Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 61.0.24 «МЕТОДЫ ВЫЧИСЛИЕНИЙ»

Направление подготовки/специальность <u>02.03.03</u> <u>Математическое обеспечение</u> и администрирование информационных систем

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация Технологии разработки программных систем Программа подготовки академический бакалавриат

(академическая /прикладная)
Форма обучения <u>очная</u>
(очная, очно-заочная, заочная)
Квалификация (степень) выпускника <u>бакалавр</u>
(бакалавр, магистр, специалист)

Рабочая программа дисциплины «Методы вычислений» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.03 Математическое обеспечение и администрирование информационных систем.

Программу составил(и):

М.В. Патыковская, ст. преподаватель И.О. Фамилия, должность, ученая степень, ученое звание

Рабочая программа дисциплины утверждена на заседании кафедры вычислительных технологий, протокол № 7 «07» мая 2025 г.

И.о. заведующего кафедрой (разработчика) (фамилия, инициалы

Еремин А.А.

Рабочая программа обсуждена на заседании кафедры информационных технологий протокол №16 от «14» мая 2025 г. Заведующий кафедрой (выпускающей)

В.В. Подколзин

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 от «23» мая 2025 г.

Председатель УМК факультета

А.В. Коваленко

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «КубГУ», кандидат физико-математических наук.

Схаляхо Ч.А., доцент «КВВУ им. С.М. Штеменко», к.ф.-м.н., доцент

1. Цели и задачи изучения дисциплины

1.1. Цели освоения дисциплины

Целью преподавания и изучения дисциплины «Методы вычислений» является ознакомление студентов с основными понятиями и методами вычислительной математики, выработка навыков применения численных методов для решения практических задач.

1.2. Задачи дисциплины

Студент должен знать основные методы вычислительной математики; уметь применять численные методы для решения практических задач; владеть основными численными методами решения задач линейной алгебры, математического анализа и дифференциальных уравнений.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Методы вычислений» относится к базовой части Б1 математического и естественнонаучного цикла. Для изучения дисциплины необходимы знания по следующим базовым дисциплинам математического и естественнонаучного цикла и профессионального циклов ООП: «Дифференциальное исчисление», «Алгебра», «Интегральное исчисление», «Основы программирования».

Знания, получаемые при изучении теории методов вычислений, используются при изучении других дисциплин профессионального цикла учебного плана бакалавра, а также при работе над курсовыми проектами.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций *(ОК/ОПК/ПК)*

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))				
ОПК-1. Способен применять фундаментальн	ые знания, полученные в области математических и				
(или) естественных наук, и использовать их в профессиональной деятельности					
ИД-1.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при построении моделей в заданной предметной области	Знает алгоритмы вычислительной математики и способы их реализации с использованием методов фундаментальной информатики и информационных технологий				
ИД-2. ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при выборе методов решения задач профессиональной деятельности	Умеет осуществлять первичный сбор и анализ материала в области вычислительной математики				
ОПК-2 Способен применять современный маразработкой, реализацией и оценкой качеств различных областях человеческой деятельно	атематический аппарат, связанный с проектированием, а программных продуктов и программных комплексов в ости				
ИД-1.ОПК-2 Способен применять системный подход к анализу предметной (проблемной) области, выявлению требований к ИС	Основные положения и концепции в области программирования, современные языки программирования и пакеты программ, реализующих численные методы				

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))		
ИД-2. ОПК-2 Применяет современный математический аппарат при построении моделей в различных областях человеческой деятельности	Знает языки программирования, алгоритмы вычислительной математики, умеет разрабатывать программы, реализующие численные методы.		

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утверждённым учебным планом.

No	Индекс компете	Содержание компетенции (или	В результате изучения учебной дисциплины обучающиеся должны				
п.п.	^{і.п.} нции её части)		знать уметь владеть				
1.	ОПК-1	Способен применять фундаментальны е знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональн ой деятельности	алгоритмы вычислительной математики и способы их реализации с использованием методов фундаментальной информатики и информационных технологий	разрабатывать программы для компьютерных систем, реализующих приближенные численные методы	методами разработки и реализации алгоритмов с использованием информационных технологий при решении задач вычислительной математики		
2.	ОПК-2	Способен применять компьютерные/ суперкомпьютерн ые методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессионально й деятельности	основные алгоритмы вычислительной математики и пакеты программ, реализующих численные методы	применять алгоритмы вычислительно й математики, разрабатывать программы для решения прикладных задач в различных областях	методами разработки программ, реализующих численные методы и методами разработки математических моделей вычислительных задач		

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице

Вид учебной работы	Всего часов	Семестры (часы)			
		4			
Контактная работа, в том числе:					
Аудиторные занятия (всего):	72,3	72,3			
Занятия лекционного типа	34	34	-	_	_
Лабораторные занятия	34	34	-	_	_
Занятия семинарского типа (семинары, практические занятия)	_	_	_	_	_

	_		_	1	-	
Иная контактная работа						
Контроль самостоятельной	í работы (KCP)	4	4	-	_	_
Промежуточная аттестаци	я (ИКР)	0,3	0,3	-	_	_
Самостоятельная работа	, в том числе:	63	63			
Курсовая работа		_	_	_	_	_
Проработка учебного (теој	ретического) материала	33	33	-	_	_
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)			30	_	_	_
Реферат		_	_	_	_	_
Подготовка к текущему ко	нтролю	_	-	_	_	_
Контроль:						
Подготовка к экзамену		44,7	44,7	_	_	_
Общая трудоёмкость час.		180	180	-	_	_
	в том числе контактная работа	72,3	72,3	-	_	_
	зач. ед.	5	5			-

2.2 Структура дисциплины Распределение видов учебной работы и их трудоёмкости по разделам дисциплины. Разделы дисциплины, изучаемые в 4-м семестре *(очная форма)*

<u>№</u>	Наименование разделов			Количе	ество ча	асов
раздела		Всего	Аудиторная работа			Самостоятельная работа
			Л	КСР	ЛР	
1	2	3	4	5	6	7
1	Основы теории погрешностей.	15	2		4	9
2	Численные методы приближения и аппроксимации функций.	25	6	1	6	12
3	Численное интегрирование и дифференцирование.	24	6	1	6	11
4	Численные методы линейной алгебры.	36	14	1	10	11
5	Численные методы решения нелинейных уравнений и систем.	14	2		2	10
6	Численные методы решения обыкновенных дифференциальных уравнений.	21	4	1	6	10
	ИТОГО по разделам дисциплины	135	34	4	34	63
	Контроль самостоятельной работы (КСР)	· 				
	Промежуточная аттестация (ИКР)	0,3				
	Общая трудоёмкость по дисциплине	180				

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№ раз-	Наименование	Содержание раздела	Форма
дела	раздела		текущего контроля
1	2	3	4
1	Основы теории погрешностей.	Классификация ошибок вычислений. Абсолютная и относительная погрешность. Оценка погрешностей вычислений.	ЛР
2	Численные методы приближения и аппроксимации функций.	Методы приближения и аппроксимации функций. Общая задача и алгоритмы приближения. Интерполирование многочленом Лагранжа. Погрешность интерполяции. Минимизация погрешности интерполяции, полиномы Чебышева. Интерполяция сплайнами. Метод наименьших квадратов.	ЛР, РГЗ
3	Численное интегрирование и дифференцирование.	Задача численного интегрирования. Квадратурные формулы Ньютона-Котеса. Методы прямоугольников, трапеции, Симпсона, Гаусса. Оценка точности численного интегрирования. Выбор оптимального шага при численном интегрировании. Задача численного дифференцирования и её решение. Формулы численного дифференцирования.	ЛР, РГЗ
4	Численные методы линейной алгебры.	Прямые методы решения систем линейных алгебраических уравнений: схемы Гаусса, метод квадратного корня, метод прогонки. Итерационные методы решения СЛАУ: метод простых итераций, метод Якоби, Зейделя, релаксации; итерационные методы вариационного типа. Сходимость итерационных методов. Методы решения задач на собственные значения. Метод прямой и обратной итерации. Метод вращений. Оценка скорости сходимости.	ЛР РГЗ
5	Численные методы решения нелинейных уравнений и систем.	Отделение корней, основные методы отделения корней. Уточнение корней. Метод хорд, дихотомии. Метод Ньютона, метод касательных. Метод итераций. Геометрическая интерпретация методов. Оценка точности методов. Точность и сходимость решения.	ЛР РГЗ

6	Численные методы	Приближенное решение обыкновенных	ЛР
	решения	дифференциальных уравнений. Задача	РГЗ
	обыкновенных	Коши. Метод Эйлера. Метод Рунге-	
	дифференциальных	Кутта. Метод Адамса. Погрешность	
	уравнений.	аппроксимации.	
		-	

2.3.2 Занятия семинарского типа

Занятия семинарского типа – не предусмотрены.

2.3.3 Лабораторные занятия

No॒	Название раздела	Наименование лабораторных работ	Форма
работы	дисциплины		текущего
1	2	3	контроля
1	=	_	— 4 ЛР
1	Основы теории погрешностей.	Вычисления с плавающей точкой: определение машинного нуля и	ЛР
	nor pennioe ren.	машинной бесконечности.	
2	Основы теории	Абсолютные и относительные	ЛР
	погрешностей.	погрешности арифметических действий	
3	Численные методы	Интерполирование функции	ЛР, РГЗ
	приближения и	полиномом Лагранжа с	
	аппроксимации функций.	равноотстоящими узлами	
4	Численные методы	Корни полиномов Чебышева для	ЛР,РГЗ
	приближения и	интерполирования функции	
	аппроксимации	полиномом Лагранжа	
	функций.		
5	Численные методы	Интерполирование функции	ЛР, РГЗ
	приближения и	кубическими сплайнами.	
	аппроксимации		
	функций.	2	TD DE2
6	Численное	Задача численного интегрирования.	ЛР, РГЗ
	интегрирование и	Квадратурные формулы	
7	дифференцирование. Численное	прямоугольников и трапеции.	ЛР, РГЗ
/	интегрирование и	Задача численного интегрирования.	лг, гг з
	дифференцирование.	Квадратурные формулы Симпсона.	
8	Численное	Вычисление определённого	ЛР, РГЗ
	интегрирование и	интеграла методом Гаусса	
	дифференцирование.	Pour moragem 1 my cou	
9	Численное	Численное дифференцирование	ЛР, РГЗ
	интегрирование и	функций	
	дифференцирование.		
10	Численные методы	Решение системы линейных	ЛР, РГЗ
	линейной алгебры.	уравнений методом Гаусса с	
		выбором главного элемента.	
11	Численные методы	Решение системы линейных	ЛР, РГЗ
	линейной алгебры.	уравнений методом прогонки и	
		методом квадратного корня	

12	Численные методы линейной алгебры.	Решение системы линейных уравнений итерационными методами (Якоби, Зейделя, релаксации)	ЛР, РГЗ
13	Численные методы линейной алгебры.	Решение системы линейных уравнений итерационными методами вариационного типа.	ЛР, РГЗ
14	Численные методы линейной алгебры.	Нахождение собственных чисел симметричной матрицы методом вращений.	ЛР, РГЗ
15	Численные методы решения нелинейных уравнений и систем.	Численное решение нелинейного уравнения.	ЛР, РГЗ
16	Численные методы решения обыкновенных дифференциальных уравнений.	Численное решение задачи Коши методом Эйлера, методами Рунге-Кугта 2-го и 4-го порядка.	ЛР, РГЗ
17	Численные методы решения обыкновенных дифференциальных уравнений.	Численное решение задачи Коши явным и неявным методами Адамса	ЛР, РГЗ

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного	Литература из основного и дополнительного списков
	материала, выполнение	
	индивидуальных заданий.	
2	Подготовка к текущему контролю	Литература из основного и дополнительного списков

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями Φ ГОС в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов. При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал. Создание и использование диагностических тестов является неотъемлемой частью данной технологии.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:
- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи. Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определённой теме, в результате которой составляется проект;

- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
 - развитие критического мышления
- образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Используемые интерактивные образовательные технологии:

Семестр	Вид занятия	Используемые интерактивные	Количество
	$(\Pi, \Pi P, \Pi P)$	образовательные технологии	часов
	Л	Компьютерные презентации и обсуждение	34
4	ЛР	Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов)	34
	КСР	Контрольная работа	4
Итого:	_		72

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы. Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной (коллоквиума) и итоговой аттестации (экзамена в 4 семестре).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- оценок коллоквиума;

- оценки, выставляемой при сдаче индивидуальных расчетно-графических заданий
- разработка компьютерной программы, реализующей численный метод;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

Экзамен в 4-м семестре выставляется по результатам выполненных индивидуальных расчётно-графических заданий и текущей работы на лабораторных занятиях.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учётом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводится в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа. Для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование		Наименование оценочного средства	
п/п	индикатора	Результаты обучения	Текущий контроль	Промежуточная аттестация
1	ИД-1.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при построении моделей в заданной предметной области	Знает алгоритмы вычислительной математики и способы их реализации с использованием методов фундаментальной информатики и информационных технологий	опрос по теме, лабораторная работа, коллоквиум	Экзамен
2	ИД-2. ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при выборе методов решения задач профессиональной деятельности	Умеет осуществлять первичный сбор и анализ материала в области вычислительной математики	опрос по теме, лабораторная работа, коллоквиум	Экзамен

3	ИД-1.ОПК-2 Способен применять системный подход к анализу предметной (проблемной) области, выявлению требований к ИС	Основные положения и концепции в области программирования, современные языки программирования и пакеты программ, реализующих численные методы	опрос по теме, лабораторная работа, коллоквиум, РГЗ	Решение задач на экзамене
4	ИД-2.ОПК-2 Применяет современный математический аппарат при построении моделей в различных областях человеческой деятельности	Знает языки программирования, алгоритмы вычислительной математики, умеет разрабатывать программы, реализующие численные методы.	опрос по теме, лабораторная работа, коллоквиум РГЗ	Экзамен

Показатели, критерии и шкала оценки сформированных компетенций

Компетенция	Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания				
Компетенции	Пороговый		базовый	Продвинутый	
	Оценка				
	Удовлетворительно		Хорошо	Отлично	
ОПК-1: Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	Знает — основные численные методы Умеет — решать типовые задачи по численным методам	алг выч мат осн чис мет Ум при чис мет рег	пет — основные горитмы числительной гематики и новные сленные годы неет — именять сленные годы для шения числительных цач.	Знает — основные алгоритмы и методы вычислительной математики и основные численные методы Умеет — применять алгоритмы вычислительной математики для решения прикладных задач в различных	
	Владеет — базовыми методами	мет раз	адеет — годами гработки	областях. Владеет — методами разработки математических	
	решения типовых задач вычислительной математики	per	оритмов пения числительных (ач	математических моделей прикладных задач	

ОПК-2	2.1.0.010	13 2	Знает – основные
	Знает -	Знает -	
Способен применять компьютерные/	основные	основные	методы и
суперкомпьютерные	пакеты	численные	алгоритмы
методы,	программ,	методы	вычислительной
современное	реализующих	решения задач	математики
программное	численные	линейной	
обеспечение, в том	методы	алгебры,	
числе	решения задач	математического	
отечественного	линейной алгебры,	анализа и	
происхождения, для	математического	дифференциальных	
решения задач	анализа и	уравнений;	
профессиональной	дифференциальных	современные	
деятельности	уравнений;	программные	
		комплексы,	
		реализующие численные методы.	
	Умеет-		**
	<i>разрабатывать</i>	Умеет-	Умеет-
	программы,	разрабатывать	разрабатывать
	реализующие	программы и	эффективные
	стандартные	использовать	программы для
	численные	современные	решения задач
		программные	вычислительной
	методы	комплексы для	математики
		решения задач вычислительной	
		математики	
			_
	Владеет -	Владеет -	Владеет -
	численными	вычислительными	вычислительными
	методами и	методами и	методами и
	методами	методами	методами
	применения	программирования	программирования
	пакетов программ	для решения задач вычислительной	для эффективного
	для решения	математики	решения проектно- технических и
	стандартных вычислительных	Waterial	прикладных задач
	задач		прикладиых задач
	Smfta 1		

Типовые контрольные материалы или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Образец индивидуальных РГЗ - задание на разработку компьютерной программы:

Задание: Написать компьютерную программу решения задачи с применением численных методов.

Отчёт по выполнению РГЗ должен содержать:

- постановку задачи;
- краткое описание метода вычисления;
- листинг программы на одном из языков программирования;
- примеры работы программы;
- анализ сходимости метода;
- список использованной литературы.

Пример задач:

Задача 1. Задача интерполяции.

На отрезке [a, b] заданы упорядоченные n+1 точки и значения функции в этих точках

$a = x_0$	x_1	x_2	\mathcal{X}_3	 $x_n = b$
$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$	 $f(x_n)$

Требуется построить интерполяционный полином Лагранжа и найти значения этой функции для промежуточных значений аргумента, не совпадающих с приведёнными в таблице.

Задача 2.

Найти приближённые значения определённых интегралов. Оценить ошибку вычисления и сравнить с точным значением.

- а) использовать метод прямоугольников;
- б) методом трапеций.
- в) методом Симпсона.
- г) методом Гаусса.

Задача 3.

Найти корни уравнения F(x) = 0 методом касательных (Ньютона) с точностью e = 0.01.

Задача 4. Численное решение задачи Коши для обыкновенных дифференциальных уравнений.

Найти частное решение дифференциального y' = f(x, y) на отрезке [a, b] уравнения $y' = x^2 - 2y$. при заданных начальных условиях

$$y(x_0) = y_0$$

- а) методом Эйлера;
- б) методом Рунге-Кутта.

Экзаменационные материалы для итоговой аттестации. Перечень вопросов, которые выносятся на экзамен в 4 семестре

Код оцениваемой компетенции –ОПК-1, ОПК-2

- 1. Классификация ошибок вычислений. Абсолютная и относительная погрешность.
- 2. Оценка погрешностей вычислений.
- 3. Интерполяционный полином Лагранжа.
- 4. Многочлены Чебышёва.
- 5. Узлы, минимизируйте оценку погрешности интерполяции функций.
- 6. Интерполяция функций сплайнами.
- 7. Метод наименьших квадратов в теории приближений.
- 8. Простейшие квадратурные формулы численного интегрирования.
- 9. Квадратурные формулы Гаусса.
- 10. Простейшие формулы численного дифференцирования.
- 11. Метод Гаусса. Метод Холецкого решения систем линейных алгебраических уравнений.
- 12. Метод прогонки решения систем линейных алгебраических уравнений.
- 13. Устойчивость решения систем линейных алгебраических уравнений.
- 14. Итерационные методы решения систем линейных алгебраических уравнений. Методы Якоби, Зейделя. Достаточные условия сходимости итерационных методов.
- 15. Итерационные методы решения систем линейных алгебраических уравнений. Метод релаксации. Необходимые и достаточные условия сходимости итерационных методов.
- 16. Итерационные методы решения систем линейных алгебраических уравнений вариационного типа.
- 17. Метод прямой итерации решения задач на собственные значения.
- 18. Прямой метод вращения для определения собственных значений и собственных векторов.
- 19. Итерационный метод вращений для определения собственных значений и собственных векторов.
- 20. Собственные значения и собственные вектора трехдиагональных матриц.
- 21. Численные методы решения нелинейных уравнений. Метод деления отрезка пополам.
- 22. Итерационные методы уточнения корней нелинейных уравнений.
- 23. Метод Ньютона, метод секущих решения нелинейных уравнений. Геометрическая интерпретация.
- 24. Методы решения алгебраических уравнений. Отделение корней полинома.
- 25. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Метод Пикара.
- 26. Метод Эйлера решения задачи Коши для обыкновенных дифференциальных уравнений.
- 27. Метод Рунге-Кутта решения задачи Коши для обыкновенных дифференциальных уравнений.
- 28. Многошаговые методы решения задачи Коши для обыкновенных дифференциальных уравнений.

Критерии оценивания к экзамену

Оценка «отлично»: грамотное и логически стройное изложение материала при ответе, точные формулировки определений, теорем и правильные доказательства; правильные, уверенные действия по применению полученных знаний на практике, усвоение основной и знакомство с дополнительной литературой.

Оценка «хорошо»: чёткое изложение материала, допускаются отдельные логические и стилистические погрешности либо при ответе на один вопрос даны точные формулировки

определений, теорем и правильные доказательства; при ответе на второй вопрос имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; правильные действия по применению знаний на практике.

Оценка «удовлетворительно»: при ответе на оба вопроса имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике.

Оценка «неудовлетворительно»: отсутствует ответ хотя бы на один из вопросов или имеются существенные неточности в формулировках определений, теорем, приведены неправильные доказательства; неумение применять знания на практике.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учётом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература

- 1. Бахвалов, Н.С. Численные методы [Электронный ресурс] : учебное пособие / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2020. 639 с. Режим доступа: https://e.lanbook.com/book/126099
- 1. Бахвалов, Н.С. Численные методы в задачах и упражнениях: учебное пособие / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков.— Москва : Издательство "Высшая школа", 2020. 190 с. (52 экземпляра в библиотеке КубГУ)
- 2. Пименов, В. Г. Численные методы в 2 ч. Ч. 1 [Электронный ресурс]: учебное пособие для вузов / В. Г. Пименов. М. : Издательство Юрайт, 2022. 111 с. . Режим доступа: https://urait.ru/bcode/492872
- 3. Пименов, В. Г. Численные методы в 2 ч. Ч. 2 [Электронный ресурс]: учебное пособие для вузов / В. Г. Пименов, А. Б. Ложников. М.: Издательство Юрайт, 2022. 107с. —

Режим доступа: https://urait.ru/bcode/492873

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Дополнительная литература

- 1. Лапчик М.П., Рагулина М.И., Хеннер Е.Н. Численные методы. М.:Академия, 2007. 384 с. (20 экземпляров в библиотеке КубГУ)
- 2. Волков Е.А. Численные методы. [Электронный ресурс] : учебное пособие длявузов СПб.: Лань, 2021 г. 252 с. Режим доступа: https://e.lanbook.com/book/167179
- 3. Зенков, А. В. Численные методы/ [Электронный ресурс] : учебное пособие для прикладного бакалавриата / А. В. Зенков. М. : Издательство Юрайт, 2022. —122 с. Режим доступа: https://urait.ru/bcode/491582

5.3. Периодические издания

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. **3 BC «BOOK.ru»** https://www.book.ru
- 4. 96C «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. **Scopus** http://www.scopus.com/
- 2. **ScienceDirect** https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. **Национальная электронная библиотека** (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. **Springer Journals:** https://link.springer.com/
- 10. **Springer Journals Archive:** https://link.springer.com/
- 11. **Nature Journals:** https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. **Springer Materials:** http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. **Консультант Плюс** - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/:
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

На лабораторных занятиях проводится стандартная работа по решению задач. По дисциплине студентом выполняется 6 индивидуальных расчётно-графических заданий — разработка и реализация программы для решения практической задачи. Задача РГЗ состоит в проверке умений студента и проверки эффективности его самостоятельной работы. Общая тематика соответствует тематике лабораторных работ.

Лабораторные работы выполняются, как правило, в компьютерном классе.

Отдельные работы при оценке погрешности вычислений могут выполняться в аудитории. На лабораторных работах изучаются основные численные методы. Студент должен разработать программу, реализующую заданный численный метод и оценить погрешность вычислений.

Расчётно-графическое задание по дисциплине состоит в разработке программы на

языке программирования C++ или Python, реализующей численный метод.

Задания являются индивидуальными, т.е. для каждого студента предлагается свой вариант задачи.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

7.1 Перечень информационных технологий

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении практических занятий.

7.2 Перечень необходимого программного обеспечения

- Программы для демонстрации и создания презентаций («Microsoft Power Point»).
- Математические пакеты (Maple, MatLab).
- Среда программирования на языке высокого уровня (C, C++, Python).

7.3 Перечень информационных справочных систем

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

8. Материально-техническое обеспечение процесса по дисциплине (модулю)

Nº	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащённость	
1.	Лекционные занятия	Лекционная аудитория, оснащённая презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО)	
2.	Лабораторные занятия	Лаборатория, укомплектованная специализированной мебелью и техническими средствами обучения	
3.	Групповые (индивидуальные) консультации	Аудитория с учебной мебелью (доски, столы, стулья)	
4.	Текущий контроль, промежуточная аттестация	Аудитория с учебной мебелью	
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащённый компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.	