министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

УТВИРЖДАЮ
Проректор по учебной работе, качеству образования — первый проректор

Хагуров Т.А.

подпись

«30» мая 2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.03«Технологии хранения и обработки больших объёмов данных»

Направление подготовки 01.04.02 Прикладная математика и информатика

Направленность (профиль) Технологии программирования и разработки информационно-коммуникационных систем

Форма обучения очная

Квалификация магистр

Краснодар 2025

Рабочая программа дисциплины «Технологии хранения и обработки больших объёмов данных» составлена в соответствии с федеральным государственным образования $(\Phi\Gamma OC)$ образовательным стандартом высшего направлению подготовки 01.04.02Прикладная математика и информатика.

Программу составил(и):

А.И. Миков, профессор, доктор физ.-мат. наук, профессор

Рабочая программа дисциплины «Технологии хранения и обработки больших объёмов данных» утверждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025г.

Заведующий кафедрой (разработчика)

В. В. Подколзин

Рабочая программа обсуждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025г.

Заведующий кафедрой (выпускающей)

В. В. Подколзин

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2025 г.

Председатель УМК факультета

А. В. Коваленко

Рецензенты:

Бегларян М. Е., Проректор по учебной работе, Краснодарский кооперативный институт (филиал) АНО ВО Центросоюза РФ «Российский университет кооперации»

Рубцов Сергей Евгеньевич, кандидат физико-математических наук, доцент кафедры математического моделирования ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Основной целью дисциплины является изучение методов работы со структурированными и неструктурированными данными большого объема, и формирование у студентов навыков высокопроизводительных вычислений.

Воспитательной целью дисциплины является формирование у студентов научного, творческого подхода к освоению математических методов, технологий разработки программного обеспечения.

Отбор материала основывается на необходимости ознакомить студентов со следующей современной научной информацией:

о том, что современные прикладные задачи в значительной мере характеризуются не сложностью отдельных расчетов, а большим объемом данных, участвующих в этих расчетах;

о том, что для эффективного решения задач с большими объемами данных необходимо использование архитектур вычислителей с массовым параллелизмом.

Содержательное наполнение дисциплины обусловлено общими задачами подготовки магистра.

Научной основой для построения программы данной дисциплины является теоретико-прагматический подход в обучении.

1.2 Задачи дисциплины

Основные задачи дисциплины:

- ознакомление с классами прикладных задач, требующих обработки больших объемов данных;
- ознакомпение с современными методами параллельной обработки данных на кластерах;
- приобретение навыков написания программ в специализированных фреймворках для работы с большими данными;
- ознакомление с методами организации хранения данных.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Технологии хранения и обработки больших объёмов данных» относится к «Часть, формируемая участниками образовательных отношений» Блока 1 «Дисциплины (модули)» учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики

ИПК-1.1 Создает математические модели на основе анализа проблемной области исследования в области фундаментальной и прикладной математики

Знать Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Языки формализации функциональных спецификаций

Уметь Проводить анализ исполнения требований

Вырабатывать варианты реализации требований Использовать методы и приемы формализации задач

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.2 Обосновывает предлагаемые решения и определяет инструментарий их реализации

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Методы и приемы алгоритмизации поставленных задач Языки формализации функциональных спецификаций

Уметь

задач занятия (цикла занятий), вида занятия;

Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.3

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других нормативных документов

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности
Языки формализации функциональных спецификаций

Уметь

Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества и эффективности программного кода

Ответы на вопросы и предложения участников аналитической группы проекта

ПК-2 Способен эффективно планировать необходимые ресурсы и этапы выполнения работ в области математического моделирования и информационно-коммуникационных технологий, составлять на высоком уровне соответствующие технические описания и инструкции

ИПК-2.1 Знает и применяет современные методологии разработки программного обеспечения и технологии программирования

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Управление качеством: контрольные списки, верификация, валидация (приемо-сдаточные испытания)

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Создавать на занятиях проблемноориентированную образовательную среду, обеспечивающую формирование у обучающихся компетенций, предусмотренных требованиями ФГОС и (или) образовательных стандартов, установленных образовательной организацией и (или) образовательной программой к компетенциям выпускников

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Разрабатывать регламентные документы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Распределение ролей и аналитических работ по участникам аналитической группы проекта

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-2.2

Знает и применяет лучшие мировые практики оформления программного кода, нормативных документов, технических описаний и и инструкций

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Правила деловой переписки

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Создавать на занятиях проблемноориентированную образовательную среду, обеспечивающую формирование у обучающихся компетенций, предусмотренных требованиями ФГОС и (или) образовательных стандартов, установленных образовательной организацией и (или) образовательной программой к компетенциям выпускников

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

ПК-3 Способен эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

ИПК-3.1 Знает и применяет современные технологии выполнения работ по созданию (модификации) и сопровождению ИС

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Инструменты и методы проведения аудитов качества

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.2

Знает компоненты современных программно-технических архитектур, эффективно применяет методы и приемы алгоритмизации

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.3

Эффективно применяет существующие программные решения и интерфейсы взаимодействия с ними в области информационно-коммуникационных технологий

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода Редактирование программного кода

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108часов), их распределение по видам работ представлено в таблице

Вид учебной работы		Всего		Семестры (часы)
			3	
Контактная работа, в то		28,3	28,3	
Аудиторные занятия (все	его):	28	28	
Занятия лекционного типа		14	14	
Лабораторные занятия		14	14	
Занятия семинарского тип практические занятия)	а (семинары,			
Иная контактная работа	:	0,3	0,3	
Контроль самостоятельной	і работы (КСР)	1		
	Промежуточная аттестация (ИКР)		0,3	
Самостоятельная работа, в том числе:		53	53	
	Проработка учебного (теоретического)		13	
	Выполнение индивидуальных заданий (подготовка сообщений, презентаций)		40	
Подготовка к текущему ко				
Контроль:		26,7	26,7	
Подготовка к экзамену		26,7	26,7	
	час.	108	108	
Общая трудоемкость	в том числе контактная работа	28,3	28,3	
	зач. ед	3	3	

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре

		Количество часов				
№	Наименование разделов (тем)	Всего	Аудиторная работа			Внеауд иторна я работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Источники больших данных и задачи	9	2		2	5
2.	Методы обработки: Мар Reduce	12	2		2	8
3.	Методы реализации: Hadoop и др	12	2		2	8
4.	Хранение данных: NoSQL	12	2		2	8
5.	Bigtable от Google и RDD	12	2		2	8

			Кол	Количество часов			
№	Наименование разделов (тем)		Ауді	Аудиторная работа			
			Л	ПЗ	ЛР	CPC	
1	2	3	4	5	6	7	
6.	Алгоритмы обработки потоков данных	12	2		2	8	
7.	Поиск похожих объектов в больших данных	12	2		2	8	
ИТОГО по разделам дисциплины		81	14		14	53	
Конт	гроль самостоятельной работы (КСР)					700	
Прог	межуточная аттестация (ИКР)	0,3					
Поді	отовка к текущему контролю	26,7					
Оби	рая трудоемкость по дисциплине	108					

Примечание: Π — лекции, $\Pi 3$ — практические занятия/семинары, ΠP — лабораторные занятия, CPC — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы) 2	Содержание раздела (темы) 3	Форма текущего контроля 4
1.	Источники больших данных и задачи	Наука о данных — обнаружение закономерностей в данных, извлечение знаний из данных в обобщённой форме. Классические источники больших данных интернет вещей и социальные медиа, внутренняя информация предприятий и организаций, астрономические наблюдения, непрерывно поступающие данные с измерительных устройств, события от радиочастотных идентификаторов, потоки сообщений из социальных сетей, метеорологические данные, данные дистанционного зондирования Земли, потоки данных о местонахождении абонентов сетей сотовой связи, устройств аудио- и видеорегистрации. Базовый принцип обработки больших данных горизонтальная масштабируемость, обеспечивающая обработку данных, распределённых на сотни и тысячи вычислительных узлов, без деградации производительности. Аппаратно-программные комплексы, для обработки больших данных: Aster МарReduce appliance, Oracle Big Data appliance, Greenplum appliance. Построение кластеров на основе персональных компьютеров. Компьютеры с архитектурой SIMD.	лъ
2.	Методы обработки: Мар Reduce	Параллельная (распределенная) обработка данных. Вычисления в компьютерных сетях. Распределение вычислительной нагрузки по узлам. Балансировка нагрузки, статическая и динамическая балансировка. Метод компании Google представления параллельного процесса вычислений. Примеры использования. Примеры пользовательских функций для стадии Мар, стадии Reduce.	лъ
3.	Методы реализации: Hadoop и др	Проект фонда Apache Software Foundation - свободно распространяемый набор утилит, библиотек и фреймворк для разработки и выполнения распределённых программ. Модули Hadoop Common (связующее программное обеспечение - набор инфраструктурных программных библиотек и утилит), HDFS (распределённая файловая система), YARN (система для планирования заданий и управления	ЛР

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего конгроля
1	2	3	4
		кластером) и Hadoop MapReduce (платформа программирования и выполнения распределённых MapReduce-вычислений). Обеспечение горизонтальной масштабируемости кластера в Hadoop.	
4.	Хранение данных: NoSQL	Отказ от требований АСІD к СУБД при хранении и обработке данных во многих приложениях, работающих с большими данными. Теорема САР. Альтернативные реляционным подходы к хранению данных. Типы систем: «ключ - значение» (key-value store), «семейство столбцов» (column-family store), документо-ориентированные (document store), графовые. Примеры хранилищ - Berkeley DB, Amazon DynamoDB, Apache HBase, Neo4j.	лъ
5.	Bigtable от Google и RDD	Распределенное хранение файлов на компьютерах кластера. Решение Google: Bigtable. Модель данных. Строительные блоки. SSTable. Служба Chubby. Реализация. Планшеты (расположение, назначение, обслуживание). Решение для Spark: RDD (Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing).	лю
6.	Алгоритмы обработки потоков данных	Большие потоковые данные, задачи и алгоритмы для них. Подсчет количества уникальных элементов в потоке (мультимножестве). Алгоритм Флажоле-Мартина.	ЛР
7.	Поиск похожих объектов в больших данных	Поиск похожих объектов. Сходство множеств по Жаккару. Разбиение документов на шинглы. Сигнатуры множеств с сохранением сходства. Матричное представление множеств. МинХеш — сигнатуры, вычисление. Хеширование документов с учетом близости. LSH для МинХеш — сигнатур.	лю

Примечание: ЛP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, $P\Gamma 3$ - расчетно-графического задания, P - написание реферата, \mathcal{P} - эссе, K - коллоквиум, T – тестирование, P3 – решение задач.

2.3.2 Занятия семинарского типа

Не предусмотрены.

2.3.3 Лабораторные занятия

№	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущего конгроля
1	2	3	4
1.	Источники больших данных и задачи	Предобработка данных	ле
2.	Методы обработки: Мар Reduce	Map Reduce	ЛР
3.	Методы реализации: Hadoop и др	Hadoop	ле
4.	Хранение данных: NoSQL	Графовые базы данных	ЛР
5.	Bigtable от Google и RDD	Хранение файлов	ЛР
6.	Алгоритмы обработки потоков данных	Алгоритм Флажоле-Мартина	лр
7.	Поиск похожих объектов в больших данных	Расстояние по Жаккару	лр

Примечание: ΠP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, PI3 - расчетно-графического задания, P - написание реферата, \mathcal{P} - эссе, K - коллоквиум, T – тестирование, P3 – решение задач.

2.3.4 Примерная тематика курсовых работ (проектов)

Не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Изучение теоретического материала	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019
2	Решение задач	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий

потенциал. Создание и использование диагностических тестов является неотъемпемой частью данной технологии.

- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:
- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Семестр	Вид занятия	Используемые интерактивные образовательные технологии	количество интерактивных часов
3	ЛР	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	14
		Итого	14

Примечание: Л – лекции, П3 – практические занятия/семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

1. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Оценочные средства включают контрольные материалы для проведения **текущего** контроля в форме доклада-презентации по проблемным вопросам, разноуровневых заданий, и **промежуточной аттестации** в форме вопросов и заданий к экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Контролируемые разделы (темы)	Код контролируемой	Наименование оценочного средства		
п/п	дисциплины*	компетенции (или ее части)	Текущий контроль	Промежуточная аттестация	
1	Источники больших данных и задачи	ПК-1 (ИПК-1.1)	Лабораторная работа 1	Вопрос на экзамене 1, отчет по ЛР 1	
2	Методы обработки: Мар Reduce	ПК-1 (ИПК-1.2)	Лабораторная работа 2	Вопрос на экзамене 2- 4, отчет по ЛР 2	
3	Методы реализации: Hadoop и др	ПК-1 (ИПК-1.3)	Лабораторная работа 3	Вопрос на экзамене 5-8, отчет по ЛР 3	
4	Хранение данных: NoSQL	ПК-2 (ИПК-2.1)	Лабораторная работа 4	Вопрос на экзамене 9- 12, отчет по ЛР 4	
5	Bigtable от Google и RDD	ПК-2 (ИПК-2.2)	Лабораторная работа 5	Вопрос на экзамене 13-16, отчет по ЛР 5	
6	Алгоритмы обработки потоков данных	ПК-3 (ИПК-3.1)	Лабораторная работа 6	Вопрос на экзамене 17-19, отчет по ЛР 6	
7	Поиск похожих объектов в больших данных	ПК-3 (ИПК-3.2)	Лабораторная работа 7	Вопрос на экзамене 20-22, отчет по ЛР 7	

Показатели, критерии и шкала оценки сформированных компетенций

Соответствие <u>пороговому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **удовлетворительно**):

ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики

ИПК-1.1 Создает математические модели на основе анализа проблемной области исследования в области фундаментальной и прикладной математики

Знать Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач Языки формализации функциональных спецификаций **Уметь**

задач занятия (цикла занятий), вида занятия;

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований Использовать методы и приемы формализации задач

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.2 Обосновывает предлагаемые решения и определяет инструментарий их реализации

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Методы и приемы алгоритмизации поставленных задач Языки формализации функциональных спецификаций

Уметь

задач занятия (цикла занятий), вида занятия;

Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.3 Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других нормативных документов

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Языки формализации функциональных спецификаций

У**меть** Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений Использовать методы и приемы формализации задач Применять стандартные алгоритмы в соответствующих областях Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества и эффективности программного кода

Ответы на вопросы и предложения участников аналитической группы проекта

ПК-2 Способен эффективно планировать необходимые ресурсы и этапы выполнения работ в области математического моделирования и информационно-коммуникационных технологий, составлять на высоком уровне соответствующие технические описания и инструкции

ИПК-2.1 Знает и применяет современные методологии разработки программного обеспечения и технологии программирования

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Управление качеством: контрольные списки, верификация, валидация (приемо-сдаточные испытания)

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Создавать на занятиях проблемноориентированную образовательную среду, обеспечивающую формирование у обучающихся компетенций, предусмотренных требованиями ФГОС и (или) образовательных стандартов, установленных образовательной организацией и (или) образовательной программой к компетенциям выпускников

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Разрабатывать регламентные документы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Р аспределение ролей и аналитических работ по участникам аналитической группы проекта

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-2.2 Знает и применяет лучшие мировые практики оформления программного кода, нормативных документов, технических описаний и и инструкций

Знать Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Правила деловой переписки

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Создавать на занятиях проблемноориентированную образовательную среду, обеспечивающую формирование у обучающихся компетенций, предусмотренных требованиями ФГОС и (или) образовательных стандартов, установленных образовательной организацией и (или) образовательной программой к компетенциям выпускников

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

требований обеспечению Согласование программному заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

ПК-3 Способен эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

ИПК-3.1 Знает и применяет современные технологии выполнения работ по созданию (модификации) и сопровождению ИС

Знать

Возможности существующей программно-технической архитектуры

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных

Технологии выполнения работ созданию (модификации) no u сопровождению ИС

Инструменты и методы проведения аудитов качества

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

программно-технических архитектур, существующие Компоненты приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.2

Знает компоненты современных программно-технических архитектур, эффективно применяет методы и приемы алгоритмизации

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.3

Эффективно применяет существующие программные решения и интерфейсы взаимодействия с ними в области информационно-коммуникационных технологий

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

особенностей преподаваемого учебного курса, дисциплины (модуля);

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Соответствие <u>базовому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **хорошо**):

ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики

ИПК-1.1

Создает математические модели на основе анализа проблемной области исследования в области фундаментальной и прикладной математики

Знать Возможности существующей программно-технической архитектуры

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач на основе Map Reduce

Языки формализации функциональных спецификаций

Уметь задач занятия (цикла занятий), вида занятия;

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований Использовать методы и приемы формализации задач

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.2 Обосновывает предлагаемые решения и определяет инструментарий их реализации

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Методы и приемы алгоритмизации поставленных задач в среде Hadoop Языки формализации функциональных спецификаций

Уметь Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.3

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других нормативных документов

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Языки формализации функциональных спецификаций

Уметь

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества и эффективности программного кода

Ответы на вопросы и предложения участников аналитической группы проекта

ПК-2

Способен эффективно планировать необходимые ресурсы и этапы выполнения работ в области математического моделирования и информационно-коммуникационных технологий, составлять на высоком уровне соответствующие технические описания и инструкции

ИПК-2.1

Знает и применяет современные методологии разработки программного обеспечения и технологии программирования

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Управление качеством: контрольные списки, верификация, валидация (приемо-сдаточные испытания)

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Разрабатывать регламентные документы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Р аспределение ролей и аналитических работ по участникам аналитической группы проекта

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-2.2

Знает и применяет лучшие мировые практики оформления программного кода, нормативных документов, технических описаний и и инструкций

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Правила деловой переписки

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

ПК-3

Способен эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а также участвовать в их проектировании и разработке

ИПК-3.1

Знает и применяет современные технологии выполнения работ по созданию (модификации) и сопровождению ИС

Знать

Возможности существующей программно-технической архитектуры

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных класса NoSQL

Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Инструменты и методы проведения аудитов качества

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач

Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.2

Знает компоненты современных программно-технических архитектур, эффективно применяет методы и приемы алгоритмизации

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

особенностей преподаваемого учебного курса, дисциплины (модуля); Вырабатывать варианты реализации требований Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.3

Эффективно применяет существующие программные решения и интерфейсы взаимодействия с ними в области информационно-коммуникационных технологий

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

особенностей преподаваемого учебного курса, дисциплины (модуля);

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач

Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Соответствие <u>продвинутому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **отлично**):

ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной математики

ИПК-1.1

Создает математические модели на основе анализа проблемной области исследования в области фундаментальной и прикладной математики

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Языки формализации функциональных спецификаций

Уметь

Проводить анализ исполнения требований Вырабатывать варианты реализации требований Использовать методы и приемы формализации задач Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.2 Обосновывает предлагаемые решения и определяет инструментарий их реализации

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы формализации задач

Методы и приемы алгоритмизации поставленных задач

Языки формализации функциональных спецификаций

Уметь Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-1.3

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других нормативных документов

Знать

Возможности существующей программно-технической архитектуры Современный отечественный и зарубежный опыт в профессиональной деятельности

Языки формализации функциональных спецификаций

Уметь

Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать методы и приемы формализации задач

Применять стандартные алгоритмы в соответствующих областях

Планировать проектные работы

Владеть

Оценка качества формализации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов

Оценка качества и эффективности программного кода

Ответы на вопросы и предложения участников аналитической группы проекта

ПК-2

Способен эффективно планировать необходимые ресурсы и этапы выполнения работ в области математического моделирования и информационно-коммуникационных технологий, составлять на высоком уровне соответствующие технические описания и инструкции

ИПК-2.1

Знает и применяет современные методологии разработки программного обеспечения и технологии программирования

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области Основы современных операционных систем

Управление качеством: контрольные списки, верификация, валидация (приемо-сдаточные испытания)

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Проводить анализ исполнения требований

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Разрабатывать регламентные документы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Распределение ролей и аналитических работ по участникам аналитической группы проекта

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-2.2

Знает и применяет лучшие мировые практики оформления программного кода, нормативных документов, технических описаний и и инструкций

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Стандарты в области качества, применимые к предметной области

Основы современных операционных систем

Правила деловой переписки

Методы и приемы алгоритмизации поставленных задач

Технологии программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Планировать работы

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Планировать проектные работы

Владеть

Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Утверждение регламентов по управлению качеством

Принятие управленческих решений по изменению программного кода

Редактирование программного кода

ПК-3 Способен эффективно применять алгоритмические и программные решения в области информационно-коммуникационных технологий, а

также участвовать в их проектировании и разработке ИПК-3.1 Знает и применяет современные технологии выполнения работ по созданию (модификации) и сопровождению ИС

Знать

Возможности существующей программно-технической архитектуры

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных

Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Инструменты и методы проведения аудитов качества

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.2

Знает компоненты современных программно-технических архитектур, эффективно применяет методы и приемы алгоритмизации

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Нотации и программные продукты для графического отображения алгоритмов Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Определение стандартов в области качества, которым необходимо следовать при выполнении работ

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Представление и обсуждение плана аналитических работ

Ответы на вопросы и предложения участников аналитической группы проекта

ИПК-3.3

Эффективно применяет существующие программные решения и интерфейсы взаимодействия с ними в области информационно-коммуникационных технологий

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методологии и технологии проектирования и использования баз данных Технологии выполнения работ по созданию (модификации) и сопровождению ИС

Основы современных операционных систем

Современный отечественный и зарубежный опыт в профессиональной деятельности

Методы и приемы алгоритмизации поставленных задач

Программные продукты для графического отображения алгоритмов

Стандартные алгоритмы и области их применения

Выбранный язык программирования, особенности программирования на этом языке

Компоненты программно-технических архитектур, существующие приложения и интерфейсы взаимодействия с ними

Технологии программирования

Особенности выбранной среды программирования

Нормативные документы, определяющие требования к оформлению программного кода

Уметь

особенностей преподаваемого учебного курса, дисциплины (модуля);

Вырабатывать варианты реализации требований

Использовать методы и приемы алгоритмизации поставленных задач

Использовать программные продукты для графического отображения алгоритмов

Применять стандартные алгоритмы в соответствующих областях

Писать программный код на выбранном языке программирования

Использовать выбранную среду программирования

Применять лучшие мировые практики оформления программного кода

Использовать возможности имеющейся технической и/или программной архитектуры

Применять коллективную среду разработки программного обеспечения и систему контроля версий

Владеть

Разработка регламентов по управлению качеством

Согласование регламентов по управлению качеством с заинтересованными сторонами

Оценка качества и эффективности программного кода

Редактирование программного кода

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые тестовые задания

- 1. Типичными задачами, использующими большие объемы данных, и типичными источниками больших данных являются:
 - о задачи проектирования самолетов, кораблей, атомных электростанций
 - о соцопросы и их обработка
 - о сенсорные сети
 - о магазины, принадлежащие торговым сетям
 - о уникальное научное оборудование
 - о информация из социальных сетей
 - о задачи экономического анализа работы завода
- 2. Кластер как аппаратное средство мультипроцессорной обработки характеризуется:
 - о большим центральным запоминающим устройством
 - о использованием суперЭВМ
 - о высокоскоростной шиной обмена данными
 - о наличием большого количества ЭВМ невысокой производительности
 - о использованием стандартных каналов связи
- 3. Обработка больших данных (в контексте курса) характеризуется:
 - о Алгоритмами полиномиальной сложности
 - о Алгоритмами экспоненциальной сложности

- Параллельными вычислениями на многоядерных компьютерах с общей памятью
- о Распределенными вычислениями
- 4. Укажите какие модули входят в состав Hadoop:
 - o GENERAL
 - COMMON
 - HDFS
 - o REDUCE
 - o YARN
 - Hadoop MapReduce
- 5. Укажите какие СУБД традиционно считаются относящимися к классу NoSQL:
 - o MySQL
 - o Berkeley DB
 - o Microsoft Access
 - Amazon DynamoDB
 - o dBase
 - o Apache HBase
 - o Neo4j
 - o Oracle Database
- 6. В компьютерных науках тематика Big Data:
 - о является довольно замкнутой областью со своим математическим аппаратом
 - о не вносит ничего нового в теоретические разделы, являясь чисто прикладной
 - о активно использует вычислительные методы уравнений в частных производных
 - о использует теорию и практику параллельных и распределенных вычислений
 - о приведет к созданию нового класса алгоритмов
 - о будет пользоваться уже известными алгоритмами

Типовые контрольные задания

- 1. Эмуляция кластера. Реализовать физический кластер из доступного количества компьютеров. При отсутствии возможности физической реализации эмулировать кластер на одном компьютере.
- Построение схемы Мар Reduce для прикладной залачи. На построенном или эмулированном кластере решить задачу подсчета частоты букв русского алфавита на основе текста художественного произведения А.С.Пушкина, имеющегося в Интернете в открытом доступе. Использовать для этой цели один из универсальных языков программирования.
- 3. Реализация в Наdоор вычислений для прикладной задачи. С использованием программного обеспечения Наdоор на основе схемы Мар Reduce решить задачу отыскания множества из 1000 наиболее часто используемых слов русского языка в произведениях М.А.Булгакова.
- Разработка описания предметной области для одной из СУБД категории NoSQL Выбрать наиболее подходящую СУБД категории NoSQL и разработать для нее представление гиперграфов.

Зачетно-экзаменационные материалы для промежуточной аттестации Вопросы для подготовки к экзамену

- 1. Характеристика Интернета вещей как источника данных больших объемов.
- 2. Характеристика внутренней информации предприятий и организаций как источника данных больших объемов.
- 3. Характеристика научных приборов (радиотелескоп Хаббл, адронный коллайдер) как источника данных больших объемов.
- 4. Архитектуры компьютерных кластеров.
- 5. Масштабирование компьютерных кластеров.
- 6. Балансировка нагрузки кластера.
- 7. Метод Мар Reduce. Примеры фазы Мар.
- 8. Метод Мар Reduce. Примеры фазы Reduce.
- 9. Методы распараллеливания работы.
- 10. Характеристика модуля Hadoop Common.
- 11. Характеристика модуля Hadoop HDFS.
- 12. Характеристика модуля Hadoop YARN.
- 13. Методы представления информации в БД Apache HBase.
- 14. Методы представления информации в БД Amazon DynamoDB.
- 15. Методы представления информации в БД Neo4j.
- 16. Распределенное хранение файлов на компьютерах кластера. Решение Google: Bigtable. Модель данных.
- 17. Bigtable: Строительные блоки. SSTable. Служба Chubby.
- 18. Bigtable: Реализация. Планшеты (расположение, назначение, обслуживание).
- 19. Решение для Spark: RDD (Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing).
- 20. Большие потоковые данные, задачи и алгоритмы для них. Подсчет количества уникальных элементов в потоке (мультимножестве). Алгоритм Флажоле-Мартина.
- 21. Поиск похожих объектов. Сходство множеств по Жаккару. Разбиение документов на шинглы. Сигнатуры множеств с сохранением сходства. Матричное представление множеств.
- 22. МинХеш сигнатуры, вычисление. Хеширование документов с учетом близости. LSH для МинХеш сигнатур.

Перечень компетенций (части компетенции), проверяемых оценочным средством

ПК-1 (пп. 1-8), ПК-2 (пп. 9-15), ПК-3 (пп. 16-22).

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Методические рекомендации, определяющие процедуры оценивания тестов:

Тест проводится онлайн в системе Moodle или Google Docs и ограничен по времени. На сдачу теста дается две попытки. Тест считается успешно пройденным если студент правильно ответил на 70% вопросов.

Методические рекомендации, определяющие процедуры оценивания выполнения контрольных заданий:

Задание считается выполненным при выполнении следующих условий:

предоставлен исходный код приложения;

- продемонстрирована работоспособность приложения на компьютере;
- студент понимает исходный код и отвечает на вопросы по его организации;
- проведены расчеты по анализу большого объема данных, студент может их интерпретировать и обосновать правильность и точность результатов.

Методические рекомендации, определяющие процедуры оценивания на экзамене:

Процедура промежуточной аттестации проходит в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся ФГБОУ ВО «КубГУ».

Итоговой формой контроля сформированности компетенций у обучающихся по дисциплине является экзамен. Студенты обязаны сдать экзамен в соответствии с расписанием и учебным планом

ФОС промежуточной аттестации состоит из вопросов к экзамену, задач по дисциплине и результатам текущего контроля.

Экзамен по дисциплине преследует цель оценить работу студента за курс, получение теоретических знаний, их прочность, развитие творческого мышления, приобретение навыков самостоятельной работы, умение применять полученные знания для решения практических задач.

Форма проведения экзамена: устно.

Экзаменатору предоставляется право задавать студентам дополнительные вопросы по всей учебной программе дисциплины.

Результат сдачи экзамена заносится преподавателем в экзаменационную ведомость и в зачетную книжку.

Оценивание уровня освоения дисциплины основывается на качестве выполнения студентом заданий текущего контроля и ответов на вопросы экзамена.

Критерии оценки:

оценка «неудовлетворительно» выставляется в случае выполнения одного из условий:

- непонимание сущности излагаемых вопросов, грубые ошибки в ответе, неуверенные и неточные ответы на дополнительные вопросы;
- выполнено менее 50% контрольных заданий.

оценка «удовлетворительно» в случае выполнения условий:

- частично ответил на два вопроса экзаменационного билета или достаточно полно ответил хотя бы на один вопрос;
- выполнено не менее 50% контрольных заданий.

оценка «хорошо» в случае выполнения условий:

- достаточно полно ответил на два вопроса экзаменационного билета;
- даны частичные ответы на дополнительные вопросы;
- выполнено не менее 60% контрольных заданий.

оценка «отлично» в случае выполнения условий:

- глубокие исчерпывающие знания по вопросам экзаменационного билета;
- даны правильные и конкретные ответы на дополнительные вопросы;
- сданы все тесты и выполнено не менее 80% контрольных заданий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

 при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Основная литература:

- 1. Макшанов, А. В. Большие данные. Big Data / А. В. Макшанов, А. Е. Журавлев, Л. Н. Тындыкарь. 3-е изд., стер. Санкт-Петербург: Лань, 2023. 188 с. ISBN 978-5-507-46866-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/322664.
- 2. Парамонов И.Ю., Смагин В.А., Косых Н.Е., Хомоненко А.Д. Методы и модели исследования сложных систем и обработки больших данных: монография / Издательство "Лань". 236 стр. 2020.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Лесковец Ю., Раджараман А., Ульман Д. Анализ больших наборов данных / Издательство "ДМК Пресс" 498 стр. 2016.
- 2. Чаллавала Ш. , Лакхатария Дж. , Мехта Ч. , Патель К. MySQL 8 для больших данных / Издательство "ДМК Пресс" 226 стр. 2018.

5.3. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 9EC «BOOK.ru» https://www.book.ru

- 4. GEC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web

- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

5.5 Перечень информационно-коммуникационных технологий

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении лекционных занятий
- Система MOODLE
- Проверка домашних заданий и консультирование посредством ЭОИС КубГУ

5.6 Перечень лицензионного и свободно распространяемого программного обеспечения

OpenOffice

Компилятор С++

Oracle VirtualBox 6

VMware Workstation 16

Putty 0.76 или Kitty 0.76

FileZilla 3.57.0

WinSCP 5.19

Advanced port scanner 2.5

Python 3 (3.7 И 3.9)

numpy 1.22.0

opency 4.5.5

Keras 2.7.0

Tensor flow 2.7.0

matplotlib 3.5.1

PyCharm 2021

Cuda Toolkit 11.6

Фреймворк Diango

Firefox, любая версия

Putty, любая версия

Visual Studio Code, версия 1.52+

Eclipse PHP Development Tools, версия 2020-06+

Плагин Remote System Explorer (RSE) для Eclipse PDT

JetBrains PHP Storm

GIT

Java Version 8 Update 311

Clojure 1.10.3.1029.ps1

SWI Prolog 8.4

Intellij Idea IDE 2021

Mozilla Firefox 96

Google Chrome 97

GitHub Desktop 2.9 PHP Storm 2021 FileZilla 3.57.0 Putty 0.76

6. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал. В ходе лекционных занятий разбираются методы хранения и обработки данных больших объемов, приводятся примеры их использования, проводится анализ наиболее распространенных ошибок реализации. После прослушивания лекции рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

По курсу предусмотрено проведение лабораторных занятий, на которых дается прикладной систематизированный материал. В ходе занятий разбираются готовые программные приложения вычисления характеристик компьютерных сетей, а также приводятся примеры разработки программных приложений для исследования сетей. После занятия рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

При самостоятельной работе студентов необходимо изучить литературу, приведенную в перечнях выше, для осмысления вводимых понятий, анализа предложенных подходов и методов разработки программ. Разрабатывая решение новой задачи, студент должен уметь выбрать эффективные и надежные структуры данных для представления информации, подобрать соответствующие алгоритмы для их обработки, учесть специфику языка программирования, на котором будет выполнена реализация. Студент должен уметь выполнять тестирование и отладку алгоритмов решения задач с целью обнаружения и устранения в них ошибок.

Важнейшим этапом курса является самостоятельная работа по дисциплине. В процессе самостоятельной работы студент приобретает навык создания законченного программного продукта.

Используются активные, инновационные образовательные технологии, которые способствуют развитию общекультурных, общепрофессиональных компетенций и профессиональных компетенций обучающихся:

- проблемное обучение;
- разноуровневое обучение;
- проектные методы обучения;
- исследовательские методы в обучении;
- обучение в сотрудничестве (командная, групповая работа);
- информационно- коммуникационные технологии.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Учебно-методическим обеспечением курсовой работы студентов являются:

- 1. учебная литература;
- 2. нормативные документы ВУЗа;
- 3. методические разработки для студентов.

Самостоятельная работа студентов включает:

- оформление итогового отчета (пояснительной запики).
- анализ нормативно-методической базы организации;
- анализ научных публикации по заранее определённой теме;

- анализ и обработку информации;
- работу с научной, учебной и методической литературой,
- работа с конспектами лекций, ЭБС.

Для самостоятельной работы представляется аудитория с компьютером и доступом в Интернет, к электронной библиотеке вуза и к информационно-справочным системам. Перечень учебно-методического обеспечения:

- 1. Основная образовательная программа высшего профессионального образования федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» по направлению полготовки.
- 2. Положение о проведении текущего контроля успеваемости и промежуточной аттестации в федеральном государственном бюджетном образовательном учреждении высшего образования «Кубанский государственный университет».
- 3. Общие требования к построению, содержанию, оформлению и утверждению рабочей программы дисциплины Федерального государственного образовательного стандарта высшего профессионального образования.
- 4. Методические рекомендации по содержанию, оформлению и применению образовательных технологий и оценочных средств в учебном процессе, основанном на Федеральном государственном образовательном стандарте.
- 5. Учебный план основной образовательной программы по направлению подготовки.
- 6. Федеральный государственный образовательный стандарт высшего профессионального образования по направлению подготовки.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

No	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения		
1.	Лекционные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения		
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, проектором, программным обеспечением		
3.	Практические занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения		
4.	Групповые (индивидуальные) консультации	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением		
5.	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением		
6.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет»,программой экранного увеличения и		

обеспеченный доступом в электронную информационно-
образовательную среду университета.

Примечание: Конкретизация аудиторий и их оснащение определяется ОПОП.