ОПИСАНИЕ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ / СПЕЦИАЛЬНОСТИ 02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННАЯ ТЕХНОЛОГИИ

Направленность (профиль): <u>Современные методы машинного обучения и</u> компьютерного зрения...

Квалификация – бакалавр.

Срок получения образования по очной (заочной/очно-заочной) форме обучения –4 года.

Объем программы бакалавриата составляет 240 зачетных единиц вне зависимости от формы обучения, применяемых образовательных технологий.

1. Область (области) профессиональной деятельности и сфера (сферы) профессиональной деятельности выпускников

Области профессиональной деятельности и сферы профессиональной деятельности, в которых выпускники, освоившие программу бакалавриата, могут осуществлять профессиональную деятельность:

- 06 Связь, информационные и коммуникационные технологии (в сфере проектирования и разработки программного обеспечения; в сфере проектирования, создания и поддержки информационно-коммуникационных систем; в сфере системного анализа, больших данных, моделирования, сбора и анализа данных цифрового следа).
- 40 Сквозные виды профессиональной деятельности в промышленности (в сфере разработки автоматизированных систем управления производством, искусственного интеллекта и машинного обучения)

Объекты профессиональной деятельности выпускников.

Объектами профессиональной деятельности выпускников, освоивших программу бакалавриата, являются:

- Системы искусственного интеллекта.
- Машинное обучение.
- Программное обеспечение.
- Информационные системы.
- Требования к программному обеспечению, системам искусственного интеллекта и методам машинного обучения.
- Качество программного обеспечения, систем искусственного интеллекта и машинного обучения.
- Планирование и разработка ИС систем искусственного интеллекта и машинного обучения.
- Разработка программного обеспечения, систем искусственного интеллекта и машинного обучения.
- Качество программного обеспечения, систем искусственного интеллекта и машинного обучения.
- Руководство разработкой программного обеспечения, систем искусственного интеллекта и машинного обучения.

Тип (типы) задач профессиональной деятельности выпускников.

- В рамках освоения программы бакалавриата выпускники могут готовиться к решению задач профессиональной деятельности следующих типов:
 - производственно-технологический;
 - организационно-управленческий.

Выпускник может решать следующие профессиональные задачи:

- Подготовка научно-исследовательских отчетов, публикаций, выступлений. **производственно-технологическая деятельность:**
- Анализ и согласование требований к программному обеспечению и датасету.
- Оценка времени и трудоемкости реализации требований к программному обеспечению, системам искусственного интеллекта и методам машинного обучения.
 - Вырабатывать варианты реализации требований.
 - Проводить оценку и обоснование рекомендуемых решений.
 - Осуществлять коммуникации с заинтересованными сторонами.
- Методологии требований к датасету, разработки программного обеспечения, технологии программирования, систем искусственного интеллекта и машинного обучения.
- Методологии и технологии проектирования и использования баз данных для систем искусственного интеллекта и машинного обучения.
- Определение стандартов и согласование регламентов в области качества.
 Планирование работы.
 - Разработка регламентных документы.
 - Проводить переговоры.
- Технологии выполнения работ по созданию (модификации) и сопровождению информационных систем, систем искусственного интеллекта и машинного обучения.

организационно-управленческая деятельность:

- Руководство разработкой программного кода, систем искусственного интеллекта и машинного обучения.
 - Распределение задач.
- Оценка качества формализации поставленных задач в соответствии с требованиями технического задания.
- Оценка качества алгоритмизации поставленных задач в соответствии с требованиями технического задания или других принятых в организации нормативных документов.
- Оценка качества и эффективности программного кода, систем искусственного интеллекта и машинного обучения.
- Редактирование программного кода, систем искусственного интеллекта и машинного обучения.
- Контроль версий программного обеспечения в соответствии с регламентом и выбранной системой контроля версий.
- Методы и приемы формализации и алгоритмизации задач для подготовки датасета.
 - Языки формализации функциональных спецификаций.
- Методологии разработки программного обеспечения, систем искусственного интеллекта и машинного обучения.
- Технологии программирования и разработки систем искусственного интеллекта и машинного обучения.
 - Методы принятия управленческих решений.

Портрет выпускника специалиста топ-уровня в сфере ИИ согласно КРМ ИИ, УТГ

Программа разработана с учетом методических рекомендаций КРМ ИИ, разработанной по заказу Аналитического центра при Правительстве Российской Федерации в рамках курируемого Минцифры России федерального проекта «Искусственный интеллект» национального проекта «Экономика данных и цифровая трансформация государства».

В соответствии с КРМ ИИ выпускники сразу после окончания обучения могут выполнять следующие роли и трудовые функции на ИИ-проектах:

Роль	Определение	Трудовые действия	Фокус компетенций	Функция в ИИ- проекте
Data Engineer (Инженер по данным)	Специалист, отвечающий за создание и поддержку инфраструктуры для сбора обработки и хранения больших объемов данных	• Проектирование и построение ЕТL-процессов • Создание и оптимизация хранилищ данных • Обеспечение качества и доступности данных • Настройка инфраструктуры для обработки больших данных • Интеграция разрозненных источников данных	Технологии баз данных, инфраструктура данных, программирование (Python, Java/Scala)	Создание и поддержка инфраструктуры сбора, обработки и хранения данных
ML Engineer (Инженер MO)	Инженер, специализирующийся на практической реализации и промышленном внедрении моделей машинного обучения	• Реализация МС-моделей в продуктивных системах • Оптимизация производительности и масштабирование моделей • Разработка МС-пайплайнов и автоматизация процессов • Мониторинг качества моделей в продуктиве • Интеграция МС-решений с бизнес-приложениями	Практическое МО, промышленная разработка, оптимизация систем	Практическая реализация и промышленное внедрение моделей машинного обучения в системах ИИ
MLOps (Специалист по эксплуатации ИИ)	DevOps-инженер, специализирующийся на автоматизации и операционном управлении жизненным циклом ML-моделей	• Автоматизация процессов обучения и развертывания моделей • Мониторинг производительности МС-систем • Управление версиями моделей и данных • Обеспечение СІ/СО для МС-проектов • Оптимизация вычислительных ресурсов	DevOps для ML, автоматизация, мониторинг систем	Автоматизация и операционное управление жизненным циклом МО-моделей

2. Документы, регламентирующие содержание и организацию образовательного процесса.

Содержание и организация образовательного процесса при реализации данной образовательной программы регламентируется: учебным планом, календарным учебным графиком, рабочими программами учебных дисциплин (модулей), включающими оценочные средства (материалы), рабочими программами практик, включающими оценочные средства (материалы), программой и материалами государственной итоговой аттестации, включающими оценочные средства, методическими материалами.

3. Условия реализации образовательной программы электронная информационно-образовательная среда

обучающийся Каждый течение всего периода обучения обеспечен индивидуальным неограниченным доступом К электронной информационнообразовательной среде Университета из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), как на территории Университета, так и вне ее. Условия для функционирования электронной информационно-образовательной среды созданы с использованием собственных ресурсов и ресурсов иных организаций (официальный сайт https://kubsu.ru/; электроннобиблиотечные системы (ЭБС).

Электронная информационно-образовательная среда Университета обеспечивает:

- доступ к учебным планам, рабочим программам дисциплин (модулей), программам практик, электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочих программах дисциплин (модулей), программах практик;
- формирование электронного портфолио обучающегося, в том числе сохранение его работ и оценок за эти работы.

Использование ресурсов электронной системы обучения в процессе реализации программы регламентируется соответствующими локальными нормативными актами.

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих. Функционирование электронной информационно-образовательной среды соответствует законодательству Российской Федерации.

материально-технические условия реализации образовательной программы, учебно-методическое обеспечение

Виртуальные машины, кластер Managed Kubernetes и ресурсы GPU в облаке предоставляется якорным индустриальным партнером образовательной программы «Сбербанк»:

WC00	роанк».				
№	Продукт	Параметры продукта	Кол-во	Кол-во	Ед. изм.
1	Виртуальная машина	Виртуальная машина 10% vCPU 2 vCPU 4 RAM	1	60	Шт
		OC Ubuntu 22.04	1		Шт
		Системный диск SSD	1		Шт
			10		Гб
		Аренда публичного IP	1		Шт
2	Виртуальная машина с GPU	Виртуальная машина с GPU NVIDIA® Tesla® V100 2 GPU 8 vCPU 128 ГБ RAM	1	1	Шт
		OC Ubuntu_24.04	1		Шт
		Системный диск SSD	1		Шт

			2000		Гб
		Диск SSD	1		Шт
			4096		Гб
		Диск SSD	1		Шт
			4096		Гб
		Аренда публичного ІР	1		Шт
3	K8S	Master node 8 vCPU 16 RAM	1	1	Шт
		Worker node 10% доля 4 vCPU 32 RAM	5		Шт
		Worker node SSD-NVME	64		Гб
		Аренда публичного ІР	1		Шт
4	ML Inference Instance Type GPU	Время работы в месяц	40	1	Ч
		Инстанс 8 x NVIDIA® H100 NVLink PCIe 160 vCPU 1520 GB RAM	1		Шт
		Количество запросов к МL-моделям	1		Млн. Шт
		Кэш ML-моделей	160		Гб
5	LLM	Токены GigaChat 2 Max	50		Млн. Шт
		Токены Embeddings	400		Млн. Шт

Дополнительные облачные ресурсы предоставляются технологическим партнером образовательной программы Yandex Cloud.

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащенные оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей).

Образовательный процесс по реализации образовательной программы организуется на базе Кубанского государственного университета.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду Университета.

Допускается замена оборудования его виртуальными аналогами.

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства (состав определяется в рабочих программах дисциплин (модулей) и подлежит обновлению при необходимости).

Библиотечный фонд укомплектован печатными изданиями из расчета не менее 0,25 экземпляра каждого из изданий, указанных в рабочих программах дисциплин (модулей), практик, на одного обучающегося из числа лиц, одновременно осваивающих соответствующую дисциплину (модуль), проходящих соответствующую практику.

Обучающимся обеспечен доступ (удаленный доступ) к современным профессиональным базам данных и информационным справочным системам, состав которых определяется в рабочих программах дисциплин (модулей) и подлежит обновлению (при необходимости).

Обучающиеся из числа инвалидов и лиц с ОВЗ (при наличии) обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

- кадровое обеспечение

Реализация образовательной программы обеспечивается педагогическими работниками Университета, а также лицами, привлекаемыми Университетом к реализации программы на иных условиях.

Квалификация педагогических работников Университета отвечает квалификационным требованиям, указанным в квалификационных справочниках и (или) профессиональных стандартах (при наличии).

В соответствии с требованиями ФГОС ВО не менее 70 процентов численности педагогических работников Университета, участвующих в реализации программы бакалавриата, и лиц, привлекаемых Университетом к реализации программы бакалавриата на иных условиях (исходя из количества замещаемых ставок, приведенного к целочисленным значениям), ведут научную, учебно-методическую и (или) практическую работу, соответствующую профилю преподаваемой дисциплины (модуля).

В соответствии с требованиями ФГОС ВО не менее 5 процентов численности педагогических работников Университета, участвующих в реализации программы бакалавриата, и лиц, привлекаемых Университетом к реализации программы бакалавриата на иных условиях (исходя из количества замещаемых ставок, приведенного к целочисленным значениям), являются руководителями и (или) работниками иных организаций, осуществляющими трудовую деятельность в профессиональной сфере, соответствующей профессиональной деятельности, к которой готовятся выпускники (имеют стаж работы в данной профессиональной сфере не менее 3 лет).

В соответствии с требованиями ФГОС ВО не менее 60 процентов численности педагогических работников Университета и лиц, привлекаемых к образовательной деятельности Университета на иных условиях (исходя из количества замещаемых ставок, приведенного к целочисленным значениям), имеют ученую степень (в том числе ученую степень, полученную в иностранном государстве и признаваемую в Российской Федерации) и (или) ученое звание (в том числе ученое звание, полученное в иностранном государстве и признаваемое в Российской Федерации).

В реализации программы участвуют ведущие преподаватели Университета, имеющие научный и практический опыт в сфере искусственного интеллекта, анализа данных, методов машинного обучения, компьютерного зрения, математического моделирования, программирования, разработки информационных и программных систем - авторы учебников, учебных пособий, монографий и научных статей по проблемам искусственного интеллекта, анализа данных, методов машинного обучения, математического моделирования, численных методов, программирования, защиты информации и разработке программных комплексов.

-механизм оценки качества образовательной деятельности

Качество образовательной деятельности и подготовки обучающихся по образовательной программе определяется в рамках системы внутренней оценки, а также системы внешней оценки, в которой Университет принимает участие на добровольной основе.

В целях совершенствования образовательной программы Университет при проведении регулярной внутренней оценки качества образовательной деятельности и подготовки обучающихся по программе привлекает работодателей и (или) их объединения, иных юридических и (или) физических лиц, включая педагогических работников Университета.

В рамках внутренней системы оценки качества образовательной деятельности по образовательной программе обучающимся предоставляется возможность оценивания условий, содержания, организации и качества образовательного процесса в целом и отдельных дисциплин (модулей) и практик.

Внешняя оценка качества образовательной деятельности по образовательной программе в рамках процедуры государственной аккредитации осуществляется с целью подтверждения соответствия образовательной деятельности требованиям ФГОС ВО.

Внешняя оценка качества образовательной деятельности и подготовки обучающихся по образовательной программе может осуществляться в рамках профессионально-общественной аккредитации, проводимой работодателями, их объединениями, а также уполномоченными ими организациями, в том числе иностранными организациями, либо авторизованными национальными профессионально-общественными организациями, входящими в международные структуры, с целью признания качества и уровня подготовки выпускников, отвечающими требованиям профессиональных стандартов, требованиям рынка труда к специалистам соответствующего профиля.