 49. MP1: основные понятия и определения. Базовый (минимальный) набор функций MPI, достаточный для разработки параллельных программ. Операции передачи данных между двумя процессами
- 50. Коллективные операции передачи данных. Упаковка и распаковка разнотипных данных в MPI. Управление группами процессов и коммуникаторами. Виртуальныетопологии Модельные примеры.
- 51. Инструментальные средства разработки и отладки многопоточных приложений.
- 52. Модель параллелизма, модель выполнения и модель программирования DVM;
- 53. Языки программирования DVM. Директивы DVM;
- 54. Сравнение размеров и эффективности MPI- и DVM-программ;
- 55. Средства функциональной отладки, анализа и прогноза производительности DVM-программ. Особенности компиляции и запуска DVM-программ.
- 56. Типовые задачи системного администратора кластера. Вопросы безопасности иотказоустойчивости;
- 57. Типичная архитектура системы управления кластером. Мониторинг кластера. Очередь задач. Планировщик задач. Система удаленного доступа к кластеру.
- 58. Концепция Грид;
- 59. Архитектура Грид;
- 60. Уровни Грид;
- 61. Распределение ресурсов в Грид;
- 62. Инструментальные средства Грид.

Примеры контрольных вопросов для устного опроса при проведении практических занятий:

- 1. Пояснить различие между сильносвязанными и слабосвязанными системами.
- 2. Привести примеры МПС с сильносвязанной симметричной архитектурой (SMP).
- 3. Указать основные "узкие места" сильносвязанной архитектуры МПС.
- 4. Разъяснить (в общем виде) основные свойства сильносвязанной архитектуры МПС.
- 5. Объяснить, каким образом объем кэш-памяти в процессорном узле влияет напроизводшельность системы.
- 6. Пояснить преимущества использования коммутатора данных вместо общей шины вархитектуре системы.
- 7. Объяснить принцип работы памяти с расслоением в составе структуры SMP системы.
- 8. Объяснить рахшчие в организации процессов и потоков.
- 9. Могут ли процессы (потоки) использовать общие данные в общей оперативной памяти? С помощью каких средств системы обеспечивается достоверность копий общих данных вкаждом кэш?
- 10. С какой целью (целями) исследуются системы данного класса с помощью имитационныхмоделей?
- 11. Перечислить и кратко разъяснить основные проблемы, связанные с проектированием ианализом систем рассматриваемого класса.
- 12. Указать "узкие места" в обобщенной архитектуре систем рассматриваемого класса.
- 13. Указать основные пут оптимизации архитектуры сильносвязанных систем попроизводительности ("структурные" и параметрические).
- 14. Какие общие методы оптимизации можно применять при проектировании ВСрассматриваемого класса?
- 15. Какими моделями можно пользоваться для выделения параллельных ветвей в задачах?
- 16. Перечислить основные ограничения, принятые для моделей ВС в лабораторной работе.
- 17. Пояснить различия в организации процессов и потоков.
- 18. Требуется ли обеспечивать когерентность общих данных для потоков одного процесса?
- 19. Указать современные операционные системы, поддерживающие многопотоковуюобработку.
- 20. Способы организации сети связи в кластере.
- 21. Метод коммутации каналов.
- 22. Метод коммутации сообщений.
- 23. Способы идентификации машин в сети.
- 24. Методика оценки эффективности методов связи.
- 25. Свойства топологии системы.
- 26. Оптимальные топологии
- 27. Связь среднего диаметра графа с величиной средней задержки на передачу сообщений.

Критерии оценивания к экзамену:

- 84-100 баллов (оценка «отлично») - изложенный материал фактически верен,

наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой; Практические задания выполнены в срок и в полном объеме.

- 67-83 баллов (оценка «хорошо») наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности. Практические задания выполнены в срок в объеме не менее 80%.
- 50-66 баллов (оценка удовлетворительно) наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике; Практические задания выполнены в объеме не менее 60%.
- 0-49 баллов (оценка неудовлетворительно) ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы». Практические задания выполнены в объеме менее 50%.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме, в форме электронного документа. Для лиц с нарушениями опорно-двигательного аппарата:
- в печатной форме, в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Костюк, А. И. Организация облачных и GRID-вычислений: учебное пособие: [16+] / А. И. Костюк. Ростов-на-Дону; Таганрог: Южный федеральный университет, 2018. 122 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=561079 (дата обращения: 01.06.2024). Библиогр. в кн. ISBN 978-5-9275-2879-0. Текст: электронный.
- 2. Карепова, Е. Д. Основы многопоточного и параллельного программирования : учебное пособие / Е. Д. Карепова ; Сибирский федеральный университет, Институт вычислительного моделирования Сибирского отделения Российской академии наук, Сибирский научно-образовательный центр суперкомпьютерных технологий. Красноярск : Сибирский федеральный университет (СФУ), 2016. 355 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=497217 (дата обращения: 01.06.2024). Библиогр. в кн. ISBN 978-5-7638-3385-0. Текст : электронный.

5.2. Дополнительная литература:

- 1. Тель Ж. Введение в распределенные алгоритмы. Москва: МЦНМО, 2009, 616 стр. (4 экз. в библиотеке КубГУ).
 - 2. Миков А.И. Распределенные компьютерные системы и алгоритмы. Учебное пособие. Краснодар: Изд-во КубГУ, 2009. (37 экз. в библиотеке КубГУ).
- 3. Эндрюс Г.П. Основы многопоточного, параллельного и распределенного программирования. Пер. с англ. М.: Издательский дом «Вильямс», 2003. 512 с.
- 4. Гофф М.К. Сетевые распределенные вычисления. Достижения и проблемы. М.: КУДИЦ-ОБРАЗ, 2005.
 - 5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/

 - 4. ЭБС «ZNANIUM.COM» www.znanium.com
 - 5. ЭБС «ЛАНЬ» <u>https://e.lanbook.com</u>

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
 - 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
 - 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
 - 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
 - 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
 - 9. Springer Journals: https://link.springer.com/

- 10.Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13.Springer Materials: http://materials.springer.com/
- 14.Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
 - 3. Среда модульного динамического обучения http://moodle.kubsu.ru
 - 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
 - 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 6. Электронный архив документов КубГУ <u>http://docspace.kubsu.ru/</u>
 - 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

5.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 6. Grid[Электронный ресурс]: Введение в Грид / Дата обращения: 09.03.2018. Режим доступа: http://www.lxfarm.mephi.ru/docs/Oleshko.Intro Grid MEPhI.pdf
- 7. Grid[Электронный ресурс]: Грид технологии / Дата обращения: 09.03.2018. Режим доступа:
 - http://glebradchenko.susu.ru/courses/master/dot/2008/Grid_SUSU_1_Intro.pdf
- 8. Грид-вычисления[Электронный ресурс]: Система распределенных вычислений. Грид-сеть /Дата обращения: 09.03.2018. Режим доступа: http://byinsecure.com/grid_network/

6. Методические указания для обучающихся по освоению дисциплины

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал для выполнения лабораторных работ и подготовки к зачету. Лабораторные работы выполняются, как правило, в компьютерном классе. Отдельные работы могут выполняться в аудитории при наличии у магистрантов портативных компьютеров.

На лабораторных работах изучаются методы разработки распределенных алгоритмов. Магистрант должен правильно написать необходимый фрагмент кода распределенного приложения, построить математическую модель распределенной системы и произвести ее математический анализ. По отдельным темам магистрантам поручается подготовить презентации и выступить с докладами на занятиях.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников..

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите ЛР студент должен ответить на несколько теоретических вопросов.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	PowerPoint.
проведения занятий лекционного	Технические средства	

типа (ауд. 129, 131, А305.)	обучения:	
	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	Аудитория, (кабинет) –
проведения занятий семинарского	Технические средства	компьютерный класс
типа, групповых и	обучения:	
индивидуальных консультаций,	экран, проектор, компьютер	
текущего контроля и		
промежуточной аттестации (ауд.		
147,148)		
Учебные аудитории для	Мебель: учебная мебель	Лаборатория,
проведения лабораторных работ.	Технические средства	укомплектованная
Лаборатория 102,105,106	обучения: компьютер	специализированными
		техническими средствами
		обучения –
		компьютерный класс, с
		возможностью
		подключения к сети
		«Интернет», программой
		экранного увеличения и
		обеспеченный доступом в
		электронную
		информационно-
		образовательную
		среду университета

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений	Оснащенность помещений	Перечень лицензионного
для самостоятельной	для самостоятельной	программного обеспечения
работы обучающихся	работы обучающихся	
Помещение для	Мебель: учебная мебель	1. OS Windows, MS Office
самостоятельной работы	Комплект	2. Java SDK.
обучающихся (читальный	специализированной	3. NetBeans или Intellij Idea
зал Научной библиотеки)	мебели: компьютерные	или Eclipse.
	столы	4. Библиотека MPJExpress
	Оборудование:	5. Антивирус.
	компьютерная техника с	
	подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную	
	информационно-	
	образовательную среду	
	образовательной	
	организации, веб-камеры,	
	коммуникационное	
	оборудование,	
	обеспечивающее доступ к	
	сети интернет (проводное	
	соединение и	

	беспроводное соединение	
Помещение для самостоятельной работы обучающихся (ауд. 105, 148,150)	по технологии Wi-Fi) Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно- коммуникационной сети «Интернет» и доступом в электронную информационно- образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	 OS Windows, MS Office Java SDK. NetBeans или Intellij Idea или Eclipse. Библиотека MPJExpress Антивирус.