министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

«30» мая 2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.15«Низкоуровневое программирование»

Направление подготовки 02.03.03 <u>Математическое обеспечение и</u> администрирование информационных систем

Направленность (профиль) Технологии разработки программных систем

Форма обучения очная

Квалификация бакалавр

Краснодар 2025

Рабочая программа дисциплины «Низкоуровневое программирование» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.03Математическое обеспечение и администрирование информационных систем.

Программу составил:

А.И. Миков профессор, доктор физ.-мат. наук, профессор

подпись

Рабочая программа дисциплины «Низкоуровневое программирование» утверждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025 г.

Заведующий кафедрой (разработчика)

В. В. Подколзин

подпись

Рабочая программа обсуждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025 г.

Заведующий кафедрой (выпускающей)

В.В.Подколзин

полнись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2024 г.

Председатель УМК факультета

А. В. Коваленко

подпис

Рецензенты:

Бегларян М. Е., Проректор по учебной работе, Краснодарский кооперативный институт (филиал) АНО ВО Центросоюза РФ «Российский университет кооперации»

Рубцов Сергей Евгеньевич, кандидат физико-математических наук, доцент кафедры математического моделирования ФГБГОУ «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Основной целью дисциплины является изучение методов разработки программ с учетом архитектуры и системы команд ЭВМ, и формирование у студентов навыков эффективного использования аппаратных особенностей для повышения скорости вычислений.

Воспитательной целью дисциплины является формирование у студентов научного, творческого подхода к освоению математических методов, технологий разработки программного обеспечения.

Отбор материала основывается на необходимости ознакомить студентов со следующей современной научной информацией:

принципами построения микропроцессорных систем и наиболее важными наборами команд, из которых строится программа;

принципами управления вычислительным процессом на машинном уровне.

Содержательное наполнение дисциплины обусловлено общими задачами подготовки бакалавра.

Научной основой для построения программы данной дисциплины является теоретико-прагматический подход в обучении.

1.2 Задачи дисциплины

Основные задачи курса:

- ознакомление с общими принципами построения архитектуры электронных вычислительных систем;
- изучение основ архитектур IA32, IA64;
- приобретение навыков написания программ с совместным использованием языка ассемблера и языка С++ (ассемблерных вставок).

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Низкоуровневое программирование» относится к «Обязательная часть» Блока 1 «Дисциплины (модули)» учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ОПК-3 Способен применять современные информационные технологии, в том числе отечественные, при создании программных продуктов и программных комплексов различного назначения

ИД-1.ОПК-3 Аргументировано применяет современные информационные технологии, в том числе отечественные, при создании программных продуктов и программных комплексов различного назначения

Знать Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методы и средства проектирования программного обеспечения Методы и средства проектирования программных интерфейсов Возможности ИС

Современные структурные языки программирования

Уметь Проводить оценку и обоснование рекомендуемых решений

Кодировать на языках программирования

Владеть Проектирование программных интерфейсов

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и

исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-3

Ориентируется в современных положениях и концепциях прикладного и системного программного обеспечения, архитектуры компьютеров и сетей (в том числе и глобальных), технологии создания и сопровождения программных продуктов и программных комплексов

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии

программирования

Методы и средства проектирования программного обеспечения Методы и средства проектирования программных интерфейсов

Возможности ИС

Современные структурные языки программирования

У**меть** Вырабатывать варианты реализации требований

Кодировать на языках программирования

Владеть

Оценка времени и трудоемкости реализации требований к программному обеспечению

Оценка и согласование сроков выполнения поставленных задач

Проектирование программных интерфейсов

Оценка и согласование сроков выполнения поставленных задач

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач. ед. (72 часа), их распределение по видам работ представлено в таблище

Вид учебной работы	Всего	Семестры (часы)		
	часов	2		
Контактная работа, в том числе:	56,2	56,2		
Аудиторные занятия (всего):	52	52		
Занятия лекционного типа	34	34		
Лабораторные занятия	18	18		

Занятия семинарского типа	(семинары,		T		T I	
практические занятия)						
Иная контактная работа:		4,2	4,2			
Контроль самостоятельной	работы (КСР)	4	4			
Промежуточная аттестация	(ИКР)	0,2	0,2			
Самостоятельная работа,	в том числе:	15,8	15,8			
Проработка учебного (теор	етического)	10	10			
материала	15580	10	10			
Выполнение индивидуальных заданий		5,8	5,8			
(подготовка сообщений, пр	езентаций)	3,0	3,0	,		
Подготовка к текущему ког	нтролю					
Контроль:	West .					ì
Подготовка к экзамену						
час.		72	72			
Общая трудоемкость	в том числе контактная работа	56,2	56,2			
	зач. ед	2	2			

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 2 семестре

		Количество часов				
№	Наименование разделов (тем)		Аудиторная работа		Внеауд иторна я работа	
			Л	ПЗ	ЛP	CPC
1	2	3	4	5	6	7
1.	Архитектура современных микропроцессоров и виды памяти	13	8		2	3
2.	Основные группы команд наборов IA32, IA64 и язык ассемблера	15	8		4	3
3.	Режимы адресации операндов	15	6		6	3
4.	Архитектура и команды сопроцессора	15	6		6	3
5.	Dappurue anyurevrynki u cucrem vomauji		6			3,8
ИТОГО по разделам дисциплины		67,8	34		18	15,8
Контроль самостоятельной работы (КСР)						
Промежуточная аттестация (ИКР)		0,2				
Поді	готовка к текущему контролю					
Оби	рая трудоемкость по дисциплине	72				

Примечание: Π — лекции, $\Pi 3$ — практические занятия/семинары, ΠP — лабораторные занятия, CPC — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего конгроля	
1	2	3	4	
1.	Классическая архитектура ЭВМ, предложенная группой Дж. фон Неймана. Арифметико-логическое устройство. Основное (оперативное) запоминающее устройство. Иерархия памяти. Современные структуры микропроцессоров. Регистры общего назначения. Управление потоком команд.			
2.	Основные группы команд наборов IA32, IA64 и язык ассемблера Команды обмена данными. Арифметические команды. Логические команды и команды сдвига. Команды передачи управления. Цепочечные команды. Структура команды IA64. Запись машинных команд на языке ассемблера. Ассемблерные вставки в С++.			
3.	Получение доступа к операндам операции (команды). Неявная адресация, непосредственная, регистровая адресация, абсолютная прямая адресация, относительная прямая адресация, косвенная регистровая адресация. Расположение элементов команды и сведений об адресации в байтах машинного представления команды.			
4.	Архитектура и команды сопроцессора для выполнения операций над числами с плавающей запятой. Стек регистров. Служебные регистры: состояния сопроцессора, тегов, управления. Команды арифметики, тригонометрии.			
5.	Развитие архитектуры и систем команд (MMX, SSE, AVX) Расширение регистровой базы и системы команд. Набор команд для мультимедийных применений. Потоковое SIMD-расширение (Streaming SIMD Extensions, SSE), Расширение для работы с векторами (Advanced Vector Extensions, AVX).			

Примечание: ΠP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, $P\Gamma S$ - расчетно-графического задания, P - написание реферата, P - эссе, P - коллоквиум, P - тестирование, P - решение задач.

2.3.2 Занятия семинарского типа

Не предусмотрены

2.3.3 Лабораторные занятия

№	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущего конгроля		
1	2	3	4		
1.	Архитектура современных микропроцессоров и виды памяти	**************************************			
2.	Основные группы команд наборов IA32, IA64 и язык ассемблера	Работа с битами	ЛР		
3.	Режимы адресации операндов	Программы работы с массивами бит	ЛР		
4.	Архитектура и команды сопроцессора	Вычисления с плавающей запятой	лР		
5.	Системы команд MMX, SSE, AVX	Вычисления в архитектуре SIMD			

Примечание: ΠP – отчет/защита лабораторной работы, $K\Pi$ - выполнение курсового проекта, KP - курсовой работы, $P\Gamma 3$ - расчетно-графического задания, P - написание реферата, Θ - эссе, E - коллоквиум, E – тестирование, E – решение задач.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Изученние теоретического материала	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019
2	Решение задач	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий

потенциал. Создание и использование диагностических тестов является неотъемпемой частью данной технологии.

- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:
- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Семестр	Вид занятия	Используемые интерактивные образовательные технологии	количество интерактивных часов
2	ЛР	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	18
	Итого		

Примечание: Л – лекции, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

1. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме тестовых заданий, и **промежуточной аттестации** в форме заданий к зачету.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление

информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Контролируемые разделы (темы)	Код контролиру емой	Наименование оценочного средства		
п/п дисциплины* компетенции (или ее части)		Текущий контроль	Промежуточная аттестация		
1	Архитектура современных микропроцессоров и виды памяти	ид1.0ПК-3	Лабораторная работа 1	Вопрос на зачете 1, ЛР 1	
2	Основные группы команд наборов IA32, IA64 и язык ассемблера	ид1.0ПК-3	Лабораторная работа 2	Вопрос на зачете 2-5, ЛР 2	
3	Режимы адресации операндов	ид1.0ПК-3	Лабораторная работа 3	Вопрос на зачете 6-8, ЛР 3	
4	Архитектура и команды сопроцессора	ид2.ОПК-3	Лабораторная работа 4	Вопрос на зачете 9-10, ЛР 4	
5	Развитие архитектуры и систем команд (ММХ, SSE, AVX)	ид2.0ПК-3	Лабораторная работа 1	Вопрос на зачете 11- 12	

Показатели, критерии и шкала оценки сформированных компетенций

Соответствие <u>пороговому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **зачтено**):

ОПК-3 Способен применять современные информационные технологии, в том числе отечественные, при создании программных продуктов и программных комплексов различного назначения

ИД-1.ОПК-3 Аргументировано применяет современные информационные технологии, в том числе отечественные, при создании программных продуктов и программных комплексов различного назначения

Знать Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методы и средства проектирования программного обеспечения Методы и средства проектирования программных интерфейсов Возможности ИС

Современные структурные языки программирования

Уметь Проводить оценку и обоснование рекомендуемых решений

Кодировать на языках программирования

Владеть Проектирование программных интерфейсов

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-3

Ориентируется в современных положениях и концепциях прикладного и системного программного обеспечения, архитектуры компьютеров и сетей (в том числе и глобальных), технологии создания и сопровождения программных продуктов и программных комплексов

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Методы и средства проектирования программного обеспечения Методы и средства проектирования программных интерфейсов

Возможности ИС

Современные структурные языки программирования

Уметь Вырабатывать варианты реализации требований

Кодировать на языках программирования

Владеть

Оценка времени и трудоемкости реализации требований к программному обеспечению

Оценка и согласование сроков выполнения поставленных задач

Проектирование программных интерфейсов

Оценка и согласование сроков выполнения поставленных задач

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые тестовые задания

- 1. Укажите, какие регистры относятся к регистрам общего назначения:
 - o AX
 - o EX
 - o CX
 - o BL

- o DS
- o IP
- o AI
- o EDL
- o FLAGS
- 2. Укажите, какие команды являются правильными:
 - o MOV 2, AX
 - o SUB EAX, AX
 - o MOVAH1: MOV AH, 1
 - o XCNG 5, 8
 - o BSFEBX, EAX
 - o INC 7
- 3. Укажите, какие команды являются правильными:
 - o ADD AX, [BX]
 - LOOP CX
 - o MOV DL, [SI]
 - o ADD AX, [BX+2]
 - MOV DX, [SI1+SI]
 - o SUB CX, [BX][DX]
 - o MOV BX, offset mas
 - o MOV ES:[BX+DI], AX
- 4. Укажите, какие команды сопроцессора являются правильными:
 - FPTANG
 - FPATAN BX
 - o FADD AX
 - o FABS
 - FCOM EPS
 - FLD QWORD PTR [EBX]
 - FILD QWORD PTR [EBX]
 - FSTFW AX

Типовые контрольные задания

- 1. Написать на C++ в виде ассемблерной вставки программу, вычисляющую для заданного натурального n значение $\varphi(n)$ функции Эйлера.
- 2. Написать на C++ в виде ассемблерной вставки программу, «рисующую» черную букву А размером h (высота) на w (ширина) в центре прямоугольной белой «картинки» размера H × W с использованием алгоритма Брезенхема для построения отрезков. Белый пиксель задается битом 0, черный битом 1. Двумерная картинка записывается в памяти построчно, начиная с верхней строки, единой последовательностью бит. Использовать команды работы с битами.
- 3. Написать на C++ в виде ассемблерной вставки программу, на вход которой подается матрица смежности неориентированного графа с п вершинами. Каждый элемент матрицы задан одним битом. Матрица записана в памяти по строкам, располагающимся одна за другой, начиная с верхней. Написать программу, определяющую является ли граф простой цепью P_n. Использовать команды работы с битами.

 Написать на C++ в виде ассемблерной вставки программу, вычисляющую приближенное значение гамма-функции Γ(z) для вещественных значений z с использованием представления Эйлера. Использовать команды сопроцессора.

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет)

Вопросы для подготовки к зачету

- 1. Классическая архитектура ЭВМ, предложенная группой Дж. фон Неймана. Арифметико-логическое устройство. Современные структуры микропроцессоров.
- 2. Основное (оперативное) запоминающее устройство. Иерархия памяти. Регистры общего назначения. Управление потоком команд.
- 3. Команды обмена данными. Арифметические команды.
- 4. Логические команды и команды сдвига. Команды передачи управления. Цепочечные команды.
- 5. Структура команды IA64. Запись машинных команд на языке ассемблера. Ассемблерные вставки в C++.
- 6. Получение доступа к операндам операции (команды). Неявная адресация, непосредственная, регистровая адресация, абсолютная прямая адресация.
- 7. Относительная прямая адресация, косвенная регистровая адресация.
- 8. Расположение элементов команды и сведений об адресации в байтах машинного представления команды.
- Архитектура сопроцессора для выполнения операций над числами с плавающей запятой. Стек регистров. Служебные регистры: состояния сопроцессора, тегов, управления.
- 10. Команды арифметики с плавающей запятой, тригонометрии.
- 11. Расширение регистровой базы и системы команд. Набор команд для мультимедийных применений. Потоковое SIMD-расширение (Streaming SIMD Extensions, SSE).
- 12. Расширение для работы с векторами (Advanced Vector Extensions, AVX).

Перечень компетенций (части компетенции), проверяемых оценочным средством

ИД1.ОПК-3 (пп. 1-4), ИД1.ОПК-3 (пп. 5-8), ИД2.ОПК-3 (пп. 9-12).

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Методические рекомендации, определяющие процедуры оценивания тестов:

Тест проводится онлайн в системе Moodle или Google Docs и ограничен по времени. На сдачу теста дается две попытки. Тест считается успешно пройденным если студент правильно ответил на 70% вопросов.

Методические рекомендации, определяющие процедуры оценивания выполнения контрольных заданий:

Задание считается выполненным при выполнении следующих условий:

- предоставлен исходный код на C++ с ассемблерными вставками; основные вычисления производятся в пределах вставок с использованием команд определенного типа (если оговорено в задании);
- продемонстрирована работоспособность приложения;
- студент понимает исходный код и отвечает на вопросы по его организации.

Методические рекомендации, определяющие процедуры оценивания на зачете:

Процедура промежуточной аттестации проходит в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся ФГБОУ ВО «КубГУ».

Итоговой формой контроля сформированности компетенций у обучающихся по дисциплине является зачет. Студенты обязаны получить зачет в соответствии с расписанием и учебным планом

ФОС промежуточной аттестации состоит из контрольных заданий и списка вопросов по теории.

Зачет по дисциплине преследует цель оценить работу студента, получение теоретических и практических знаний, их прочность, развитие творческого мышления, приобретение навыков самостоятельной работы, умение применять полученные знания для решения практических задач.

Результат сдачи зачета заносится преподавателем в экзаменационную ведомость и зачетную книжку.

Оценивание уровня освоения дисциплины основывается на качестве выполнения студентом контрольных заданий и ответов на вопросы по теории.

Критерии оценки:

оценка «незачет» выставляется в случае выполнения одного из условий:

- письменный ответ на вопрос по теории продемонстрировал уровень освоения лекционного материала ниже порогового;
- выполнено менее 80% контрольных заданий.

оценка «зачет» в случае выполнения условий:

- письменный ответ на вопрос по теории продемонстрировал уровень освоения лекционного материала не ниже порогового;
- выполнено не менее 80% контрольных заданий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Куссвюрм, Д. Профессиональное программирование на ассемблере x64 с расширениями AVX, AVX2 и AVX-512 / Д. Куссвюрм; перевод с английского В. С. Яценкова. Москва: ДМК Пресс, 2021. 628 с. ISBN 978-5-97060-928-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/241052 (дата обращения: 09.06.2023).
- 2. Бунаков, П. Ю. Машинно-ориентированные языки программирования. Введение в ассемблер / П. Ю. Бунаков. Санкт-Петербург : Лань, 2023. 144 с. ISBN 978-5-507-45490-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/302627 (дата обращения: 09.06.2023).

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Максимов, А. В. Оптимальное проектирование ассемблерных программ математических алгоритмов: теория, инженерные методы: учебное пособие для вузов / А. В. Максимов. 3-е изд., стер. Санкт-Петербург: Лань, 2021. 192 с. ISBN 978-5-8114-8056-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/171415 (дата обращения: 09.06.2023).
- 2. Максимов А. В., Максимова Е. А. Оптимальное проектирование ассемблерных программ математических алгоритмов: лабораторный практикум / А. В. Максимов, Е. А. Максимова. Санкт-Петербург: Лань, 2022. 128 с. ISBN 978-5-8114-2545-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/106531 (дата обращения: 09.06.2023).

5.3. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. General Section 2015 Section
- 4. ЭБС «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru

- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn-273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/

7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

5.5 Перечень информационно-коммуникационных технологий

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении лекционных занятий
- Система MOODLE
- Проверка домашних заданий и консультирование посредством ЭОИС КубГУ

5.6 Перечень лицензионного и свободно распространяемого программного обеспечения

OpenOffice

Компилятор С++

Oracle VirtualBox 6

VMware Workstation 16

Putty 0.76 или Kitty 0.76

FileZilla 3.57.0

WinSCP 5.19

Advanced port scanner 2.5

Python 3 (3.7 И 3.9)

numpy 1.22.0

opency 4.5.5

Keras 2.7.0

Tensor flow 2.7.0

matplotlib 3.5.1

PyCharm 2021

Cuda Toolkit 11.6

Фреймворк Django

Firefox, любая версия

Putty, любая версия

Visual Studio Code, версия 1.52+

Eclipse PHP Development Tools, версия 2020-06+

Плагин Remote System Explorer (RSE) для Eclipse PDT

JetBrains PHP Storm

GIT

Java Version 8 Update 311

Clojure 1.10.3.1029.ps1

SWI Prolog 8.4

Intellij Idea IDE 2021

Mozilla Firefox 96

Google Chrome 97

GitHub Desktop 2.9

PHP Storm 2021

FileZilla 3.57.0

Putty 0.76

6. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал. В ходе лекционных занятий разбираются свойства, методы основных элементов ассемблерного программирования, приводятся примеры их использования, проводится анализ наиболее распространенных ошибок построения программ. После прослушивания лекции рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

По курсу предусмотрено проведение лабораторных занятий, на которых дается прикладной систематизированный материал. В ходе занятий разбираются готовые программные приложения и проводится анализ их построения. После занятия рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

При самостоятельной работе студентов необходимо изучить литературу, приведенную в перечнях выше, для осмысления вводимых понятий, анализа предложенных подходов и методов разработки программ. Разрабатывая решение новой задачи, студент должен уметь выбрать эффективные и надежные структуры данных для представления информации, подобрать соответствующие алгоритмы для их обработки, учесть специфику языка программирования, на котором будет выполнена реализация. Студент должен уметь выполнять тестирование и отладку алгоритмов решения задач с целью обнаружения и устранения в них ошибок.

Важнейшим этапом курса является самостоятельная работа по дисциплине. В процессе самостоятельной работы студент приобретает навыки низкоуровневого программирования.

Используются активные, инновационные образовательные технологии, которые способствуют развитию общекультурных, общепрофессиональных компетенций и профессиональных компетенций обучающихся:

- проблемное обучение;
- разноуровневое обучение;
- проектные методы обучения;
- исследовательские методы в обучении;
- обучение в сотрудничестве (командная, групповая работа);
- информационно- коммуникационные технологии.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Учебно-методическим обеспечением курсовой работы студентов являются:

- 1. учебная литература;
- 2. нормативные документы ВУЗа;
- 3. методические разработки для студентов.

Самостоятельная работа студентов включает:

- оформление итогового отчета (пояснительной записки).
- анализ нормативно-методической базы организации;
- анализ научных публикации по заранее определённой теме;
- анализ и обработку информации;
- работу с научной, учебной и методической литературой.
- работа с конспектами лекций, ЭБС.

Для самостоятельной работы представляется аудитория с компьютером и доступом в Интернет, к электронной библиотеке вуза и к информационно-справочным системам. Перечень учебно-методического обеспечения:

1. Основная образовательная программа высшего профессионального образования федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» по направлению подготовки.

- 2. Положение о проведении текущего контроля успеваемости и промежуточной аттестации в федеральном государственном бюджетном образовательном учреждении высшего образования «Кубанский государственный университет».
- 3. Общие требования к построению, содержанию, оформлению и утверждению рабочей программы дисциплины Федерального государственного образовательного стандарта высшего профессионального образования.
- 4. Методические рекомендации по содержанию, оформлению и применению образовательных технологий и оценочных средств в учебном процессе, основанном на Федеральном государственном образовательном стандарте.
- 5. Учебный план основной образовательной программы по направлению подготовки.
- 6. Федеральный государственный образовательный стандарт высшего профессионального образования по направлению подготовки.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

No	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения		
1.	Лекционные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения		
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, проектором, программным обеспечением		
3.	Групповые (индивидуальные) консультации	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением		
4.	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами, программным обеспечением		
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет»,программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.		

Примечание: Конткретизация аудиторий и их оснащение определяется ОПОП.