МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

«Кубанский государственный университет» Факультет физико-технический

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электродинамика и электродинамика сплошных сред

Направление подготовки/специальность 03.03.02 Физика

Направленность (профиль)/ специализация

Фундаментальная физика

Фома обучения очная

Квалификация бакалавр

Рабочая программа дисциплины <u>Электродинамика и электродинамика сплошных сред</u> составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки/ специальности 03.03.02 Физика

Программу составил (и):

К.А. Лебедев, проф кафедры теор. физики и комп. технологий

подпись

Рабочая программа Электродинамика и электродинамика сплошных сред утверждена на заседании кафедры теоретической физики и компьютерных технологий

протокол № 9 от «08» апреля 2025 г.

аведующий кафедрой (выпускающей) . . ебедев

поличеь

Утверждена на заседании учебно-методической комиссии физико-технического факультета

протокол №11 от «11» апреля 2025 г.

редседатель факультета

Богатов Н.М.

Рецензенты:

М.С. Коваленко, кандидат физико-математических наук, доцент кафедры физики и информационных систем

Л.Р. Григорян, генеральный директор ООО НПФ «Мезон» кандидат физико-математических наук

1 Цели и задачи изучения дисциплины.

1.1 Цель дисциплины.

Учебная дисциплина «Электродинамика и электродинамика сплошных сред» ставит своей целью получение базовых навыков подготовки по теории распространения электромагнитных волн в сплошных средах, которые необходимы для дальнейшего освоения профессиональных дисциплин.

1.2 Задачи дисциплины.

Основная задача дисциплины - закрепить знания основных понятий, уравнений и принципов распространения ЭМ волн в однородных и неоднородных средах, основных классов электродинамических задач и математических методов их решения; освоить и знать основные электромагнитные явления и закономерности при распространении, отражении, дифракции и интерференции электромагнитных волн.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Учебная дисциплина «Электродинамика и электродинамика сплошных сред» входит в базовую часть цикла общепрофессиональных дисциплин базового учебного плана по направлению подготовки бакалавриата 03.03.02 Физика.

Для успешного изучения дисциплины необходимо знание основ линейной алгебры, математического анализа, векторного и тензорного анализа, теории обыкновенных дифференциальных уравнений и уравнений в частных производных, теории функций комплексной переменной и общего курса физики в объеме курсов университета.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы Процесс изучения дисциплины направлен на формирование элементов следующей компетенции в соответствии с ФГОС ВО и ООП по данному направлению подготовки (специальности):

No	Индекс	Содержание	В результате изучения учебной дисциплины		
п.	компетенци	компетенции	06	бучающиеся должны	
П	И	(или её части)	знать	уметь	владеть
•					

1.	ОПК-2	способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональны х задач и интерпретировать полученные результаты с учетом границ применимости	материал курса в объеме данной программы: терминологию, определения, формулы, основные законы электродинамик и сплошных сред	получать ответ на любой вопрос из программы путем соответствующег о математического вывода из уравнений Максвелла, свободно переводить любые соотношения электродинамики с языка трехмерного векторного анализа на язык четырехмерного тензорного анализа и наоборот	практическим и навыками решения задач по всем разделам курса
№ п.	Индекс компетенци	Содержание компетенции (или её части)		изучения учебной ді бучающиеся должны	
П	И	лей	знать	уметь	владеть

2 Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебной работы	Всего часов	Семестр (часы)	
		5	
Контактная работа, в том числе:	76,3	76,3	
Аудиторные занятия (всего):	72	72	
Занятия лекционного типа	36	36	-
Лабораторные занятия	-	-	-
Занятия семинарского типа (семинары, практические занятия)	36	36	-
Иная контактная работа:	4,3	4,3	
Контроль самостоятельной работы (КСР)	4	4	
Промежуточная аттестация (ИКР)	0,3	0,3	
Самостоятельная работа, в том числе:	41	41	
Проработка учебного (теоретического) материала	20	20	-

Выполнение индивидуальных сообщений, презентаций)	16	16	-	
Реферат	5	5	-	
Контроль:	26,7	26,7		
Экзамен		26,7	26,7	
Общая трудоемкость	час.	144	144	-
	в том числе контактная работа	76,3	76,3	
	зач. ед.	4	4	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре (очная форма)

	зделы (темы) дисциплины, изуч			• '		,
№ paз-	Наименование разделов	Всего	Количество ч			асов Внеаудиторная работа
дела		20010	Л	ПЗ	ЛЗ	CPC
1	2	3	4	5	6	7
1	Основные понятия электродинамики. Уравнения Максвелла в вакууме и среде	26	8	8	-	10
2	Стационарные электрические и магнитные поля	26	8	8	1	10
3	Нестационарное электромагнитное поле	30	10	10	-	10
4	Специальная теория относительности и электродинамика	31	10	10	-	11
No				Колич	ество ч	асов
раз- дела	Наименование разделов	Всего	Аудит	горная р	абота	Внеаудиторная работа
			Л	ПЗ	ЛЗ	CPC
	Всего:		36	36	_	41

2.3Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4

1. Основные понятия электродинамики. Уравнения Максвелла в вакууме и среде

Электродинамика как учение об поле и его связи с электромагнитном Эволюция Е зарядами И токами. представлений взаимодействии o электрических зарядов и токов: теории дальнодействия И близкодействия. Основные опытные факты, на которых базируются микроскопические (уравнения Максвелла-Лоренца) и макроскопические уравнения Максвелла: закон сохранения закон электрического заряда; Кулона взаимодействия электрических зарядов; опыты Эрстеда, Био И Савара ПО обнаружению магнитного действия электрических токов на постоянные магниты и закон Био-Савара-Лапласа; опыты Фарадея, Эрстеда и Ампера по обнаружению обратного воздействия магнитного поля на токи; закон Ампера для постоянных токов; закон электромагнитной Фарадея; индукции неразделимость магнитных полюсов (отсутствие магнитных зарядов).

Условие макроскопичности и закон сохранения электрического заряда дифференциальной форме; свободные связанные Закон заряды. Кулона макроскопическое электрическое поле; интегральная и дифференциальная формы теоремы Гаусса. Закон Ампера постоянных токов. Закон электромагнитной индукции Фарадея в дифференциальной форме. Ток смещения. Уравнения Максвелла в вакууме (дифференциальная и интегральная формы).

Диэлектрики и магнетики. Векторы электрической поляризации и намагниченности среды; векторы индукций и напряженностей электромагнитного поля. Токи поляризации и намагничения.

Уравнения Максвелла для

Ответы на контрольные вопросы.

электромагнитного поля среде В (дифференциальная и интегральная форма). Материальные уравнения линейной электродинамики. Временная пространственная нелокальность линейного отклика среды на воздействие электромагнитного частотная поля; пространственная дисперсии. Тензоры диэлектрической, магнитной проницаемости электропроводности И среды. Общие свойства материальных недиспергирующих тензоров диспергирующих сред, вытекающие из закона сохранения электромагнитной энергии и принципа Онзагера-Казимира. Учет влияния конкретной симметрии среды на вид материальных тензоров (на примере кристаллических сред). Граничные условия электромагнитного векторов (векторная и скалярная формы).

Силы, действующие на свободные токи заряды co стороны электромагнитного поля (плотность силы Лоренца И сила Лоренца); импульс электромагнитного поля тензор натяжений Максвелла. Плотность энергии электромагнитного поля И вектор УмоваПойнтинга; дифференциальная форма закона сохранения электромагнитной энергии.

Макроскопические уравнения Максвелла как результат усреднения уравнений Максвелла-

Лоренца.

	1		
2.	Стационарные электрические и магнитные поля	Электростатика. Уравнения Пуассона и Лапласа для электростатического потенциала. Потенциал пространственно	Ответы на контрольные вопросы
		распределенных зарядов как решение уравнения Пуассона (случаи ограниченной области и всего пространства). Постановка краевых задач для уравнения Лапласа в ограниченной области (задачи Дирихле и	
		Неймана, смешанная краевая задача). Потенциал ограниченной системы зарядов на больших расстояниях от нее (мультипольное разложение электростатического потенциала). Поле	
		заряженных проводников. Силы, действующие на проводники и диэлектрики в электростатическом поле (пондеромоторные силы).	
		Магнитостатика Уравнение	
			1
		Пуассона для векторного потенциала магнитного поля. Вывод закона БиоСавара-Лапласа из решения уравнения Пуассона. Магнитное мультипольное разложение. Магнитные свойства сверхпроводников	

(сверхпроводимость).

3. Нестационарное электромагнитное поле

Волновое уравнениеи электромагнитные волны в стационарной однородной среде или вакууме. Плоские электромагнитные волны в изотропных и анизотропных средах; немагнитных основное уравнение кристаллооптики (уравнение нормалей Френеля); поляризация плоских волн. Отражение и преломление плоских волн на плоской границе раздела двух изотропных сред; формулы Френеля; коэффициенты отражения и пропускания. Распространение волн в неоднородной изотропной среде.

Электромагнитное поле заданных зарядов и токов в вакууме; скалярный и векторный потенциалы электромагнитного поля; калибровочная инвариантность полей, калибровка Лоренца. Уравнение Даламбера, функция Грина оператора Даламбера и запаздывающие потенциалы.

Излучение электромагнитных волн. Поле произвольно движущегося заряда; потенциалы Льенара-Вихерта. Рассеяние электромагнитных волн свободными электронами (формула Томпсона). Радиационное трение.

Квазистационарные токи и поля. Уравнения Максвелла в квазистационарном случае. Скин-эффект. Квазистационарные поля в медленно движущихся деформирующихся проводниках (магнитная гидродинамика).

Электронная теория сред. Электронная дисперсии теория поглощения электромагнитных волн. диэлектрическая Комплексная проницаемость. Формулы КрамерсаКронига (дисперсионные соотношения). Фазовая и групповая скорости в диспергирующей среде. Электронная теория намагничивания. Ферромагнетизм.

Флюктуации электромагнитного поля (флюктуационно-диссинационная теорема).

Элементы нелинейной электродинамики. Волновое и материальное уравнение в нелинейно-

Ответы на контрольные вопросы

		оптических средах. Метод медленно	
		меняющихся амплитуд; системы	
		укороченных уравнений, описывающих	
		процессы генерации второй гармоники в	
		оптически отрицательных нелинейных	
		кристаллах в плосковолновом	
		приближении; пространственный	
		синхронизм; процесс генерации второй	
		гармоники в приближении заданного поля.	
4.	Специальная теория	Принцип относительности Галилея,	Ответы на
	относительности и		контрольные
	электродинамика	Гипотеза эфира и попытки обнаружения	вопросы
	электр эдинамина	эфирного ветра: опыты Физо и	Bonpo est
		Майкельсона Гипотезы Фицджеральда и	
		Лоренца.	
		Постулаты теории относительности.	
		Общие свойства пространства времени и	
		определение одновременности.	
		Преобразования Лоренца. Общие следствия	
		преобразований Лоренца: относительность	
		одновременности; ограниченность скорости	
		распространения сигналов; сокращение	
		масштабов; замедление хода движущихся	
		часов. Парадокс близнецов.	
		Четырехмерная геометрическая	
		интерпретация преобразований Лоренца;	
		времениподобные,	
		пространственноподобные и изотропные	
		интервалы между событиями.	
		Четырехмерные векторы и тензоры.	
		Четырехмерные скорость и ускорение точки. Теорема сложения скоростей.	
		точки. Теорема сложения скоростей. Энергия и импульс релятивистской	
		частицы, четырехмерный импульс.	
		Закон сохранения электрического заряда в	
		ковариантной форме. Ковариантная запись	
		уравнений электродинамики. Законы	
		преобразования для векторов	
		электромагнитного поля. Законы	
		преобразования волнового вектора и	
		частоты электромагнитной волны	
		(аберрация и эффект Доплера для световой	
		волны). Четырехмерный потенциал	
		электромагнитного поля, тензор энергии	
		импульса электромагнитного поля. Законы	
		сохранения энергии и импульса для системы	
		электромагнитное поле + заряженные	
		частицы.	
	1		

Варианты практических заданий берутся из задачника: Батыгин В.В. Сборник задач по электродинамике и специальной теории относительности [Электронный ресурс] : учебное пособие / В.В. Батыгин, И.Н. Топтыгин. — Электрон. дан. — Санкт-Петербург : Лань, 2010. — 480 с.

— Режим доступа: https://e.lanbook.com/book/544.

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текущего контроля
1	2	3	4
1.	Основные понятия электродинамики. Уравнения Максвелла в вакууме и среде	Решение задач по теме: Уравнения Максвелла в вакууме и среде.	Контрольная работа
2.	Стационарные электрические и магнитные поля	Решение задач по темам: электростатика; магнитостатика.	Контрольная рабо- та
3.	Нестационарное электромагнитное поле	Решение задач по темам: электромагнитные волны в однородных изотропных и анизотропных средах; квазистационарные явления; излучение электромагнитных волн медленно движущимися зарядами; элементы нелинейной оптики.	Контрольная рабо- та
4.	Специальная теория относительности и электродинамика	Решение задач по темам: релятивистская кинематика и релятивистская динамика.	Контрольная работа

2.3.3 Лабораторные занятия.

По дисциплине «Электродинамика и электродинамика сплошных сред» лабораторные занятия не планируются.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3

1.		1. Сомов, А.М. Электродинамика [Электронный ресурс]: учебное пособие / А.М. Сомов, В.В. Старостин, С.Д. Бенеславский; под ред. А.М.Сомова. — Электрон. дан. — Москва: Горячая линия-
	Разделы 1 – 4.	Телеком, 2011. — 200 с. — Режим доступа: https://e.lanbook.com/book/5199. 2. Батыгин В.В. Сборник задач по электродинамике и специальной теории относительности [Электронный ресурс] : учебное пособие / В.В. Батыгин, И.Н. Топтыгин. — Электрон. дан. — СанктПетербург : Лань, 2010. — 480 с. — Режим доступа: https://e.lanbook.com/book/544.

3 Образовательные технологии

Для проведения меньшей части лекционных занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов.

По дисциплине проводятся двухчасовые лекционно-практические занятия. При этом в каждом модуле проводятся практические занятия, посвященные решению типовых задач. В процессе практических занятий проводится обсуждение и разбор решений прикладных задач.

Такой инновационный подход позволил внедрить в процесс преподавания учебной дисциплины «Электродинамика и электродинамика сплошных сред» новые средства, формы и активные прогрессивные методы обучения. Используемые технологии способствуют реализации студентами своего личностного, познавательного и творческого потенциала и выполнению учебных и учебно-исследовательских работ по личным траекториям.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль:

- проверка домашних заданий по семинарским занятиям;
- контрольные вопросы по разделам учебной программы;
- реферат;
- презентация по теме реферата; внутрисеместровая аттестация.

Итоговый контроль:

-Экзамен.

4.1 Фонд оценочных средств для проведения текущей аттестации

Текущий контроль усвоения материала домашних практических заданий по проводится преподавателем устно в форме беседы. Оценка — по 5-ти балльной системе.

Контрольные вопросы по дисциплине:

Основные понятия электродинамики. Уравнения Максвелла в вакууме и среде 1. Эволюция представлений о взаимодействии электрических зарядов и токов: теории дальнодействия и близкодействия.

- 2. Основные опытные факты, на которых базируются уравнения Максвелла: закон сохранения электрического заряда; закон Кулона взаимодействия электрических зарядов, закон БиоСавара-Лапласа, закон электромагнитной индукции Фарадея; отсутствие магнитных зарядов.
- 3. Вывод закона Ампера для постоянных токов из закона Био-Савара-Лапласа.

- 4. Условие макроскопичности и закон сохранения электрического заряда в дифференциальной форме; свободные и связанные заряды.
- 5. Закон Кулона и макроскопическое электрическое поле; интегральная и дифференциальная формы теоремы Гаусса.
- 6. Закон Ампера для постоянных токов, в дифференциальной форме.
- 7. Закон электромагнитной индукции Фарадея в дифференциальной форме.
- 8. Ток смещения и обобщение закона Ампера на нестационарный случай.
- 9. Уравнения Максвелла в вакууме (дифференциальная и интегральная формы).
- 10. Векторы электрической поляризации, напряженности и индукции электрического поля в диэлектриках.
- 11. Векторы намагниченности, напряженности и индукции магнитного поля в магнитных средах (магнетиках).
- 12. Токи поляризации и намагничения.
- 13. Уравнения Максвелла для электромагнитного поля в среде (дифференциальная и интегральная форма).
- 14. Материальные уравнения линейной электродинамики. Временная и пространственная нелокальность линейного отклика среды на воздействие электромагнитного поля.
- 15. Частотная и пространственная дисперсия в стационарных и однородных средах.
- 16. Тензоры диэлектрической, магнитной проницаемости и электропроводности среды. Общие свойства материальных тензоров недиспергирующих и диспергирующих сред, вытекающие из закона сохранения электромагнитной энергии и принципа Онзагера-Казимира.
- 17. Учет влияния конкретной симметрии среды на вид материальных тензоров (на примере кристаллических сред).
- 18. Граничные условия для векторов электромагнитного поля (векторная и скалярная формы).
- 19. Силы, действующие на свободные заряды и токи со стороны электромагнитного поля (плотность силы Лоренца и сила Лоренца);
- 20. Импульс электромагнитного поля и тензор натяжений Максвелла.

Стационарные электрические и магнитные поля

- 21. Плотность энергии электромагнитного поля и вектор Умова-Пойнтинга; дифференциальная форма закона сохранения электромагнитной энергии.
- 22. Уравнения Пуассона и Лапласа для электростатического потенциала.
- 23. Потенциал пространственно распределенных зарядов как решение уравнения Пуассона (случаи ограниченной области и всего пространства).
- 24. Постановка краевых задач для уравнения Лапласа в ограниченной области (задачи Дирихле и Неймана, смешанная краевая задача).
- 25. Потенциал статической системы зарядов на больших расстояниях от нее (мультипольное разложение электростатического потенциала).
- 26. Поле заряженных проводников.
- 27. Уравнение Пуассона для векторного потенциала магнитного поля.
- 28. Вывод закона Био-Савара-Лапласа из решения уравнения Пуассона.

Нестационарное электромагнитное поле

- 29. Волновое уравнение и электромагнитные волны в стационарной однородной среде или вакууме.
- 30. Плоские электромагнитные волны в изотропных и анизотропных немагнитных средах; основное уравнение кристаллооптики (уравнение нормалей Френеля); поляризация плоских волн.

- 31. Однородные и неоднородные плоские волны; эффект полного внутреннего отражения на границе раздела изотропных прозрачных сред.
- 32. Электромагнитное поле заданных зарядов и токов в вакууме; скалярный и векторный потенциалы электромагнитного поля; калибровочная инвариантность полей, калибровка Лоренца.
- 33. Функция Грина оператора Даламбера и запаздывающие потенциалы.
- 34. Поле произвольно движущегося заряда; потенциалы Льенара-Вихерта.
- 35. Рассеяние электромагнитных волн свободными электронами (формула Томпсона).
- 36. Уравнения Максвелла в квазистационарном случае. Критерии квазистационарности.
- 37. Скин-эффект.
- 38. Комплексная диэлектрическая проницаемость. Формулы Крамерса-Кронига (дисперсионные соотношения).
- 39. Фазовая и групповая скорости в диспергирующей среде.
- 40. Флюктуации электромагнитного поля (флюктуационно-диссинационная теорема).
- 41. Волновое и материальное уравнение для нелинейно-оптических сред.
- 42. Метод медленно меняющихся амплитуд Хохлова; система укороченных уравнений в плосковолновом приближении для процесса генерации второй гармоники первого типа в оптически отрицательных нелинейных кристаллах.
- 43. Пространственный синхронизм и эффективность процесса генерации второй гармоники; условие фазового согласования волн.
- 44. Процесс генерации второй гармоники первого типа в приближении заданного поля основного излучения.

Специальная теория относительности и электродинамика

- 45. Принцип относительности Галилея, преобразования Галилея и их инварианты.
- 46. Гипотеза эфира и попытки обнаружения эфирного ветра: опыты Физо и Майкельсона.
- 47. Гипотезы Фицджеральда и Лоренца по объяснению отрицательного результата опыта Майкельсона.
- 48. Постулаты теории относительности.
- 49. Общие свойства пространства, времени и определение одновременности.
- 50. Преобразования Лоренца.
- 51. Общие следствия преобразований Лоренца: относительность одновременности; ограниченность скорости распространения сигналов.
- 52. Общие следствия преобразований Лоренца: сокращение масштабов; замедление хода движущихся часов.
- 53. Четырехмерная геометрическая интерпретация преобразований Лоренца; времениподобные, пространственно-подобные и изотропные интервалы между событиями.
- 54. Четырехмерные скорость и ускорение точки.
- 55. Теорема сложения скоростей.
- 56. Энергия и импульс релятивистской частицы, четырехмерный импульс.
- 57. Закон сохранения электрического заряда в ковариантной форме.
- 58. Ковариантная запись уравнений электродинамики.
- 59. Законы преобразования для векторов электромагнитного поля.
- 60. Законы преобразования волнового вектора и частоты электромагнитной волны (аберрация и эффект Доплера для световой волны).

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Примеры вопросов для подготовки к экзамену

- 1. Принцип относительности. Преобразования Лоренца. Инвариантность интервала.
- 2. Четырехмерная интерпретация преобразований Лоренца.
- 3. Четырехмерные векторы и тензоры.
- 4. Эффект Доплера.
- 5. Функция Лагранжа.
- б. Энергия, импульс свободной релятивистской частицы.
- 7. Четырехмерные скорость и ускорение.
- 8. Релятивистская динамика материальной точки.
- 9. Эффект Комптона.
- 10. Закон сохранения заряда и уравнения Максвелла.
- 11. Граничные условия.
- 12. Электромагнитные силы, действующие на заряды и токи (сила Лоренца).
- 13. Тензор натяжений Максвелла.
- 14. Энергия электромагнитного поля.
- 15. Потенциалы электромагнитного поля.
- 16. Микроскопическая и макроскопическая электродинамика.
- 17. Уравнения электростатики.
- 18. Решение уравнения Пуассона.
- 19. Дипольный момент.
- 20. Квадрупольный момент.
- 21. Энергия электростатического поля объемных зарядов.
- 22. Энергия системы заряженных проводников.
- 16. Емкостные и потенциальные коэффициенты.
- 17. Теорема Томсона.
- 18. Энергия проводника в однородном внешнем поле.
- 19. Энергия системы зарядов во внешнем поле.
- 20. Силы, действующие на проводник в электростатическом поле.
- 21. Диэлектрические и проводящие тела во внешнем электростатическом поле.
- 22. Запаздывающие потенциалы.
- 23. Потенциалы Лиенара-Вихерта. Излучение быстро движущегося заряда.
- 24. Поле равномерно движущегося заряда.
- 25. Закон Био-Савара-Лапласа.
- 26. Закон взаимодействия элементов тока.
- 27. Закон Ампера для стационарных токов.
- 28. Закон электромагнитной индукции Фарадея.

Экзамен проводится устно по билетам, состоящим из двух теоретических вопросов и одной задачи.

Рекомендуются следующие критерии оценки знаний.

Оценка «неудовлетворительно» выставляется в том случае, если студент демонстрирует:

- поверхностное знание теоретического материала;
- незнание основных законов, понятий и терминов учебной дисциплины, неверное оперирование ими;
 - грубые стилистические и речевые ошибки.

Оценка «удовлетворительно» ставится студентам, которые при ответе:

- в основном знают учебно-программный материал в объёме, необходимом для предстоящей учебы и работы по профессии;

- в целом усвоили основную литературу;
- в ответах на вопросы имеют нарушения в последовательности изложения учебного материала, демонстрируют поверхностные знания вопроса;
 - имеют краткие ответы только в рамках лекционного курса;
 - приводят нечеткие формулировки физических понятий и законов;
 - имеют существенные погрешности и грубые ошибки в ответе на вопросы.

Оценка «хорошо» ставится студентам, которые при ответе:

- обнаруживают твёрдое знание программного материала, который излагают систематизировано, последовательно и уверенно;
 - усвоили основную и наиболее значимую дополнительную литературу;
 - допускают отдельные погрешности и незначительные ошибки при ответе;
- в ответах не допускает серьезных ошибок и легко устраняет отдельные неточности с помощью дополнительных вопросов преподавателя.

Оценка «отлично» ставится студентам, которые при ответе:

- обнаруживают всестороннее систематическое и глубокое знание программного материала (знание основных понятий, законов и терминов учебной дисциплины, умение оперировать ими);
 - излагают материал логично, последовательно, развернуто и уверенно;
- излагают материал с достаточно четкими формулировками, подтверждаемыми графиками, цифрами или примерами;
 - владеют научным стилем речи;
- демонстрируют знание материала лекций, базовых учебников и дополнительной литературы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

1. Сомов, А.М. Электродинамика [Электронный ресурс] : учебное пособие / А.М. Сомов, В.В. Старостин, С.Д. Бенеславский ; под ред. А.М.Сомова. — Электрон. дан. — Москва :

Горячая линия-Телеком, 2011. — 200 с. — Режим доступа: https://e.lanbook.com/book/5199.

2. Батыгин В.В. Сборник задач по электродинамике и специальной теории относительности [Электронный ресурс] : учебное пособие / В.В. Батыгин, И.Н. Топтыгин. — Электрон. дан. — Санкт-Петербург : Лань, 2010. — 480 с. — Режим доступа: https://e.lanbook.com/book/544.

5.2 Дополнительная литература:

- 1. Алексеев, А.И. Сборник задач по классической электродинамике [Электронный ресурс]: учебное пособие / А.И. Алексеев. Электрон. дан. Санкт-Петербург: Лань, 2008. 320 с. Режим доступа: https://e.lanbook.com/book/100.
- 2. Бредов М.М. Классическая электродинамика [Электронный ресурс]: учебное пособие / М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. Электрон. дан. Санкт-Петербург: Лань, 2003. 400 с. Режим доступа: https://e.lanbook.com/book/606.
- 3. Ландау, Л.Д. Теоретическая физика. Т.4 Квантовая электродинамика [Электронный ресурс] : учебное пособие / Л.Д. Ландау, Е.М. Лифшиц. Электрон. дан. Москва : Физматлит, 2006. 720 с. Режим доступа: https://e.lanbook.com/book/2237.

5.3. Периодические издания:

- 1. Вестник МГУ. Серия: Физика. Астрономия.
- 2. Журнал прикладной механики и технической физики.
- 3. Журнал технической физики.
- 4. Известия ВУЗов. Серия: Физика.
- 5. Инженерная физика.
- 6. Успехи физических наук.
- 7. Физика. Реферативный журнал. ВИНИТИ.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Журнал: Современная электроника www.soel.ru
- 2. Журнал «Техника Связи» производственный технический журнал, освещает все аспекты телекоммуникаций и связи: http://www.t-sv.ru/ozhurnale.html
- 3. Сайт интерактивной поддержки проведения лабораторных и самостоятельных работ по дисциплине: http://www.adcomlogod.narod.ru
 - 4. http://ntb.tti.sfedu.ru/(сайт научно-технической библиотеки ТТИ ЮФУ);
 - 5. http://elibrary.ru/ (сайт научной электронной библиотеки);
 - 6. http://www.exponenta.ru/ (образовательный математический сайт);
- 7. http://www.i-exam.ru/ (сайт Научно-исследовательского института мониторинга качества образования, г. Йошкар-Ола).

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов отводится 35% времени от общей трудоемкости дисциплины. Проверка знаний студента основана на контрольных вопросах и дополнительных вопросах, касающихся соответствующих разделов дисциплины:

- выполнение домашних заданий по практическим занятиям;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний, получаемых посредствам изучения рекомендуемой литературы.
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.
- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) Перечень необходимого программного обеспечения
 - 8.1 Перечень информационных технологий.

Не предусмотрено.

8.2 Перечень необходимого программного обеспечения.

Средства мультимедийной обучающей лаборатории:

- компьютерный класс;
- техническое обеспечение: персональные компьютеры.

8.3 Перечень информационных справочных систем: Не предусмотрено.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

№	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные заня- тия	Аудитория 209С оснащенная переносным проектором и магнитно-маркерной доской.
2.	Семинарские занятия	Аудитории 227С оснащены магнитно-маркерными досками.
3.	Самостоятельная работа	Аудитория 208С