МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОСИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

Кафедра вычислительных технологий

«30» мая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.06. «АЛГЕБРА»

Направление

подготовки/специальность 02.03.02

Фундаментальная информатика и информационные технологии

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация Математическое и программное обеспечение компьютерных технологий

Программа подготовки академический бакалавриат

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «Алгебра» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки (профиль) 02.03.02 Фундаментальная информатика и информационные технологии

Программу составил(а):

Лапина Ольга Николаевна, доцент, к. ф.-м. н.

Aug

Рабочая программа дисциплины утверждена на заседании кафедры вычислительных технологий, протокол № 7 «07» мая 2025 г.

И.о. заведующего кафедрой (разработчика) Еремин А.А.

фамилия, инициалы

Рабочая программа обсуждена на заседании кафедры вычислительных технологий № 7 «07» мая 2025 г.

И.о. заведующего кафедрой (выпускающей) Еремин А.А.

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики протокол № 4 от «23» мая 2025 г.

Председатель УМК факультета

Коваленко А.В.

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физикоматематических наук.

Схаляхо Ч.А., доцент КВВУ им.С.М.Штеменко, к.ф.-м.н., доцент

1 ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ 1.1 Цель освоения дисциплины

Целью преподавания и изучения дисциплины Б1.О.06 «Алгебра» является овладение студентами математическим аппаратом, применяемым в фундаментальной математике и информатике, и служащим основой для разработки информационных технологий.

1.2. Задачи дисциплины.

Студент должен знать основные понятия, методы, алгоритмы и средства алгебры; уметь применять теории, методы, алгоритмы алгебры; владеть знаниями теории, методов, алгоритмов алгебры для решения теоретических проблем фундаментальной информатики и практических задач информационных технологий.

1.3. Место дисциплины в структуре образовательной программы

Алгебра относятся относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана. Для изучения дисциплины необходимо знание обязательного минимума содержания среднего образования, в особенности математики и информатики. Знания, получаемые при изучении алгебры, используются при изучении всех дисциплин профессионального цикла учебного плана бакалавра.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций (ОК/ОПК/ПК)

	Результаты обучения по дисциплине
Код и наименование индикатора*	(знает, умеет, владеет (навыки и/или опыт
	деятельности))
ОПК-1. Способен применять фундаментальн	ые знания, полученные в области математических и
(или) естественных наук, и использовать их	в профессиональной деятельности
ОПК-1.1. Знает основные положения и	Знает основные положения и концепции (понятия,
концепции в области математических и	методы, алгоритмы алгебры) связанные с информатикой
естественных наук, Базовые теории и истории	и информационными технологиями; базовые
основного, теории коммуникации; знает	определения, теоремы алгебры.
основную терминологию	
ОПК-1.2. Умеет осуществлять первичный	Умеет осуществлять первичный сбор и анализ материала в
сбор и анализ материала, интерпретировать	области прикладной алгебры, интерпретировать
различные математические объекты	множество различных математических объектов в
	терминах алгебраических структур.
ОПК-1.3 Имеет практический опыт работы с	Имеет практический опыт решения стандартных задач
решением стандартных математических задач	линейной и прикладной алгебры и применения его для
и применяет его в профессиональной	решения теоретических и прикладных задач в области
деятельности	информационных технологий.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

№ п.п.	Индекс компе-	Содержание компетенции		е изучения учебной д обучающиеся должны	
11.11.	тенции	(или её части)	знать	уметь	владеть
1	ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.	базовые определения, теоремы алгебры; основные положения и концепции (понятия, методы, алгебры связанные с информатикой и информационным и технологиями.	применять определения, теоремы, методы алгебры для решения задач линейной и прикладной алгебры .	методами решения стандартных задач линейной и прикладной алгебры в области информационных технологий.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 9 зач.ед. (324 часов), их распределение по видам работ представлено в таблице

Вид работы		Форма обучения				
	Всего	Оч	ная	очная	очная	
	часов	1 семестр (часы)	2 семестр (часы)	X семестр (часы)	X курс (часы)	
Контактная работа в том числе:	162,8	90,5	72,3			
Аудиторные занятия (всего):	152	84	68			
В том числе:						
Занятия лекционного типа	84	50	34			
Занятия семинарского типа						
(семинары, практ. занятия)						
Лабораторные занятия	68	34	34			
Иная контрольная работа	0,8	0,5	0,3			
Контроль самостоятельной работы	10	6	4			
Промежуточная аттестация (ИКР)	0,8	0,5	0,3			
Самостоятельная работа	80,8	53,8	27			
В том числе:						
Курсовая работа						
Проработка учебного (теоретического) материала	45,6	30,8	15			

Вид работы		Всего	Форма обучения				
			Очная		очная	очная	
		часов	1 семестр (часы)	2 семестр (часы)	X семестр (часы)	X курс (часы)	
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)							
Реферат							
Подготовка к текущему контролю		37	21	10			
Контроль: экзамен		80,4	35,7	44,7			
Обилая	в час	324	180	144			
Общая трудоемкость	в т.ч. контактная работа	166,8	92,5	74,3			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1-2 семестрах *(очная форма)*

Разделы дисциплины, изучаемые в 1 семестре.

No	Наименование разделов		Ко	личеств	о часов	
раздела		Всего	Аудиторная работа		Внеаудито	
						рная
						работа
			Л	ЛР	KCP	CPC
1	2	3	4	5	6	7
1	Введение. Алгебраические	9,8	2			7,8
	структуры.					
2	Комплексные числа	18	4	6		8
3	Линейная алгебра	42	14	14	2	12
4	Векторная алгебра	10	2	2		6
5	Основы теории групп	24	10	4	2	8
6	Основы теории колец	18	8	4		6
7	Конечные поля	22	10	4	2	6
	Подготовка к текущему контролю					53,8
	ИКР	0,5				0,5
	Контроль (Зачет, экзамен)	35,7				35,7
	Итого:	180	50	34	6	90

Разделы дисциплины, изучаемые во 2 семестре.

$N_{\underline{0}}$	Наименование разделов		Ко	личеств	о часов	
раздела		Всего	Аудиторная работа		Внеаудито	
			,		рная работа	
			Л	ЛР	КСР	CPC
1	2	3	4	5	6	7
8	Линейные пространства	38	14	14		10
9	Линейные операторы	44	16	14	2	12
10	Квадратичные формы	17	4	6	2	5
	Подготовка к текущему контролю					27
	ИКР	0,3				0,3
	Контроль (Экзамен)	44,7				44,7
	Итого:	144	34	34	6	70

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

$N_{\underline{0}}$	Наименование раздела	Содержание раздела	Форма
			текущего
			контроля
1	2	3	4
1	Введение. Основные	Понятия множества, алгебраической	ЛР
	понятия по	операции, алгебраической системы.	
		Понятие нейтрального элемента,	
		обратного элемента. Группы, кольца,	
		поля – примеры.	
2	Комплексные числа	Определение комплексного числа,	К,ЛР
		операции с комплексными числами.	
		алгебраическая и тригонометрическая	
		формы комплексного числа. Поле	
		комплексных чисел. Геометрическое	
		представление комплексных чисел.	
		Возведение в степень, извлечение	
		корня целой степени. Поле	
		комплексных чисел.	
3	Линейная алгебра	Матрицы и операции над ними.	К,ЛР
		Определители. Свойства, способы	
		вычисления, применение. Обратная	
		матрица. Системы линейных	
		уравнений. Правило Крамера. Метод	
		Гаусса. Теорема о представимости	
		общего решения системы линейных	

		линейного оператора. Изменение матрицы оператора при изменении базиса. Характеристический полином	
9	Линейные операторы	Линейный оператор. Матрица	К,ЛР
		Коши-Буняковского. Процесс ортогонализации Грамма-Шмидта. Нормированные пространства. Ортогональное дополнение.	
		унитарное пространства. Неравенство	
		пересечение подпространств. Прямая сумма подпространств. Евклидово и	
		Линейные пространства. Подпространства. Сумма и	
		координат при замене базиса.	
8	Линейные пространства	Координаты вектора. Линейная зависимость векторов. Преобразования	К,ЛР
0	T	2F. Алгоритм Рендейл. Код Хэмминга.	ин
		вычетов по модулю неприводимого многочлена. Многочлены над полем	
		Неприводимые многочлены. Поле	
7	Конечные поля	Поле. Конечные поля. Кольцо многочленов над конечным полем.	*
7	T.C.	Схема Горнера.	IC HD
		многочленов. Алгоритм Евклида нахождения НОД двух многочленов.	
		вычетов Многочлены. Кольцо	
		Целочисленная арифметика в классах	
		основе этого представления. Китайская теорема об остатках.	
		Нахождение обратного элемента на	
		виде ax+by в евклидовом кольце.	
6	Основы теории колец.	Кольцо. Кольца вычетов. Алгоритм Евклида. Представление НОД(a,b) в	К,ЛР
		о гомоморфизмах.	14 HP
		Эйлера. RSA-алгоритм. Фактор- группа. Гомоморфизмы. Три теоремы	
		Симметрическая группа. Функция	
		Группы преобразований.	
		Лагранжа. Нормальная подгруппа.	
		подгруппа. Порядок группы. Порядок элемента. Классы смежности. Теорема	
5	Основы теории групп.	Группа. Подгруппы. Циклическая	К,ЛР
		Скалярное, векторное и смешанное произведения векторов.	
4	Векторная алгебра	Вектора и действия над векторами.	К,ЛР
		линейных уравнений.	
		существования нетривиального решения однородной системы	
		Кронекера-Капелли. Условия	
		решения и общего решения однородной системы. Теорема	
		решения и общего решения	

		оператора. Собственные числа и	
		собственные векторы. Теорема	
		Гамильтона-Кэли. Инвариантные	
		подпространства. Линейные	
		операторы простой структуры.	
		Сопряженный оператор.	
		Самосопряженный линейный	
		оператор. Ортогональный и унитарный	
		операторы. Каноническая форма	
		матрицы оператора. Жорданова форма	
		матрицы.	
10	Квадратичные формы	Квадратичная форма. Приведение к	К,ЛР
10	тадрати шые формы	каноническому виду. Метод	10,511
		Лагранжа. Ортогональное	
		преобразование квадратичной формы.	
		Нормальный вид. Закон инерции.	
		<u> </u>	
		Положительная определенность	
		квадратичной формы. Критерий	
		Сильвестра.	

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

No	Наименование	Наименование лабораторных работ	Форма
	раздела		текущего
			контроля
1	2	3	4
1	Комплексные числа	Комплексные числа, операции с	Решение
		комплексными числами. алгебраическая и	задач
		тригонометрическая формы комплексного	
		числа.	
2	Комплексные числа	Геометрическое представление	Решение
		комплексных чисел.	задач
3	Комплексные числа	Возведение в степень, извлечение корня	Решение
		целой степени. Формула Муавра.	задач
4	Линейная алгебра	Матрицы и операции над ними.	Решение
		Определители. Свойства, способы	задач
		вычисления.	
5	Линейная алгебра	Обратная матрица. Ранг матрицы.	Решение
			задач
6	Линейная алгебра	Системы линейных уравнений. Правило	Решение
		Крамера.	задач
7	Линейная алгебра	Метод Гаусса. Системы однородных	Решение
		уравнений.	задач
8	Линейная алгебра.	Представимость общего решения системы	Решение
		линейных уравнений в виде суммы	задач
		частного решения и общего решения	
		однородной системы.	
9	Линейная алгебра	Фундаментальная система решений.	Решение
			задач

10	Векторная алгебра	Вектора. Действия над векторами.	Решение
		Скалярное, векторное и смешанное	задач
		произведения векторов.	
11	Основы теории	Группа. Циклическая группа. Подгруппы.	Решение
	групп	Порядок группы. Порядок элемента.	задач
		Нормальные делители. Фактор-группа.	
		Гомоморфизмы.	
12	Основы теории	Классы смежности. Теорема Лагранжа.	Решение
	групп	Симметрическая группа.	задач
13	Основы теории	Кольцо. Кольцо вычетов. Кольцо	Решение
	колец	полиномов.	задач
14	Основы теории	Кольцо полиномов. Схема Горнера.	Решение
	колец	Кратные корни. Алгоритм Евклида.	задач
		Взаимно простые полиномы.	
15	Конечные поля	Поле. Конечные поля.	Решение
			задач
16	Конечные поля	Кольцо многочленов над конечным полем.	Решение
		Неприводимые многочлены.	задач
17	Конечные поля	Код Хэмминга.	Решение
			задач
18	Линейные	Линейные пространства. Свойства	Решение
	пространства	линейного пространства. Базис.	задач
19	Линейные	Линейная зависимость векторов.	Решение
	пространства.	Преобразования координат при замене	задач
		базиса.	
20	Линейные	Линейные подпространства. Сумма и	Решение
	пространства	пересечение подпространств.	задач
21	Линейные	Евклидово и унитарное пространства.	Решение
	пространства	Неравенство Коши. Ортогональный базис.	задач
		Процесс ортогонализации Грамма-	
22	п	Шмидта.	D
22	Линейные	Нормированные пространства.	Решение
22	пространства	Ортогональные дополнения.	задач
23	Линейные	Определитель Грама	
24	пространства	Donawayyya paymana wa anni	Dayres
24	Линейные	Разложение вектора на ортогональную	Решение
	пространства.	проекцию и ортогональную	задач
25	Линейные	составляющую.	Решение
23		Линейный оператор. Ядро и образ.	
26	операторы Линейные	Матрица линейного оператора. Изменение	задач Решение
	операторы	матрицы оператора при изменение базиса.	задач
27	Линейные	Характеристический многочлен	Решение
41	операторы	оператора. Собственные числа и	задач
	операторы	собственные векторы.	задач
28	Линейные	Инвариантные подпространства.	Решение
20	операторы	Линейные операторы простой структуры.	задач
29	Линейные	Жорданова форма матрицы	Решение
29	операторы	лорданова форма матрицы	задач
30	Линейные	Сопряженный оператор. Нормальные	Решение
50	THEMIDIC	Соприженный оператор, пормальные	т сшение

	операторы	операторы.	задач
31	Линейные	Ортогональный и унитарный операторы.	Решение
	операторы	Симметричные операторы. Каноническая	задач
		форма.	
32	Квадратичные	Квадратичная форма. Приведение к	Решение
	формы	каноническому виду. Метод Лагранжа.	задач
33	Квадратичные	Ортогональные преобразования	Решение
	формы	квадратичных форм.	задач.
34	Квадратичные	Положительная определенность	Решение
	формы	квадратичной формы. Закон инерции.	задач
		Критерий Сильвестра.	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного	Литература из основного и дополнительного списков
	материала, выполнение	
	индивидуальных заданий.	
2	Подготовка к текущему контролю	Литература из основного и дополнительного списков

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Используемые интерактивные образовательные технологии:

- Компьютерные презентации и обсуждение.

- Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов).

Лекции, лабораторные занятия, тестирование, экзамен.

К образовательным технологиям относятся интерактивные методы обучения. Интерактивность подачи материала по дисциплине «Алгебра» предполагает не только взаимодействия вида «преподаватель-студент» и «студент-преподаватель», но и «студент-студент». Все эти виды взаимодействия хорошо достигаются при изложении материала, как на лекционных так и на лабораторных занятиях.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

3.1 Дискуссия

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно излагать мысли. Полезны следующие задания: составление плана решения задачи, поиск другого способа решения, сравнение различных способов решения, проведение выкладок для решения задачи и выкладок для проверки правильности полученного решения.

Студентам предлагается проанализировать варианты решения, высказать своё мнение. Основной объем использования интерактивных методов обучения реализуется именно в ходе дискуссий, как на лекционных, так и на практических занятиях.

Общие вопросы, которые выносятся на дискуссию:

- 1. Составления плана решения задачи.
- 2. Определение возможных способов решений задачи.
- 3. Выбор среди рассматриваемых способов наиболее рационального.
- 4. Самостоятельное составление студентами опорных заданий по теме, характеризующих глубину понимания студентами соответствующего материала.

4. Оценочные и методические материалы.

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной успеваемости студентов.

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной (зачета в 1-м и 2-м семестрах) и итоговой аттестации (экзаменов в 1 и 2 семестрах).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- оценок коллоквиумов;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

Зачет выставляется по результатам выполненных контрольных работ и текущей работы на лабораторных занятиях.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование

технических средств, необходимых им в связи с их индивидуальными особенностями;

– при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводится в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура фонда оценочных средств для текущей и промежуточной аттестации

№ п/п	Код и наименование индикатора	Результаты обучения	Наименование оценочного средства	
			Текущий контроль	Промежуточная аттестация
	ОПК-1.1 Знает основные положения и концепции в области математических и естественных наук, Базовые теории и истории основного, теории коммуникации; знает основную терминологию	Знает основные положения и концепции (понятия, методы, алгоритмы алгебры) связанные с информатикой и информационными технологиями; базовые определения, теоремы алгебры.	опрос по теме, лабораторная работа	Вопросы на экзамене
	ОПК-1.2. Умеет осуществлять первичный сбор и анализ материала, интерпретировать различные математические объекты	Умеет осуществлять первичный сбор и анализ материала в области прикладной алгебры, интерпретировать множество различных математических объектов в терминах алгебраических структур.	опрос по теме, лабораторная работа	Вопросы на экзамене
	ОПК-1.3 Имеет практический опыт работы с решением стандартных математических задач и применяет его в профессиональной деятельности	Имеет практический опыт решения стандартных задач линейной и прикладной алгебры и применения его для решения теоретических и прикладных задач в области информационных технологий.	опрос по теме, лабораторная работа	Решение задач на экзамене

Типовые контрольные материалы или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы:

Образцы контрольных работ по основным разделам курса

Код оцениваемой компетенции –ОПК-1

Раздел 2 Комплексные числа.

Вариант 1.

1. Найти действительные и мнимые части комплексного числа

$$\left(\frac{3-i\sqrt{3}}{3+i\sqrt{3}}\right)^5.$$

2. Найти модуль и главное значение аргумента $(-\pi < \phi \le \pi)$

$$z=3-i^5.$$

3. Найти все значения корней и построить их на комплексной плоскости $\sqrt[4]{1-i}$

Вариант 2.

1. Найти действительные и мнимые части комплексного числа

$$\frac{\left(1-i\right)^{5}}{\left(1+i\right)^{5}}.$$

2. Найти модуль и главное значение аргумента $\, (-\pi < \phi \leq \pi \,) \,$

$$z = 2 + i^{25}$$
.

3. Найти все значения корней и построить их на комплексной плоскости $\sqrt[8]{1}$.

Раздел 2. Линейная алгебра.

Вариант № 1

1. Найти обратную матрицу. Выполнить проверку

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}.$$

2. Исследовать систему на совместность и найти ее общее и частное решение, если она совместна:

13

$$\begin{cases} 2x_1 - 3x_2 + 4x_3 - x_4 = 1\\ 2x_1 - 3x_2 + 2x_3 + 3x_4 = 2\\ 2x - 3x + 2x - 11x = -4 \end{cases}$$

Вариант № 2

4. Найти общее решение неоднородной системы уравнений, решая соответствующую однородную систему и зная ее частное решение $x_0 = (1,1,1,-1)$

$$\begin{cases} 3x_1 - 2x_2 + 5x_3 + 4x_4 = 2\\ 6x - 4x^2 + 4x^3 + 3x^4 = 3 \end{cases}$$

$$\begin{cases} 9x^1 - 6x^2 + 3x^3 + 2x^4 = 4\\ 1 & 2 & 3 \end{cases}$$

Раздел 5. Основы теории групп.

Вариант 1.

- 1) Выяснить, образует ли группу множество рациональных чисел относительно операции сложения.
- 2) Выяснить, образует ли группу множество квадратных матриц с действительными элементами относительно операции умножения.

Вариант 1.

- 1) Выяснить, образует ли группу множество рациональных чисел относительно операции умножения.
- 2) Выяснить, образует ли группу множество квадратных матриц с действительными элементами относительно операции сложения.

Раздел 6. Основы теории колец (Кольцо полиномов) Вариант 1.

1) Чему равен показатель кратности корня 1 для многочлена

$$g(x) = x^5 - 5x^3 + 9x^2 - 7x + 2$$

2) Найти наибольший общий делитель многочленов

$$f(x) = 3x^2 + 4x - 7$$
 _M $g(x) = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1$
Bapuaht 2.

1) Чему равен показатель кратности корня 1 для многочлена

$$g(x) = x^4 - 4x^3 + x^2 + 4x + 4$$

2) Найти наибольший общий делитель многочленов

$$f(x) = 2x^4 - 3x^3 + 4x^2 - 5x + 2$$
 H $g(x) = x^4 - 2x^3 - 3x^2 + 5x - 1$

Раздел 8. Линейные пространства Вариант 1.

1. Проверить, являются ли данные системы многочленов линейно независимыми в линейном пространстве $R[x]_2$:

$$f(x) = 4x^2 - 3x - 3$$
, $f(x) = 3x^2 + x - 3$, $f_3(x) = x^2 + 9x - 3$.

2. Выяснить, можно ли матрицу линейного оператора привести к диагональному виду путем перехода к новому базису. Найти этот базис и соответствующую ему матрицу:

Вариант 2.

1. Проверить, являются ли данные системы матриц линейно независимыми в линейном пространстве $M[x]_{\alpha}$:

$$A_{1} = \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}, \quad A_{1} = \begin{pmatrix} -3 & 0 \\ 1 & 2 \end{pmatrix}, \quad A_{1} = \begin{pmatrix} 1 & 3 \\ -3 & 2 \end{pmatrix}.$$

2. Выяснить, можно ли матрицу линейного оператора привести к диагональному виду путем перехода к новому базису. Найти этот базис и соответствующую ему матрицу:

$$A = \begin{pmatrix} 4 & -3 & 1 \\ 5 & -4 & 1 \\ -5 & 3 & 2 \end{pmatrix}$$

Раздел 9. Линейные операторы Вариант 1.

1. Выяснить, можно ли матрицу линейного оператора привести к диагональному виду путем перехода к новому базису. Найти этот базис и соответствующую ему

матрицу:
$$A_e = \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & 0 \\ -1 & 1 & -1 \end{pmatrix}$$

2. Найти размерности и базисы суммы и пересечения подпространств, натянутых на систему векторов $L=<a_1,a_2,a_3>, M=<b_1,b_2,b_3>$

$$a_1 = (1,1,1), a_2 = (1,2,0), a_3 = (2,3,1),$$

$$b_1 = (1,2,1), b_2 = (1,1,0), b_3 = (2,3,1).$$

Вариант 2.

1. Выяснить, можно ли матрицу линейного оператора привести к диагональному виду путем перехода к новому базису. Найти этот базис и соответствующую ему матрицу:

2.
$$A = \begin{pmatrix} 4 & -3 & 1 \\ 5 & -4 & 1 \\ -5 & 3 & 2 \end{pmatrix}$$

3. Найти размерности и базисы суммы и пересечения подпространств, натянутых на систему векторов $L = < a_1, a_2, a_3 >$, $M = < b_1, b_2, b_3 >$

$$a = (1,1,0,0), a = (0,1,1,0), a = (0,0,1,1),$$

 $b = (1,0,1,0), b = (0,2,1,1), b = (1,2,1,2).$

Раздел 10. Квадратичные формы.

Вариант 1.

1. Привести квадратичную форму к каноническому виду методом Лагранжа. Найти невырожденное линейное преобразование:

$$f(x_1,x_2,x_3) = x_1^2 + 5x_2^2 + x_3^2 + 8x_1x_2 + 6x_1x_3 + 2x_2x_3$$

2. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду:

$$f(x_1, x_2, x_3) = 17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_2x_3 - 8x_2x_3$$

Вариант 2.

1. Привести квадратичную форму к каноническому виду. Найти невырожденное линейное преобразование:

$$f(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 6x_1x_3$$

2. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду:

$$f(x_1, x_2, x_3) = x^2 + 8x^2 + 4x^2 + 4x + 4x + 4x + 12x + 12x$$

Зачетно-экзаменационные материалы для промежуточной аттестации.

Перечень вопросов, которые выносятся на экзамен в 1 семестре

Код оцениваемой компетенции –ОПК-1

- 1. Понятие алгебраической системы. Понятия группы, кольца, поля примеры.
- 2. Комплексные числа, алгебраическая форма, операции с комплексными числами, геометрическое представление комплексного числа.
- 3. Тригонометрическое представление комплексных чисел. Формула Муавра. Модуль и аргумент произведения и отношения комплексных чисел.
- 4. Вычисление корней целой положительной степени из комплексного числа.
- 5. Матрицы. Действия над матрицами (сложение и вычитание матриц, умножение матрицы на число). Свойства операций сложения и умножения матрицы на число. Транспонирование матрицы. Свойства операции транспонирования.
- 6. Произведение матриц. Свойства операции умножения матриц. Возведение матрицы в целую неотрицательную степень. Свойства операции возведения в степень.
- 7. Понятие определителя 2-го, 3-го и п-го порядка. Вычисление определителей 2-го, 3-го порядков.
- 8. Определитель n-го порядка. Свойства определителя (1-8).
- 9. Минор. Алгебраическое дополнение элемента. Разложение определителя n-го порядка по строке (столбцу). Минор матрицы к-го порядка. Дополнительный минор. Теорема Лапласа.
- 10. Обратная матрица. Необходимое и достаточное условия существования обратной матрицы.
- 11. Алгоритмы вычисления обратной матрицы. Метод обратной матрицы решения системы уравнений.
- 12. Крамеровские системы линейных уравнений. Решение систем уравнений методом Крамера.
- 13. Метод последовательного исключения переменных (метод Гаусса) решения систем линейных уравнений.
- 14. Линейная зависимость и линейная независимость строк (столбцов) матрицы. Свойства ЛЗ и ЛНЗ. Базис и ранг строк.
- 15. Элементарные преобразования матрицы. Ранг матрицы. Теорема о ранге матрицы. Методы вычисления ранга матрицы.
- 16. Однородные системы линейных уравнений. Фундаментальная система решений однородных уравнений.
- 17. Неоднородные системы линейных уравнений. Совместность системы. Теорема Кронекера-Капелли. Общее решение неоднородной системы линейных уравнений.
- 18. Векторная алгебра. Понятие вектора, сложение и разность векторов. Разложение вектора по трем некомпланарным векторам.
- 19. Скалярное и векторное умножение векторов. Основные свойства.
- 20. Смешанное произведение векторов. Свойства смешанного произведения векторов.
- 21. Уравнения прямой на плоскости. Общее уравнение плоскости. Неполные уравнения плоскостей.

- 22. Уравнения прямой в пространстве. Общие уравнения прямой. Канонические уравнения прямой, параметрические уравнения прямой.
- 23. Понятия группы, подгруппы, порядок группы примеры.
- 24. Циклические подгруппы, примеры.
- 25. Нормальные подгруппы, факторгруппы, факторизация группы, примеры.
- 26. Классы смежности, примеры. Применение классов смежности в теории кодирования.
- 27. Симметрическая группа определение, основные свойства.
- 28. Кольцо классов вычетов определение, свойства, примеры.
- 29. Функция Эйлера. Криптосистема RSA.
- 30. Делители нуля в кольце. Идеалы колец. Примеры.
- 31. Полиномы от одной переменной. Действия над полиномами. Кольцо полиномов.
- 32. Теорема о делении с остатком. Алгоритм Евклида нахождения наибольшего общего делителя.
- 33. Взаимно-простые полиномы. Свойства взаимно-простых полиномов. Неприводимые полиномы. Факторизация полиномов.
- 34. Корни полиномов. Теорема Безу. Схема Горнера. Формальная производная полиномов.
- 35. Кольцо полиномов. Свойства кольца полиномов.
- 36. Поле. Конечные поля.

Перечень вопросов, которые выносятся на экзамен во 2 семестре:

Код оцениваемой компетенции –ОПК-1

- 1. Понятие поля, примеры. Характеристика поля. Конечные поля, свойства, примеры.
- 2. Расширение полей. Поле разложения полинома.
- 3. Формирование конечных полей.
- 4. Алгоритм Рендейл.
- 5. Определение линейного пространства, примеры. Свойства линейного пространства.
- 6. Линейная зависимость элементов линейного пространства. Свойства систем векторов.
- 7. Базис линейного пространства. Разложение вектора по базису.
- 8. Размерность линейного пространства. Конечномерные линейные пространства, теорема.
- 9. Преобразование координат вектора при замене базиса. Матрица перехода и ее свойства.
- 10. Определение линейного подпространства. Линейная оболочка системы векторов.
- 11. Пересечение и сумма линейных подпространств, теоремы.
- 12. Прямая сумма линейных подпространств (теорема).

- 13. Размерность подпространств. Размерность пересечения и суммы подпространств.
- 14. Определение Евклидова пространства. Примеры Евклидовых пространств.
- 15. Пример скалярного умножения векторов Евклидова пространства. Ортогональная система ненулевых векторов.
- 16. Процесс ортогонализации Грамма-Шмидта.
- 17. Нормированные пространства. Пример нормы вектора.
- 18. Ортогональное дополнение. Построение ортогонального дополнения. Разложение вектора на сумму ортогональных проекций.
- 19. Определение Линейного оператора. Ядро и образ линейного оператора.
- 20. Матрица линейного оператора.
- 21. Преобразование матрицы линейного оператора. Подобные матрицы.
- 22. Примеры линейных операторов.
- 23. Характеристическое уравнение линейного оператора.
- 24. Собственные значения и собственные векторы линейного оператора.
- 25. Минимальный многочлен матрицы.
- 26. Собственное подпространство. Инвариантные подпространства. Примеры.
- 27. Линейные операторы простой структуры. Каноническое разложение матрицы.
- 28. Жорданова форма матрицы.
- 29. Построение жорданова базиса.
- 30. Сопряженный линейный оператор. Свойства сопряженного оператора. Самосопряженный линейный оператор.
- 31. Ортогональный линейный оператор. Свойства ортогонального ЛО.
- 32. Квадратичная форма. Матрица квадратичной формы. Преобразование матрицы.
- 33. Квадратичные формы канонического вида. Метод Лагранжа.
- 34. Ортогональные преобразования квадратичных форм.
- 35. Закон инерции для квадратичных форм. Положительно (отрицательно) определенные квадратичные формы. Критерий Сильвестра.

Критерии оценивания к зачету

Оценка "зачтено" - практические задания выполнены в срок в объеме не менее 80%. студент демонстрирует правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при аргументации ответов на вопросы при защите лабораторных.

Оценка «не зачтено» - практические задания не выполнены либо предоставлены не в срок в объеме менее 60%, студент демонстрирует наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья

предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Критерии оценивания к экзамену

Оценка	Критерии оценивания по экзамену
Высокий уровень «5» (отлично)	оценка «отлично»: грамотное и логически стройное изложение материала при ответе, точные формулировки определений, теорем и правильные доказательства; правильные, уверенные действия по применению полученных знаний на практике, усвоение основной и знакомство с дополнительной литературой.
Средний уровень «4» (хорошо)	оценка «хорошо» четкое изложение материала, допускаются отдельные логические и стилистические погрешности либо при ответе на один вопрос даны точные формулировки определений, теорем и правильные доказательства; при ответе на второй вопрос имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; правильные действия по применению знаний на практике.
Пороговый уровень «3» (удовлетворительн о)	оценка «удовлетворительно»: при ответе на оба вопроса имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике;.

Минимальный уровень «2» (неудовлетворител ьно)

оценка «неудовлетворительно»: отсутствует ответ хотя бы на один из вопросов или имеются существенные неточности в формулировках определений, теорем, приведены неправильные доказательства; неумение применять знания на практике.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Фаддеев, Д.К. Лекции по алгебре [Электронный ресурс] : учебное пособие / Д.К. Фаддеев. Электрон. дан. Санкт-Петербург : Лань, 2023. 416 с. Режим доступа: https://e.lanbook.com/book/346454
- 2. Проскуряков, И.В. Сборник задач по линейной алгебре [Электронный ресурс] : учебное пособие / И.В. Проскуряков. Электрон. дан. Санкт-Петербург : Лань, 2024. 480 с. Режим доступа: https://e.lanbook.com/book/397331?category=907
- 3. Фаддеев, Д.К. Задачи по высшей алгебре [Электронный ресурс] : учебник / Д.К. Фаддеев, И.С. Соминский. Электрон. дан. Санкт-Петербург : Лань, 2021. 288 с. Режим доступа: https://e.lanbook.com/book/167703
- 4. Мартынов, Л. М. Алгебра и теория чисел для криптографии / Л. М. Мартынов. 3-е изд., стер. Санкт-Петербург: Лань, 2024. 456 с. ISBN 978-5-507-48774-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/362942?category=1545
- 5. Рацеев, С. М. Элементы высшей алгебры и теории кодирования / С. М. Рацеев. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2023. 684 с. ISBN 978-5-

507-47915-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/336809?category=1545

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Кострикин А.И. Введение в алгебру. Ч 1: Основы алгебры. М. : ФИЗМАТЛИТ, 2004. 271 с. (34 экземпляра в библиотеке КубГУ)
- 2. Кострикин А.И. Линейная алгебра. Ч 2: Основы алгебры. М.: ФИЗМАТЛИТ, 2001. 367 с. (122 экземпляра в библиотеке КубГУ)
- 3. Кострикин А.И. Основные структуры. Ч 3: Основы алгебры. М. : ФИЗМАТЛИТ , 2001.-272 с. (91 экземпляр в библиотеке КубГУ)
- 4. Курош, А. Г. Курс высшей алгебры: учебник для вузов / А. Г. Курош. 25-е изд., стер. Санкт-Петербург: Лань, 2024. 432 с. ISBN 978-5-507-47499-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/383849?category=907
- 5. Ильин, В.А. Линейная алгебра [Электронный ресурс] : учебник / В.А. Ильин, Э.Г. Позняк. Электрон. дан. Москва : Физматлит, 2020. 280 с. Режим доступа: https://e.lanbook.com/book/185610
- 6. Воеводин В.В. Линейная алгебра СПб. [и др.] : Лань, 2008. 400 с. (49 экземпляров в библиотеке КубГУ)
- 7. Ермолаева, Н. Н. Практические занятия по алгебре. Элементы теории множеств, теории чисел, комбинаторики. Алгебраические структуры: учебное пособие / Н. Н. Ермолаева, В. А. Козынченко, Г. И. Курбатова. Санкт-Петербург: Лань, 2022. 112 с. ISBN 978-5-8114-1657-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/211595?category=907
- 8. Беклемишева, Л.А. Сборник задач по аналитической геометрии и линейной алгебре [Электронный ресурс] : учебное пособие / Л.А. Беклемишева, Д.В. Беклемишев, А.Ю. Петрович, И.А. Чубаров. Электрон. дан. Санкт-Петербур: Лань, 2018. 496 с. Режим доступа: https://e.lanbook.com/book/109625

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. **ЭБС «ЮРАЙТ»** https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. **36C «BOOK.ru»** https://www.book.ru
- 4. **36C «ZNANIUM.COM»** www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. **Scopus** http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru

- 6. **Национальная электронная библиотека** (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. **Springer Journals:** https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. **Nature Journals:** https://www.nature.com/
- 12. **Springer Nature Protocols and Methods**:

https://experiments.springernature.com/sources/springer-protocols

- 13. **Springer Materials:** http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. **Консультант Плюс** - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/

7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, и лабораторных работ, во время которых закрепляется теоретический материал решением задач.

На лабораторных занятиях проводится стандартная работа по решению задач по алгебраическим структурам. По отдельным темам студентам поручается подготовить презентации и выступить с докладами на занятиях.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников.

Для лучшего освоения дисциплины при ответах на ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО)
2.	Лабораторные Лаборатория, укомплектованная специализированной занятия мебелью и техническими средствами обучения	
3.	Групповые Аудитория с учебной мебелью (доски, столы, стулья)	
	(индивидуальные) консультации	
4.	Текущий контроль, промежуточная аттестация	Аудитория с учебной мебелью
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.