министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

УТВИРЖДАЮ
Проректор по учебной работе, качеству образования – первый проректор

Хагуров Т.А.

«30» мая 2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.26«Алгоритмы и анализ сложности»

Направление подготовки 02.03.03 <u>Математическое обеспечение и</u> администрирование информационных систем

Направленность (профиль) Технологии разработки программных систем

Форма обучения очная

Квалификация бакалавр

Краснодар 2025

Рабочая программа дисциплины «Алгоритмы и анализ сложности» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.03Математическое обеспечение и администрирование информационных систем.

Программу составил:

А.И. Миков профессор, доктор физ.-мат. наук, профессор

полпись

Рабочая программа дисциплины «Алгоритмы и анализ сложности» утверждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025 г.

Заведующий кафедрой (разработчика)

В. В. Подколзин

подпись

Рабочая программа обсуждена на заседании кафедры информационных технологий протокол №15 от «14» мая 2025 г.

Заведующий кафедрой (выпускающей)

В.В.Подколзин

полнись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2025 г.

Председатель УМК факультета

А. В. Коваленко

подпись

Рецензенты:

Бегларян М. Е., Бегларян М. Е., Проректор по учебной работе, Краснодарский кооперативный институт (филиал) АНО ВО Центросоюза РФ «Российский университет кооперации»

Рубцов Сергей Евгеньевич, кандидат физико-математических наук, доцент кафедры математического моделирования ФГБГОУ «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Основной целью дисциплины является изучение методов оптимизации алгоритмов решения прикладных задач, ознакомление с успешными примерами таких оптимизаций, и формирование у студентов навыков создания высококачественных алгоритмов и программ.

Воспитательной целью дисциплины является формирование у студентов научного, творческого подхода к освоению математических методов, технологий разработки программного обеспечения; понимание ими неразрывного единства информатики и математики.

Отбор материала основывается на необходимости ознакомить студентов со следующей современной научной информацией:

о том, что алгоритмы являются математическими объектами и их фундаментальные свойства изучаются математическими методами;

о том, что для решения задачи может быть сконструировано множество алгоритмов, и от эффективности алгоритмов зависит конкурентоспособность использующих их технических устройств;

о соотношении между классами алгоритмов, и влиянии этого на целые отрасли науки и практики.

Содержательное наполнение дисциплины обусловлено общими задачами подготовки бакалавра.

Научной основой для построения программы данной дисциплины является теоретико-прагматический подход в обучении.

1.2 Задачи дисциплины

Основные задачи дисциплины:

- ознакомпение с математическими методами, применяемыми для анализа сложности алгоритмов;
- приобретение навыков анализа сложности алгоритмов с ветвлениями, циклами, рекурсивных алгоритмов;
- ознакомпение с методами оптимизации алгоритмов;
- ознакомление с классами сложности Р, NP, NPC;
- приобретение навыков в использовании алгоритмов решения NP-полных проблем в различных приложениях.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Алгоритмы и анализ сложности» относится к «Обязательная часть» Блока 1 «Дисциплины (модули)» учебного плана.

Входными знаниями для освоения данной дисциплины являются знания, умения и опыт, накопленный студентами в процессе изучения дисциплины «Основы программирования», «Методы программирования», «Фундаментальные дискретные модели».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ИД-1.УК-1 Осуществляет поиск необходимой информации, опираясь на результаты анализа поставленной задачи

Знать Современные объектно-ориентированные языки программирования

Цели и задачи проводимых исследований и разработок Методы и средства планирования и организации исследований и разработок

Уметь Проводить анализ исполнения требований

Верифицировать структуру программного кода

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований

реализации требований к программному

обеспечению

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Проведение маркетинговых исследований научно-технической информации Сбор, обработка, анализ и обобщение передового отечественного и международного опыта в соответствующей области исследований

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.УК-1 Выбирает оптимальный вариант решения задачи, аргументируя свой выбор

Знать Современные объектно-ориентированные языки программирования

Цели и задачи проводимых исследований и разработок

Методы и средства планирования и организации исследований и разработок

Уметь

Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Верифицировать структуру программного кода

Применять методы анализа научно-технической информации

Владеть

Оценка и согласование сроков выполнения поставленных задач

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Оценка и согласование сроков выполнения поставленных задач

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Проведение маркетинговых исследований научно-технической информации Сбор, обработка, анализ и обобщение передового отечественного и международного опыта в соответствующей области исследований

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ИД-1.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при построении моделей в заданной предметной области

Знать Теория баз данных

Методы анализа и обобщения отечественного и международного опыта в соответствующей области исследований

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Проводить анализ исполнения требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Проектирование структур данных

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при выборе методов решения задач профессиональной деятельности

Знать Теория баз данных

Методы анализа и обобщения отечественного и международного опыта в соответствующей области исследований

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ОПК-2 Способен применять современный математический аппарат, связанный с проектированием, разработкой, реализацией и оценкой качества программных продуктов и программных комплексов в различных областях человеческой деятельности

ИД-1.ОПК-2 Способен применять системный подход к анализу предметной (проблемной) области, выявлению требований к ИС

Знать Методологии разработки программного обеспечения и технологии программирования

Цели и задачи проводимых исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Проводить анализ исполнения требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Владеть Анализ возможностей реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Проектирование структур данных

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-2 Применяет современный математический аппарат при построении моделей в различных областях человеческой деятельности

Знать Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Теория баз данных

Цели и задачи проводимых исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Вырабатывать варианты реализации требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Владеть Анализ возможностей реализации требований к программному обеспечению

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Проектирование структур данных

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-3.ОПК-2 Аргументировано применяет методы проектирования, разработки и реализации программных продуктов и программных комплексов в различных областях человеческой деятельности

Знать

Возможности существующей программно-технической архитектуры Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Языки программирования и работы с базами данных

Инструменты и методы проектирования и дизайна ИС

Цели и задачи проводимых исследований и разработок

Методы и средства планирования и организации исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь

Вырабатывать варианты реализации требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Верифицировать структуру программного кода

Владеть

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Разработка структуры программного кода ИС

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-4.ОПК-2 Использует инструментальные, программные и аппаратные средства измерений для оценки качества программного обеспечения

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Языки программирования и работы с базами данных

Инструменты и методы верификации структуры программного кода

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Использовать существующие типовые решения и шаблоны

проектирования программного обеспечения

Верифицировать структуру программного кода

Применять методы анализа научно-технической информации

Владеть Разработка, изменение и согласование архитектуры программного

обеспечения с системным аналитиком и архитектором программного

обеспечения

Проектирование и дизайн ИС

Разработка структуры программного кода ИС

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108 часов), их распределение по видам работ представлено в таблице

Вид учебной работы		Всего	Семестры (часы)			
~	часов	4				
Контактная работа, в то	м числе:	72,2	72,2			
Аудиторные занятия (вс	его):	68	68			
Занятия лекционного типа	Ì	34	34			
Лабораторные занятия		34	34			
Занятия семинарского типпрактические занятия)	а (семинары,					
Иная контактная работа	:	4,2	4,2			
Контроль самостоятельно	till a state a	4	4			
Промежуточная аттестаци		0,2	0,2			
Самостоятельная работа		35,8	35,8			
Проработка учебного (тео материала	Проработка учебного (теоретического)		10			
Выполнение индивидуаль	Выполнение индивидуальных заданий (подготовка сообщений, презентаций)		20	2		
Подготовка к текущему ко	₹/	5,8	5,8			
Контроль:						
Подготовка к экзамену	· o					
час.		108	0			
Общая трудоемкость	в том числе контактная работа	72,2	0			
	зач. ед	3				

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 4 семестре

	газделы (темы) дисциппины, изучаемые в 4 сег	Количество часов				
N≥	Наименование разделов (тем)	Bcero	Аудиторная работа			Внеауд иторна я работа
			л	ПЗ	ЛР	CPC
1.	Ochophilia Havignig allawiyaczni alipanieman	6	2	5	2	2
2.	Основные понятия сложности алгоритмов	6	2		2	2
Ζ.	Методы оценки сложности алгоритмов	0	2			Z
3.	Оценка сложности циклических алгоритмов типа for	6	2		2	2
4.	Оценка сложности циклических алгоритмов (while, repeat)	6	2		2	2
5.	Анализ сложности рекурсивных алгоритмов	8	2		4	2
6.	Master theorem и анашиз апторитмов типа		2		2	2
7.	Анапия апторитма Уозра «быстрой		2		4	2
8.	Быстрые алгоритмы матричного умножения.	8	2		4	2
9.	Классы сложности задач. Класс NP.	4	2			2
10.	Сложность задачи «Выполнимость».	6	2		2	2
11.	Проблема P =? NP.	4	2			2
12.	Задачи экспоненциальной сложности.	6	2		2	2
13.	Односторонние функции и сложность алгоритмов	6	2		2	2
14.	Алгоритм RSA	6	2		2	2
15.	Построение и использование хешей, SHA256	6	2		2	2
16.	Алгоритмы модулярной арифметики	6	2		2	2
17.	Эффектирине апторитмы пекомпозиции и		2			3,8
ИТС	ГО по разделам дисциплины	103,8	34		34	35,8
Контроль самостоятельной работы (КСР)						
Пром	лежуточная аттестация (ИКР)	0,2				
Подт	отовка к текущему контролю					
Обш	ая трудоемкость по дисциплине	108				

Примечание: Π — лекции, Π 3 — практические занятия/семинары, Π P — лабораторные занятия, CPC — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№ Наименование раздела (темы)		Содержание раздела (темы)	
1	2	3	
1,	Основные понятия сложности алгоритмов	Colonicold Diograph (Newoglabit) Autumnition	
2.	Методы оценки сложности алгоритмов	Управляющий граф программы, его построение по тексту программы. Свойства управляющего графа (графа передачи управления). Оценка сложности для	T

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего конгроля	
1	2	3	4	
		графов – простых цепей и деревьев (алгоритмы с ветвлениями).		
	Оценка сложности	Оценка сложности алгоритмов, содержащих циклы	T	
3.	циклических алгоритмов	типа for (с известным числом исполнений тела цикла). Методы вывода формул для функции сложности.		
	типа for	Анализ простейших алгоритмов сортировки.		
	Оценка сложности	Оценка сложности алгоритмов, содержащих циклы	Т	
4.	циклических алгоритмов	типа while и repeat (с неизвестным заранее числом исполнений тела цикла). Методы вывода формул для		
	(while, repeat)	функции сложности. Примеры анализа алгоритмов.		
5.	Анализ сложности рекурсивных алгоритмов	Построение функциональных уравнений для оценки сложности рекурсивных алгоригмов (случай линейной рекурсии). Пример построения функционального уравнения и его решения. Построение функциональных уравнений для случаев нелинейной рекурсии и косвенной рекурсии.	Т	
	Master theorem и анализ	Теорема об асимптотическом поведении функции	T	
6.	алгоритмов типа «разделяй	сложности рекурсивного алгоритма в зависимости от параметров разбиения данных и количества		
0.	и властвуй»	возникающих подзадач. Примеры применения теоремы		
	и властвуи»	для различных видов функциональных уравнений.		
	Анализ алгоритма Хоара	Построение функционального уравнения для оценки	Т	
7.	«быстрой сортировки»	сложности алгоритма Энтони Хоара и детальный анализ вариантов его решения. Сопоставление		
	«оыстрои сортировки»	результатов с Master theorem.		
	Быстрые алгоритмы матричного умножения.	Алгоритм Ф. Штрассена перемножения матриц, анализ	Т	
		его сложности. Общая проблема оценки сложности перемножения матриц. Улучшение решений		
8.		(Копперсмит и др.). Методы оптимизации алгоритмов.		
	матри птого умитожения.	Алгоритм перемножения длинных целых чисел.		
		Алгоритм возведения целого в большую степень.	Т	
		Задачи и алгоритмы, их решающие. Понятие сложности задачи. Задачи полиномиальной сложности,	1	
9.	Классы сложности задач.	задачи экспоненциальной сложности.		
20	Класс NP.	Недетерминированные вычисления. Класс задач,		
		решаемых за полиномиальное время недетерминированными вычислителями.		
		Задача проверки выполнимости булевой функции,	Т	
10.	Сложность задачи	заданной формулой в коньюнктивной нормальной		
10.	«Выполнимость».	форме. Зависимость оценки сложности алгоритма от размера дизьюнкта. Использование принципа		
		резолюции. Теорема С. Кука.		
		Обсуждение нерешенной проблемы совпадения (или	T	
11.	Проблема P =? NP.	несовпадения) классов задач полиномиальной сложности и класса NP. Влияние решения этой		
	Tipochema i =: ivi :	проблемы на компьютерные науки и на важнейшие		
		приложения.	8.00	
12.	Задачи экспоненциальной	Задачи, решаемые в настоящее время переборными алгоритмами, их сложность. Некоторые алгоритмы на	T	
12.	сложности.	графах (изоморфизм подграфу и др.)		
		Алгоритмы, вычисляющие значения функций, и	Т	
	Односторонние функции и	алгоритмы, вычисляющие значения обратный функций. Соотношение их сложности. Понятие		
13.	сложность алгоритмов	односторонней функции. Известные примеры		
	сложность изп оригмов	односторонних функций. Задача вычисления		
		дискретного логарифма.	Т	
14.	Алгоритм RSA	Применение односторонних функций в задачах криптографии с открытым ключом. Алгоритм Ривеста-	1	
55.44P	- In opinion	Шамира-Адлемана. Стандарты шифрования данных.		
100	Построение и использование	Применение теории сложности алгоритмов к	T	
15.	хешей, SHA256	построению криптографических хешей. Алгоритм SHA256. Построение блокчейн.		
		Математические основы известных алгоритмов работы	Т	
16.	Алгоритмы модулярной	с односторонними функциями. Сравнения.		
	арифметики	Мультипликативное обратное. Система остаточных		

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего конгроля	
1	2	3	4	
		классов. Китайская теорема об остатках. Методы и алгоритмы разделения секрета.		
17.	Эффективные алгоритмы декомпозиции и оптимизации	Алгоритмы декомпозиции и оптимизации, эффективные с точки зрения времени выполнения. Алгоритм построения диаграммы Вороного. Алгоритм решения задачи линейного программирования – симплекс-метод.	Т	

Примечание: IIP – отчет/защита лабораторной работы, KII - выполнение курсового проекта, KP - курсовой работы, $\mathit{PI3}$ - расчетно-графического задания, P - написание реферата, P - эссе, K - коллоквиум, T – тестирование, $\mathit{P3}$ – решение задач.

2.3.2 Занятия семинарского типа

Не предусмотрены.

2.3.3 Лабораторные занятия

№	Наименование раздела (темы)	Наименование лабораторных работ	Форма текущего конгроля	
1	2	3	4	
1,	Основные понятия сложности алгоритмов	Построение минимальных, максимальных и средних оценок сложности	ЛР	
2.	Методы оценки сложности алгоритмов	Анализ сложности элементарных алгоритмов алгебры	ЛР	
3.	Оценка сложности циклических алгоритмов Анализ алгоритма сортировки типа for			
4.	Оценка сложности циклических алгоритмов (while, repeat)	Анализ алгоритма поиска	ЛР	
5.	Анализ сложности рекурсивных алгоритмов	Построение и анализ функциональных уравнений	ЛР	
6.	Master theorem и анализ алгоритмов типа «разделяй и властвуй»	Анализ асимптотической сложности алгоритмов	лъ	
7.	Анализ алгоритма Хоара «быстрой сортировки»	Анализ алгоритма быстрой сортировки	ЛР	
8.	Быстрые алгоритмы матричного умножения.	Анализ алгоритма Штрассена	ЛР	
9.	Сложность задачи «Выполнимость».	Анализ задачи «Выполнимость – 2»	ЛР	
10.	Задачи экспоненциальной сложности.	Анализ задачи «Изоморфизм графов»	ЛР	
11.	Односторонние функции и сложность алгоритмов	Односторонние функции и		
12.	Алгоритм RSA	Анализ алгоритма RSA	ЛР	
13.	Построение и использование хешей, SHA256	Анализ алгоритма построения хеша	ЛР	
14.	Алгоритмы модулярной арифметики	Анализ алгоритмов разделения секрета	ЛР	

Примечание: ΠP — отчет/защита лабораторной работы, $P\Gamma 3$ — расчетно-графического задания, P — натисание реферата, Θ — эссе, K - коллоквиум, T — тестирование, PS — решение задач.

2.3.4 Примерная тематика курсовых работ (проектов)

Не предусмотрено.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Изученние теоретического материала	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019
2	Решение задач	Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой информационных технологий, протокол №1 от 30.08.2019

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС в программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологии: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий

потенциал. Создание и использование диагностических тестов является неотъемпемой частью данной технологии.

- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Информационно-коммуникационные технологии (ИКТ) расширяют рамки образовательного процесса, повышая его практическую направленность, способствуют интенсификации самостоятельной работы учащихся и повышению познавательной активности. В рамках ИКТ выделяются 2 вида технологий:
- Технология использования компьютерных программ позволяет эффективно дополнить процесс обучения языку на всех уровнях.
- Интернет-технологии предоставляют широкие возможности для поиска информации, разработки научных проектов, ведения научных исследований.
- Технология индивидуализации обучения помогает реализовывать личностноориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.
- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Семестр	Вид занятия	Используемые интерактивные образовательные технологии	количество интерактивных часов		
4	ЛР	Практические занятия в режимах взаимодействия «преподаватель – студент» и «студент – студент»	16		
	Итого				

Примечание: Л — лекции, ПЗ — практические занятия/семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лекционных и практических занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме тестовых заданий, и **промежуточной аттестации** в форме заданий к зачету.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Контролируемые разделы (темы)	Код контролиру емой	Наименование оценочного средства		
п/п	дисциплины*	компетенции (или ее части)	Текущий контроль	Промежуточная аттестация	
1	Основные понятия сложности алгоритмов	ид1.УК-1	Лабораторная работа № 1	Вопрос на зачете 1, отчет по ЛР 1	
2	Методы оценки сложности алгоритмов	ид1.УК-1	Лабораторная работа № 2	Вопрос на зачете 2, отчет по ЛР 2	
3	Оценка сложности циклических алгоритмов типа for	ид2.УК-1	Лабораторная работа № 3	Вопрос на зачете 3, отчет по ЛР 3	
4	Оценка сложности циклических алгоритмов (while, repeat)	ИД2.УК-1	Лабораторная работа № 4	Вопрос на зачете 4, отчет по ЛР 4	
5	Анализ сложности рекурсивных алгоритмов	ид1.0ПК-1	Лабораторная работа № 5	Вопросы на зачете 5, 6, отчет по ЛР 5	
6	Master theorem и анализ алгоритмов типа «разделяй и властвуй»	ид1.0ПК-1	Лабораторная работа № 6	Вопрос на зачете 7, отчет по ЛР 6	
7	Анализ алгоритма Хоара «быстрой сортировки»	ид2.0ПК-1	Лабораторная работа № 7	Вопрос на зачете 8, отчет по ЛР 7	
8	Быстрые алгоритмы матричного умножения.	ид2.0ПК-1	Лабораторная работа № 8	Вопрос на зачете 9, отчет по ЛР 8	
9	Классы сложности задач. Класс NP.	ид1.0ПК-2	Лабораторная работа № 9	Вопрос на зачете 11	
10	Сложность задачи «Выполнимость».	ид1.0ПК-2	Лабораторная работа № 9	Вопрос на зачете 12, отчет по ЛР 9	
11	Проблема P =? NP.	ид1.УК-1	Лабораторная работа № 10	Вопрос на зачете 13	
12	Задачи экспоненциальной сложности.	ид2.0ПК-2	Лабораторная работа № 10	Вопрос на зачете 14	
13	Односторонние функции и сложность алгоритмов	ИД2.ОПК-2	Лабораторная работа № 11	Вопрос на зачете 15	

14	Алгоритм RSA	идз.опк-2	Лабораторная работа № 12	Вопрос на зачете 16, отчет по ЛР 12
15	Построение и использование хешей, SHA256	ИД3.ОПК-2	Лабораторная работа № 13	Вопрос на зачете 17, 18, отчет по ЛР 14
16	Алгоритмы модулярной арифметики	ИД4.ОПК-2	Лабораторная работа № 14	Вопрос на зачете 19, 20, отчет по ЛР 14
17	Эффективные алгоритмы декомпозиции и оптимизации	ИД4.ОПК-2	Лабораторная работа № 10	Вопрос на зачете 21-22

Показатели, критерии и шкала оценки сформированных компетенций

Соответствие <u>пороговому уровню</u> освоения компетенций планируемым результатам обучения и критериям их оценивания (оценка: **зачтено**):

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ИД-1.УК-1 Осуществляет поиск необходимой информации, опираясь на результаты анализа поставленной задачи

Знать Современные объектно-ориентированные языки программирования

Цели и задачи проводимых исследований и разработок

Методы и средства планирования и организации исследований и разработок

Уметь Проводить анализ исполнения требований

Верифицировать структуру программного кода

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований к программному обеспечению

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Проведение маркетинговых исследований научно-технической информации Сбор, обработка, анализ и обобщение передового отечественного и международного опыта в соответствующей области исследований

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.УК-1 Выбирает оптимальный вариант решения задачи, аргументируя свой выбор

Знать Современные объектно-ориентированные языки программирования Цели и задачи проводимых исследований и разработок Методы и средства планирования и организации исследований и разработок **Уметь** Вырабатывать варианты реализации требований

Проводить оценку и обоснование рекомендуемых решений

Верифицировать структуру программного кода

Применять методы анализа научно-технической информации

Владеть Оценка и согласование сроков выполнения поставленных задач

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Оценка и согласование сроков выполнения поставленных задач

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Проведение маркетинговых исследований научно-технической информации Сбор, обработка, анализ и обобщение передового отечественного и международного опыта в соответствующей области исследований

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ИД-1.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при построении моделей в заданной предметной области

Знать Теория баз данных

Методы анализа и обобщения отечественного и международного опыта в соответствующей области исследований

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Проводить анализ исполнения требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Проектирование структур данных

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук при выборе методов решения задач профессиональной деятельности

Знать Теория баз данных

Методы анализа и обобщения отечественного и международного опыта в соответствующей области исследований

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

У**меть** Проводить анализ исполнения требований

Проводить оценку и обоснование рекомендуемых решений

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Применять методы анализа научно-технической информации

Владеть Анализ возможностей реализации требований к программному обеспечению

Оценка времени и трудоемкости реализации требований к программному обеспечению

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Подготовка предложений для составления планов и методических программ исследований и разработок, практических рекомендаций по исполнению их результатов

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ОПК-2 Способен применять современный математический аппарат, связанный с проектированием, разработкой, реализацией и оценкой качества программных продуктов и программных комплексов в различных областях человеческой деятельности

ИД-1.ОПК-2 Способен применять системный подход к анализу предметной (проблемной) области, выявлению требований к ИС

Знать Методологии разработки программного обеспечения и технологии программирования

Цели и задачи проводимых исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Проводить анализ исполнения требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Владеть Анализ возможностей реализации требований к программному обеспечению

Согласование требований к программному обеспечению с заинтересованными сторонами

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Проектирование структур данных

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-2.ОПК-2 Применяет современный математический аппарат при построении моделей в различных областях человеческой деятельности

Знать Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Теория баз данных

Цели и задачи проводимых исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Вырабатывать варианты реализации требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения

Владеть Анализ возможностей реализации требований к программному обеспечению

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Проектирование структур данных

Разработка структуры программного кода ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-3.ОПК-2 Аргументировано применяет методы проектирования, разработки и реализации программных продуктов и программных комплексов в различных областях человеческой деятельности

Знать Возможности существующей программно-технической архитектуры

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Языки программирования и работы с базами данных

Инструменты и методы проектирования и дизайна ИС

Цели и задачи проводимых исследований и разработок

Методы и средства планирования и организации исследований и разработок

Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь Вырабатывать варианты реализации требований

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения Верифицировать структуру программного кода

Владеть

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Разработка структуры программного кода ИС

Верификация структуры программного кода ИС относительно архитектуры ИС и требований заказчика к ИС

Сбор, обработка, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

ИД-4.ОПК-2 Использует инструментальные, программные и аппаратные средства измерений для оценки качества программного обеспечения

Знать

Возможности современных и перспективных средств разработки программных продуктов, технических средств

Методологии разработки программного обеспечения и технологии программирования

Языки программирования и работы с базами данных

Инструменты и методы верификации структуры программного кода Методы проведения экспериментов и наблюдений, обобщения и обработки информации

Уметь

Использовать существующие типовые решения и шаблоны проектирования программного обеспечения Верифицировать структуру программного кода Применять методы анализа научно-технической информации

Владеть

Разработка, изменение и согласование архитектуры программного обеспечения с системным аналитиком и архитектором программного обеспечения

Проектирование и дизайн ИС

Разработка структуры программного кода ИС

Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые тестовые задания

- 1. Пусть m(V) минимальная сложность алгоритма, M(V) максимальная сложность алгоритма, S(V) средняя сложность алгоритма. Для линейного алгоритма (без ветвлений) имеет место:
 - \circ m(V) \leq S(V) \leq M(V)
 - o $m(V) \le M(V)$; S(V) = (m(V) + M(V))/2
 - \circ m(V) \leq S(V) \leq M(V)
- 2. Пусть m(V) минимальная сложность алгоритма, M(V) максимальная сложность алгоритма, S(V) средняя сложность алгоритма. Для алгоритма с ветвлениями имеет место:

- \circ m(V) \leq S(V) \leq M(V)
- o $m(V) \le M(V)$; S(V) = (m(V) + M(V))/2
- \circ m(V) = S(V) = M(V)
- о другой ответ
- 3. Классический алгоритм перемножения квадратных матриц имеет сложность:
 - o O(log n)
 - \circ O(n log n)
 - o O(n)
 - o O(n^2)
 - o O(n^3)
 - o O(n^4)
 - o O(2^n)
- 4. Сложность циклических алгоритмов (while, repeat) зависит от параметра сложности исходных данных:
 - о как некоторый полином
 - о как дробно-рациональная функция
 - о как некоторое выражение с иррациональностями
 - о может быть произвольной вещественной функцией
- 5. Асимптотическая сложность рекурсивного алгоритма:
 - о всегда выше O(n)
 - никогда не ниже O(2ⁿ)
 - о не превышает O(n 2^n)
 - о может быть сколь угодно большой
 - о может быть сколь угодно малой
 - о в точности 2 предыдущих утверждения верны
 - о в точности 2 предыдущих утверждения не верны
- 6. Master theorem верна, если параметры «а» и «с»:
 - о произвольные алгебраические числа
 - о комплексные числа с ненулевой мнимой частью
 - о кватернионы
 - о первое трансцендентное, а второе иррациональное
 - о натуральные числа
- 7. Сортировка Хоара:
 - о может быть медленнее сортировки «пузырьком» на некоторых одинаковых массивах
 - о всегда быстрее, чем сортировка методом вставки
 - найдется множество массивов различных длин п так, что на этом множестве массивов сложность сортировки Хоара O(n^3)
 - о все предыдущие утверждения неверны
 - о одно из предыдущих утверждений верно
- 8. Для умножения квадратных матриц:
 - о не существует алгоритма сложности O(n^4) и более
 - о не существует алгоритма сложности O(n^2) и менее
 - о может быть построен алгоритм сложности O(n^3.5)

- о существует алгоритм сложности O(n^2.8) и O(n^2.9)
- 9. Возможна полиномиальная сводимость:
 - о задачи изоморфизма графов к задаче поиска кратчайших путей в графе
 - задачи перемножения квадратных матриц к задаче скалярного произведения векторов
 - о задачи скалярного перемножения векторов к задаче перемножения матриц
 - задачи вычисления хроматического числа графа к задаче вычисления рода графа
- 10. Задача «Выполнимость k» имеет полиномиальную сложность, если:
 - \circ k = 1
 - \circ k=2
 - o k = 2.5
 - \circ k = 3
 - \circ k < 8
- 11. Доказано, что:
 - \circ P = NP
 - \circ NP = EXP
 - \circ P \neq NP
- 12. К задачам экспоненциальной сложности относятся:
 - о задача скалярного умножения векторов
 - ο задача точного вычисления числа π
 - о задача сортировки массива
 - о задача изоморфизма подграфов
 - задача поиска всех клик в графе
- 13. Относятся ли к односторонним функциям задачи вычисления:
 - натурального логарифма?
 - о дискретного логарифма?
 - о логарифма по основанию 2?
- 14. Факторизация в RSA это:
 - о поиск факторов, влияющих на правильность понимания принятого секретного сообщения
 - о систематическая процедура подстановки одной кодовой последовательности вместо другой
 - о разложение нечетного числа на два простых сомножителя
 - о разложение числа на простые сомножители
- 15. Хеш предназначен для:
 - о сжатия исходного сообщения, экономной передачи его по каналу связи, и восстановлению, может быть, с незначительными ошибками
 - о защиты передаваемого сообщения от подмены во время передачи
 - о определения на принимающей стороне, было ли сообщение подменено
- 16. Элемент конечного поля (mod 1213), обратный к 1211, равен:
 - 0 1112

- o 1113
- 0 74
- 0 75
- 0 606
- 0 607
- 0 224
- 0 225
- 17. Целевая функция задачи линейного программирования достигает своего экстремума:
 - о в геометрическом центре допустимой области
 - о на границе допустимой области, посередине между соседними вершинами
 - о в вершине допустимой области.

Типовые контрольные задания

- 1. Создать приложение для вычисления значений функции средней сложности алгоритма с разветвлениями, выполнить с его помощью вычисления, и представить график функции сложности.
- 2. Создать приложение для вычисления значений функции сложности алгоритма скалярного умножения векторов, выполнить с его помощью вычисления, и представить график функции сложности.
- 3. Создать приложение для вычисления значений функции средней сложности алгоритма сортировки «пузырек», выполнить с его помощью вычисления, и представить график функции сложности.
- 4. Создать приложение для вычисления значений функции средней сложности алгоритма Дейкстры поиска путей в графе, выполнить с его помощью вычисления, и представить график функции сложности.
- 5. Создать приложение для анализа решения функционального уравнения, описывающего функцию сложности алгоритма Карацубы, выполнить с его помощью вычисления, и представить график функции сложности.
- 6. Создать приложение для сравнительного анализа решений функциональных уравнений различного типа (из master theorem), выполнить с его помощью вычисления, и представить графики асимптот функций сложности.
- Создать приложение для вычисления значений функций минимальной, максимальной и средней сложности алгоритма сортировки Хоара, выполнить с его помощью вычисления, и представить графики функций сложности.
- 8. Создать приложение для сравнения значений функций сложности алгоритма Ф. Штрассена и классического алгоритма перемножения матриц, выполнить с его помощью вычисления, и представить график функции сложности.
- Создать приложение для вычисления значений функции средней сложности алгоритма проверки выполнимости булевой функции, заданной КНФ с дизъюнтами длины 2, выполнить с его помощью вычисления, и представить график функции сложности.
- 10. Создать приложение для вычисления значений функции средней сложности алгоритма проверки изоморфизма графов, выполнить с его помощью вычисления, и представить график функции сложности.
- 11. Создать приложение для вычисления значений функции сложности алгоритма дискретного логарифма, выполнить с его помощью вычисления, и представить график функции сложности.
- 12. Создать приложение для вычисления значений функции сложности алгоритма RSA, выполнить с его помощью вычисления, и представить график функции сложности.

- 13. Создать приложение для вычисления значений функции средней сложности алгоритма хеширования, выполнить с его помощью вычисления, и представить график функции сложности.
- 14. Создать приложение для вычисления значений функции сложности алгоритма Шамира, выполнить с его помощью вычисления, и представить график функции сложности.

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет)

Вопросы для подготовки к зачету

- 1. Понятия временной и емкостной сложности алгоритма. Сложность входных (исходных) данных. Минимальная сложность, максимальная сложность, средняя сложность. Принятые обозначения.
- 2. Управляющий граф программы, его построение по тексту программы. Свойства управляющего графа (графа передачи управления). Оценка сложности для графов простых цепей и деревьев (алгоритмы с ветвлениями).
- 3. Оценка сложности алгоритмов, содержащих циклы типа for (с известным числом исполнений тела цикла). Методы вывода формул для функции сложности. Анализ простейших алгоритмов сортировки.
- Оценка сложности алгоритмов, содержащих циклы типа while и repeat (с неизвестным заранее числом исполнений тела цикла). Методы вывода формул для функции сложности. Примеры анализа алгоритмов.
- Построение функциональных уравнений для оценки сложности рекурсивных алгоритмов (случай линейной рекурсии). Пример построения функционального уравнения и его решения.
- 6. Построение функциональных уравнений для оценки сложности рекурсивных алгоритмов (случаи нелинейной рекурсии и косвенной рекурсии).
- 7. Теорема об асимптотическом поведении функции сложности рекурсивного алгоритма в зависимости от параметров разбиения данных и количества возникающих подзадач (Master theorem). Примеры применения теоремы для различных видов функциональных уравнений.
- Построение функционального уравнения для оценки сложности алгоритма Энтони Хоара и детальный анализ вариантов его решения. Сопоставление результатов с Master theorem.
- 9. Алгоритм Ф. Штрассена перемножения матриц, анализ его сложности. Общая проблема оценки сложности перемножения матриц. Улучшение решений (Копперсмит и др.).
- 10. Методы оптимизации алгоритмов. Алгоритм перемножения длинных целых чисел. Алгоритм возведения целого в большую степень.
- 11. Задачи и алгоритмы, их решающие. Понятие сложности задачи. Задачи полиномиальной сложности, задачи экспоненциальной сложности. Недетерминированные вычисления. Класс задач, решаемых за полиномиальное время недетерминированными вычислителями.
- 12. Задача проверки выполнимости булевой функции, заданной формулой в конъюнктивной нормальной форме. Зависимость оценки сложности алгоритма от размера дизъюнкта. Использование принципа резолюции. Теорема С. Кука.
- 13. Обсуждение нерешенной проблемы совпадения (или несовпадения) классов задач полиномиальной сложности и класса NP. Влияние решения этой проблемы на компьютерные науки и на важнейшие приложения.

- 14. Задачи, решаемые в настоящее время переборными алгоритмами, их сложность. Некоторые алгоритмы на графах (изоморфизм подграфу и др.)
- 15. Алгоритмы, вычисляющие значения функций, и алгоритмы, вычисляющие значения обратный функций. Соотношение их сложности. Понятие односторонней функции. Известные примеры односторонних функций. Задача вычисления дискретного логарифма.
- 16. Применение односторонних функций в задачах криптографии с открытым ключом. Алгоритм Ривеста-Шамира-Адлемана. Стандарты шифрования данных.
- 17. Применение теории сложности алгоритмов к построению криптографических хешей. Алгоритм SHA256.
- 18. Построение блокчейн с использованием криптографических хешей.
- 19. Математические основы известных алгоритмов работы с односторонними функциями. Сравнения. Мультипликативное обратное. Система остаточных классов. Китайская теорема об остатках.
- 20. Методы и алгоритмы разделения секрета.
- 21. Алгоритмы декомпозиции и оптимизации, эффективные с точки зрения времени выполнения: Алгоритм построения диаграммы Вороного.
- 22. Алгоритмы декомпозиции и оптимизации, эффективные с точки зрения времени выполнения: Алгоритм решения задачи линейного программирования симплексметод.

Перечень компетенций (части компетенции), проверяемых оценочным средством

УК-1 (пп. 1-3), ОПК-1 (пп. 4-6). ОПК-2 (пп. 7-10), ПК-1 (пп. 11-17), ПК-3 (пп. 18-22).

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Методические рекомендации, определяющие процедуры оценивания тестов:

Тест проводится онлайн в системе Moodle или Google Docs и ограничен по времени. На сдачу теста дается две попытки. Тест считается успешно пройденным если студент правильно ответил на 70% вопросов.

Методические рекомендации, определяющие процедуры оценивания выполнения контрольных заданий:

Задание считается выполненным при выполнении следующих условий:

- предоставлен исходный код на C++;
- продемонстрирована работоспособность приложения;
- студент понимает исходный код и отвечает на вопросы по его организации.

Методические рекомендации, определяющие процедуры оценивания на зачете:

Процедура промежуточной аттестации проходит в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся ФГБОУ ВО «КубГУ».

Итоговой формой контроля сформированности компетенций у обучающихся по дисциплине является зачет. Студенты обязаны получить зачет в соответствии с расписанием и учебным планом

 Φ ОС промежуточной аттестации состоит из контрольных заданий и списка вопросов по теории.

Зачет по дисциплине преследует цель оценить работу студента, получение теоретических и практических знаний, их прочность, развитие творческого мышления,

приобретение навыков самостоятельной работы, умение применять полученные знания для решения практических задач.

Результат сдачи зачета заносится преподавателем в экзаменационную ведомость и зачетную книжку.

Оценивание уровня освоения дисциплины основывается на качестве выполнения студентом контрольных заданий и ответов на вопросы по теории.

Критерии оценки:

оценка «незачет» выставляется в случае выполнения одного из условий:

- письменный ответ на вопрос по теории продемонстрировал уровень освоения лекционного материала ниже порогового;
- выполнено менее 80% контрольных заданий.

оценка «зачет» в случае выполнения условий:

- письменный ответ на вопрос по теории продемонстрировал уровень освоения лекционного материала не ниже порогового;
- выполнено не менее 80% контрольных заданий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

1. Как проектировать программы. Введение в программирование и компьютерные вычисления / М. Фелляйзен, Р. Б. Финдлер, М. Флэтт, Ш. Кришнаму; под редакцией П. Б. Иванова [и др.]; перевод с английского А. Н. Киселева. — Москва: ДМК Пресс, 2022. — 724 с. — ISBN 978-5-97060-926-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/314867 (дата обращения: 09.06.2023).

2. Ляшева, С. А. Алгоритмы и анализ сложности : учебное пособие / С. А. Ляшева, М. П. Шлеймович. — Казань : КНИТУ-КАИ, 2020. — 116 с. — ISBN 978-5-7579-2491-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/264884 (дата обращения: 09.06.2023).

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Голубенко, Д. Алгоритмы и модели вычисления: руководство / Д. Голубенко, А. Крошин, Э. Горбунов. Москва: ДМК Пресс, 2019. 240 с. ISBN 978-5-97060-844-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/140582 (дата обращения: 09.06.2023).
- 2. Страуструп, Б. Язык программирования С++ для профессионалов : учебное пособие / Б. Страуструп. 2-е изд. Москва : ИНТУИТ, 2016. 670 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/100542 (дата обращения: 02.07.2022).
- 3. Гримм, Р. Параллельное программирование на современном С++. Что каждый профессионал должен знать о параллельном программировании / Р. Гримм; перевод с английского В. Ю. Винника. Москва: ДМК Пресс, 2022. 616 с. ISBN 978-5-97060-957-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/314870 (дата обращения: 09.06.2023).
- 4. Миков, А. И. Распределенные системы и алгоритмы : учебное пособие / А. И. Миков, Е. Б. Замятина. 2-е изд. Москва : ИНТУИТ, 2016. 246 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/100446 (дата обращения: 09.06.2023).

5.3. Периодические издания:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. GEC «BOOK.ru» https://www.book.ru
- 4. ЭБС «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/

- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

5.5 Перечень информационно-коммуникационных технологий

– Проверка домашних заданий и консультирование посредством электронной почты.

- Использование электронных презентаций при проведении лекционных занятий
- Система MOODLE
- Проверка домашних заданий и консультирование посредством ЭОИС КубГУ

5.6 Перечень лицензионного и свободно распространяемого программного обеспечения

OpenOffice

Компилятор С++

Oracle VirtualBox 6

VMware Workstation 16

Putty 0.76 или Kitty 0.76

FileZilla 3.57.0

WinSCP 5.19

Advanced port scanner 2.5

Python 3 (3.7 И 3.9)

numpy 1.22.0

opency 4.5.5

Keras 2.7.0

Tensor flow 2.7.0

matplotlib 3.5.1

PyCharm 2021

Cuda Toolkit 11.6

Фреймворк Django

Firefox, любая версия

Putty, любая версия

Visual Studio Code, версия 1.52+

Eclipse PHP Development Tools, версия 2020-06+

Плагин Remote System Explorer (RSE) для Eclipse PDT

JetBrains PHP Storm

GIT

Java Version 8 Update 311

Clojure 1.10.3.1029.ps1

SWI Prolog 8.4

Intellij Idea IDE 2021

Mozilla Firefox 96

Google Chrome 97

GitHub Desktop 2.9

PHP Storm 2021

FileZilla 3.57.0

Putty 0.76

6. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал. В ходе лекционных занятий разбираются свойства, методы и события основных элементов анализа сложности алгоритмов, приводятся примеры их использования, проводится анализ наиболее распространенных опибок построения функции сложности. После прослушивания лекции рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

По курсу предусмотрено проведение лабораторных занятий, на которых дается прикладной систематизированный материал. В ходе занятий разбираются готовые программные приложения и проводится анализ их функций сложности, а также приводятся

примеры разработки программных приложений. После занятия рекомендуется выполнить упражнения, приводимые в аудитории для самостоятельной работы.

При самостоятельной работе студентов необходимо изучить литературу, приведенную в перечнях выше, для осмысления вводимых понятий, анализа предложенных подходов и методов разработки программ. Разрабатывая решение новой задачи, студент должен уметь выбрать эффективные и надежные структуры данных для представления информации, подобрать соответствующие алгоритмы для их обработки, учесть специфику языка программирования, на котором будет выполнена реализация. Студент должен уметь выполнять тестирование и отладку алгоритмов решения задач с целью обнаружения и устранения в них ошибок.

Важнейшим этапом курса является самостоятельная работа по дисциплине. В процессе самостоятельной работы студент приобретает навык проведения анализа эффективности алгоритмов.

Используются активные, инновационные образовательные технологии, которые способствуют развитию общекультурных, общепрофессиональных компетенций и профессиональных компетенций обучающихся:

- проблемное обучение;
- разноуровневое обучение;
- проектные методы обучения;
- исследовательские методы в обучении;
- обучение в сотрудничестве (командная, групповая работа);
- информационно- коммуникационные технологии.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Учебно-методическим обеспечением курсовой работы студентов являются:

- 1. учебная литература;
- 2. нормативные документы ВУЗа;
- 3. методические разработки для студентов.

Самостоятельная работа студентов включает:

- оформление итогового отчета (пояснительной записки).
- анализ нормативно-методической базы организации;
- анализ научных публикации по заранее определённой теме:
- анализ и обработку информации;
- работу с научной, учебной и методической литературой,
- работа с конспектами лекций, ЭБС.

Для самостоятельной работы представляется аудитория с компьютером и доступом в Интернет, к электронной библиотеке вуза и к информационно-справочным системам. Перечень учебно-методического обеспечения:

- 1. Основная образовательная программа высшего профессионального образования федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» по направлению подготовки.
- 2. Положение о проведении текущего контроля успеваемости и промежуточной аттестации в федеральном государственном бюджетном образовательном учреждении высшего образования «Кубанский государственный университет».
- 3. Общие требования к построению, содержанию, оформлению и утверждению рабочей программы дисциплины Федерального государственного образовательного стандарта высшего профессионального образования.
- 4. Методические рекомендации по содержанию, оформлению и применению образовательных технологий и оценочных средств в учебном процессе, основанном на Федеральном государственном образовательном стандарте.

- 5. Учебный план основной образовательной программы по направлению подготовки.
- 6. Федеральный государственный образовательный стандарт высшего профессионального образования по направлению подготовки.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

No	Вид работ	Наименование учебной аудитории, ее оснащенность				
745	Вид рассі	оборудованием и техническими средствами обучения				
1.	Лекционные занятия	Аудитория, укомплектованная специализированной				
		мебелью и техническими средствами обучения				
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной				
	18003 est	мебелью и техническими средствами обучения,				
		компьютерами, проектором, программным обеспечением				
3.	Групповые	Аудитория, укомплектованная специализированной				
	(индивидуальные)	мебелью и техническими средствами обучения,				
	консультации	компьютерами, программным обеспечением				
4.	Текущий контроль,	Аудитория, укомплектованная специализированной				
	промежуточная	мебелью и техническими средствами обучения,				
	аттестация	компьютерами, программным обеспечением				
5.	Самостоятельная	Кабинет для самостоятельной работы, оснащенный				
	работа	компьютерной техникой с возможностью подключения к				
		сети «Интернет»,программой экранного увеличения и				
		обеспеченный доступом в электронную информационно-				
		образовательную среду университета.				

Примечание: Конкретизация аудиторий и их оснащение определяется ОПОП.