МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРА-ЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

31 мая 2025 года

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

<u>Б1.В.ДВ.01.03.04 МИКРОМЕХАНИЧЕСКИЕ ПРИБОРЫ И</u> УСТРОЙСТВА

(код и наименование дисциплины в соответствии с учебным планом)

,	,
Направление подгот	овки/специальность
	11.03.01 Радиотехника, 03.03.03 Радиофизика
(код и на	менование направления подготовки/специальности)
<u>Проектиро</u>	офиль) / специализация ание и конструирование узлов и систем для БАС менование направленности (профиля) / специализации)
Форма обучения	очная
	(очная, очно-заочная, заочная)
Квалификация	бакалавр

Рабочая программа дисциплины Б1.В.ДВ. 01.03.04 «Микромеханические приборы и устройства» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.01 «Радиотехника» и 03.03.03 "Радиофизика".

Программу составил(и):

К.С. Коротков, доктор. физ.-тех. наук, профессор кафедры радиофизики и нанотехнологий

Рабочая программа дисциплины «Квантовая радиофизика» утверждена на заседании кафедры радиофизики и нанотехнологий протокол № «4» 18.04.2025 г.

И.О Заведующего кафедрой

Доктор физ.-мат. наук, доцент. Строганова. Е.В. фамилия, инициалы

Утверждена на заседании учебно-методической комиссиифизико-технического факультета протокол № «4» 18.04.2025 г. Председатель УМК факультета.

Богатов Н.М.

Рецензенты:

Исаев В.А., д-р физ.-мат. наук, профессор кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «КубГУ»

Шевченко А.В., канд. физ.-мат. наук, ведущий специалист ООО «Южная аналитическая компания»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины «Микромеханические приборы и устройства» является изучение принципов построения, проектирования и изготовления микромеханических приборов и устройств, обладающих уникальными массогабаритными и стоимостными характеристиками, ознакомление с областями их применения и перспективами развития.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

ОПК-3 «способность использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач и критически оценить освоенные теории и концепции, границы их применимости»:

знать – основные положения математики, естественных, гуманитарных и экономических наук;

уметь — использовать полученные знания при решении социальных и профессиональных задач и критически оценить освоенные теории и концепции, границы их применимости; владеть навыками — в области математических расчетов, применяемых для решения профессиональных задач;

иметь опыт деятельности - в исследовании отдельных функциональных узлов микрогироскопов и акселерометров и приборов в целом.

ПК-3 «способность составлять практические рекомендации по использованию результатов научных исследований»:

знать – цели и задачи, решаемые в процессе проведения научных исследований;

уметь – составлять планы научных исследований и определять круг решаемых задач; владеть навыками – выполнения научных исследований;

иметь опыт деятельности разработки практических рекомендации по использованию результатов научных исследований;

ПК-6 «способность подготовить научно-технические отчеты, обзоры, публикации по результатам выполненных исследований»:

знать – требования, предъявляемые к технической документации и научной публикации, определяемые государственными стандартами и издательствами научной литературы;

уметь – оформлять результаты научной работы с учетом требования, определяемые государственными стандартами и издательствами научной литературы;

владеть навыками - подготовки научно-технических отчетов, обзоров, публикации по результатам выполненных исследований;

иметь опыт деятельности при оформлении результатов научной работы;;

ПК-7 «способность разрабатывать планы, программы и методики испытания приборов, систем и комплексов по соответствующему профилю деятельности, подготавливать отдельные задания для исполнителей»:

знать - цели и задачи, решаемые в процессе испытания приборов, систем и комплексов; уметь - разрабатывать планы, программы и методики испытания приборов, систем и комплексов:

вдеть навыками – испытания приборов и систем;

иметь опыт деятельности – в области экспериментальных исследований;;

ПК-8 «способность на основе системного подхода разрабатывать технические условия и технические описания принципов действия и устройства проектируемых комплексов, их систем и элементов с обоснованием принятых технических решений»:

знать – Государственные стандарты формирования технические условия и технических описаний принципов действия и устройств;

уметь - разрабатывать технические условия и технические описания принципов действия и устройств гироскопической техники;

владеть навыками - обоснования принятых технических решений;

иметь опыт деятельности - в разработке устройств гироскопической техники;

ПК-11 «способность разрабатывать варианты решения проблемы, проводить системный анализ этих вариантов, определять компромиссные решения в условиях многокритериальности, неопределенности и с целью планирования реализации проекта»:

знать — основы теории микромеханических гироскопов и акселерометров и существо задач подлежащих решению при их проектировании;

уметь - разрабатывать варианты решения задач проектирования, проводить системный анализ этих вариантов, определять компромиссные решения;

владеть навыками – комплексного проектирования микромеханических гироскопов и акселерометров;

иметь опыт деятельности – в области проектирования гироскопических приборов и систем;

ПСК-4.4 «способность создавать методику и производить комплекс испытаний, а также опытной эксплуатации приборов и датчиков систем управления летательных аппаратов»:

знать – Государственные стандарты на нормативные документы, техническую документацию;

уметь - разрабатывать методические и нормативные документы, техническую документацию, а также предложения и мероприятия по реализации разработанных проектов и программ;

владеть навыками - работы с Государственными стандартами;

иметь опыт деятельности - использования Государственных стандартов при разработке технической документации.

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Введение в специальность;
- Теоретическая механика;
- Физика;
- Электроника;
- Технология приборостроения;
- Гироскопические приборы и системы.
- Основы моделирования приборов и систем.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при используются при подготовке выпускной квалификационной работы специалиста.

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№9
1	2	3
Общая трудоемкость дисциплины, ЗЕ/(час)	4/ 144	4/ 144
Из них часов практической подготовки	12	12
Аудиторные занятия, всего час., В том числе	51	51
лекции (Л), (час)	34	34
Практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
Экзамен, (час)	36	36
Самостоятельная работа, всего, (час)	57	57
Вид промежуточной аттестации	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы, темы дисциплины и их трудоемкость

_	1	1 7 7				
	Разделы, темы дисциплины	Лекции (час)	П3 (час)	ЛР (час)	КП (час)	СРС (час)
		Семестр 9				
	Раздел 1. Микромеханические датчики и актуаторы	4				4
	Тема 1.1. Датчики давления					
	Тема 1.2 MEMC - датчики магнитного поля					
	Тема 1.3 МЕМС – актуаторы					

Раздел 2. Теоретические основы микромеханических гироскопов (ММГ) и акселерометров (ММА)	8		6		13
Тема 2.1 Основные структуры и модели динамики ММГ LL, RR и R типов					
Тема 2.2. Основные схемы и принципы функционирования ММГ					
Тема 2.3 Основные схемы и принципы функционирования микромеханических акселерометров					
Тема 2.4 Статика и динамика ММГ и ММА.					
Тема 2.5 Основные технологические процессы производства ММГ и ММА					
Раздел 3. Микромеханические инерциальные модули и системы ориентации и навигации	8		3		13
Тема 3.1 Микромеханические инерциальные модули					
Тема 3.2 Микромеханические системы ориентации и навигации					
Раздел 4. Элементная база и основы технологии производства ММГ и ММА	10		6		16
Тема 4.1 Элементная база ММГ					
и ММА					
Тема 4.2 Характеристики материалов используемых при производстве ММГ и ММА					
Тема 4.3 Основные технологические процессы производства ММГ и ММА					
Раздел 5. Методики экспериментальных исследований характеристик ММГ и ММА.	4		2		11
Итого в семестре:	34		17		57
Итого:	34	0	17	0	57

4.2. Содержание разделов и тем лекционных занятий Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	Раздел 1. Микромеханические датчики и актуаторы		
	Тема 1.1. Датчики давления		
	Датчики давления прямого преобразования. Анизотропия электрического сопротивления полупроводниковых тензорезисторов. Топология тензорезисторов. Чувствительность тензорезистивных схем. Демпфирование колебаний. Динамика колебаний и передаточные функции. Датчики давления компенсационного типа. Датчики с электростатической обратной связью. Датчики с магнитоэлектрической обратной связью.		
	Тема 1.2 МЕМС - датчики магнитного поля		
	Свойства проводимости металлических пленок. Топология магниторезисторов. Чувствительность магниторезисторов. Схемотехника преобразователей. 3 — осевые магнитометры. Преобразование базисов магнитных измерений. МЕМС — компасы.		
	Тема 1.3 MEMC – актуаторы		
	Назначение. Область применения. Цифровое микрозеркальное устройство (DMD). Принцип действия, топология. DLP — проекторы. Пьезоструйные актуаторы для принтеров. Микромеханические переключатели. Микротранспортеры. Микротурбины. Микроинструменты для глазной хирургии.		
2	Раздел 2. Теоретические основы микромеханических гироскопов (ММГ) и акселерометров (ММА)		
	Тема 2.1 Основные структуры и модели динамики ММГ LL, RR и R типов.		
	Динамика взаимодействия первичных и вторичных колебаний ММГ LL и RR типов. Волновые твердотельные гироскопы (ММГ R -типа).		
	Тема 2.2. Основные схемы и принципы функционирования ММГ.		
	Структурные схемы, передаточные функции, масштабные коэффициенты преобразования ММГ LL, RR и R типов. Основные погрешности ММГ.		
	Тема 2.3. Основные схемы и принципы функционирования микромеханических акселерометров (MMA).		
	Классификация ММА (одномерные и двумерные, осевые и маятниковые, прямого преобразования и компенсационного типа).		
	Тема 2.4 Статика и динамика ММГ и ММА.		
	Модели динамики, структурные схемы, передаточные функции, масштабные коэффициенты преобразования, рабочая полоса частот, основные погрешности ММГ и ММА.		

	Тема 2.5. Основные технологические процессы производства ММГ и ММА.
	Обобщенный технологический процесс производства ММГ и ММА. Основные технологические операции производства, включающие: литографию, получение слоев различных материалов, травление, микросборочные операции, испытание изделий.
3	Раздел 3. Микромеханические инерциальные модули и системы ориентации и навигации
	Тема 3.1 Микромеханические инерциальные модули. Назначение, функциональность, основные элементы, основные характеристики.
	Тема 3.2 Микромеханические системы ориентации и навигации. Назначение, функциональность, принцип построения, основные характеристики.
4	Раздел 4. Элементная база и основы технологии производства ММГ и ММА
	Тема 4.1 Электростатические датчики сил и моментов, емкостные и тензометрические преобразователи микроперемещений, элементы упругих подвесов чувствительных элементов, системы возбуждения ММГ.
	Тема 4.2 Физико-химические свойства кремния, как основного конструкционного материала для изготовления чувствительных элементов ММГ и ММА. Материалы .
	Тема 4.3 Обобщенный технологический процесс производства ММГ и ММА.
	Основные технологические операции производства, включающие: литографию, получение слоев различных материалов, травление, микросборочные операции, испытание изделий.
5	Раздел 5. Методики экспериментальных исследований характеристик ММГ и ММА.
	Цели и задачи лабораторных и натурных экспериментов. Технологическое и специальное оборудование для производства испытаний. Автоматизация экспериментальных исследований. Методы обработки данных эксперимента. Оценка случайных погрешностей выходного сигнала ММГ и ММА методом вариации Алана.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип- лины	
	Учебным планом не предусмотрено				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисциплины
	Семестр 9		
1	Исследование МЕМС – датчика давления	2	1
2	Исследование МЕМС – компаса	2	1
4	Исследование статистических характеристик MMГ LL – типа	4	2
9	Исследование статистических характеристик двумерного ММА осевого типа	4	4
11	Моделирование системы возбуждения ММГ	4	4
	Зачетное занятие	1	
Всего		17	

4.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

4.6. Самостоятельная работа студентов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 9, час
1	2	3
Самостоятельная работа, всего	57	57
изучение теоретического материала дисциплины (TO)	30	30
курсовое проектирование (КП, КР)		
подготовка отчетов по лабораторным работам	10	10
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)	17	17
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю);

Учебно-методические материалы для самостоятельной работы студентов указаны в п.п. 8-10.

6. Перечень основной и дополнительной литературы 6.1. Основная литература

Перечень основной литературы приведен в таблице 7.

Таблица 7 – Перечень основной литературы

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке
681.2 P 24	Распопов В.Я. Микромеханические приборы. Тула, 2002, 367 с.	6
629.7 M59	Микросистемы ориентации беспилотных летательных аппаратов [Текст] / Р. В. Алалуев [и др.]; ред. В. Я. Распопов М.: Машиностроение, 2011 184 с.	6
681.2 P24	Приборы первичной информации: Микромеханические приборы [Текст]: учебное пособие / В. Я. Распопов; Тул. гос. ун-т Тула: [б. и.], 2002 390 с.	6
681.58 M52	Меркурьев И.В., Подалков В.В. Динамика микромеханического и волнового твердотельного гироскопа М.: ФИЗМАТЛИТ, 2009.—228 с.	6
531 Л84	Прикладная теория гироскопов [Текст] : учебник / Д. П. Лукьянов, В. Я. Распопов, Ю. В. Филатов ; Концерн "ЦНИИ "Электроприбор" СПб. : Изд-во ЦНИИ "Электроприбор", 2015 316 с.	35

6.2. Дополнительная литература

Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке
	Евстифеев М.И., Панферов А.И., Пономарев В.К., Северов Л.А., Скорина С.Ф. Микромеханические инерциальные чувствительные элементы. Микромеханические гироскопы. — СПб, ГНЦ РФ ЦНИИ «Электроприбор», ГУАП, 2007, 87 с. Электронное учебное пособие. Ресурс кафедры.	
	Лукьянов Д.П. Микромеханические акселерометры и микропроцессоры на ПАВ. – СПб, ГЭУ «ЛЭТИ», ГНЦ РФ ЦНИИ «Электроприбор», 2005, 92 с.	

	Электронное учебное пособие. Ресурс кафедры.	
	Б. Варадан, К. Виной, К. Джоли. ВЧ МЭМС и их применение. – М: Техносферы, 2004.	
	booksgid.com>vch-mjems-i-ikh-primenenie.html padabum.com>d.php?id=53300	
629.7 C28	Северов Л.А. Механика гироскопических систем: Учебное пособие. – М.: МАИ (ТУ), 1996. – 212 с.	45

7. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

URL адрес	Наименование
3dnews.ru>600098	Алексей Дрожжин. MEMS:
	Микроэлектромеханические системы.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10. Таблица 10 — Перечень программного обеспечения

№ п/п	Наименование
	Матлаб

8.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11. Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально- технической базы	Номер аудитории
2	Мультимедийная лекционная аудитория	Б.М. а. 13-04
5	Лаборатория «Микромеханических инерциальных чувствительных элементов»	Б.М. а. 13-03а
6	Стенды	

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

10.1. Состав фонда оценочных средств приведен в таблице 13 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты

10.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 – Перечень компетенций с указанием этапов их формирования в процессе

освоения образовательной программы

Номер семестра	Этапы формирования компетенций по дисциплинам/практикам в процессе освоения ОП
ОПК-3 «способност	гь использовать базовые положения математики, естественных,
	ономических наук при решении социальных и профессиональных
=	оценить освоенные теории и концепции, границы их применимости»
1	Математика. Аналитическая геометрия и линейная алгебра
1	Математика. Математический анализ
1	Физика
2	Математика. Дифференциальные уравнения
2	Математика. Математический анализ
2	Физика
3	Авиационные материалы
3	Математика. Теория вероятностей и математическая статистика
3	Материаловедение
3	Сопротивление материалов
3	Теоретическая механика
3	Физика
4	Математика. Теория вероятностей и математическая статистика
4	Метрология, стандартизация и сертификация
5	Аналитическая механика
5	Основы теории управления
6	Динамика полета
6	Надежность приборов и систем
6	Основы теории пилотажно-навигационных комплексов
6	Теория гироскопов и гиростабилизаторов
7	Гироскопические приборы и системы
7	Системы управления летательными аппаратами
8	Системы управления летательными аппаратами
9	Микромеханические инерциальные чувствительные элементы
9	Микромеханические приборы и устройства

9	Системы управления летательными аппаратами	
10	Производственная преддипломная практика	
ПК-3 «способност		
результатов научных	1	
7	Технические средства навигации и управления движением	
8	Производственная практика научно-исследовательская работа	
9	Микромеханические инерциальные чувствительные элементы	
9	Микромеханические приборы и устройства	
9	Производственная практика научно-исследовательская работа	
10	Производственная преддипломная практика	
	подготовить научно-технические отчеты, обзоры, публикации по	
	енных исследований»	
4	Метрология, стандартизация и сертификация	
8	Производственная практика научно-исследовательская работа	
9	Микромеханические инерциальные чувствительные элементы	
9	Микромеханические приборы и устройства	
9	Производственная практика научно-исследовательская работа	
10	Производственная преддипломная практика	
	разрабатывать планы, программы и методики испытания приборов,	
	ов по соответствующему профилю деятельности, подготавливать	
отдельные задания д		
4	Учебная технологическая (ознакомительная) практика	
6	Надежность приборов и систем	
8	Производственная практика научно-исследовательская работа	
9	Микромеханические инерциальные чувствительные элементы	
9	Микромеханические приборы и устройства	
9	Производственная практика научно-исследовательская работа	
_	Эксплуатация и испытания приборов и систем управления	
9	летательных аппаратов	
10	Производственная преддипломная практика	
ПК-8 «способность	на основе системного подхода разрабатывать технические условия и	
	ия принципов действия и устройства проектируемых комплексов, их	
систем и элементов с обоснованием принятых технических решений»		
8	Основы схемотехники гироприборов	
8	Расчет и синтез гироприборов	
8	Элементы гироскопических приборов и систем	
9	Микромеханические инерциальные чувствительные элементы	
9	Микромеханические приборы и устройства	
10	Производственная преддипломная практика	
ПК-11 «способность	разрабатывать варианты решения проблемы, проводить системный	
анализ этих вариантов, определять компромиссные решения в условиях		
	многокритериальности, неопределенности и с целью планирования реализации проекта»	
8	Проектирование приборов и систем	
8	Расчет и синтез гироприборов	
9	Микромеханические инерциальные чувствительные элементы	
<u> </u>	1 * *	

9	Микромеханические приборы и устройства		
10	Производственная преддипломная практика		
ПСК- 4.4 «способно	ПСК- 4.4 «способность создавать методику и производить комплекс испытаний, а также		
опытной эксплуатац	опытной эксплуатации приборов и датчиков систем управления летательных аппаратов»		
9	Микромеханические инерциальные чувствительные элементы		
9	Микромеханические приборы и устройства		
Q	Эксплуатация и испытания приборов и систем управления		
,	летательных аппаратов		

10.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно—рейтинговой системы университета. В таблице 15 представлена 100—балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

		енки уровня сформированности компетенции
Оценка компетенции		
100- бальная шкала	4-бальная шкала	Характеристика сформированных компетенций
85≤K≤100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤ 84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетвори тельно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	- обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.

- 10.4. Типовые контрольные задания или иные материалы:
- 1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы (задачи) для экзамена

Перечень вопросов (задач) для экзамена

- 1. Классификация ММГ и ММА.
- 2. Принцип действия ММГ различных типов.
- 3. Модификации и принцип действия ММА.
- 4. Математическая модель динамики движения чувствительного элемента ММГ LL-типа.
- 5. Математическая модель динамики движения чувствительного элемента ММГ RR-типа.
- 6. Установившейся режим работы ММГ. Связь параметров колебаний с физическими параметрами чувствительного элемента.
 - 7. Частотные характеристики ММГ и рабочая полоса частот.
- 8. Связь амплитудных и фазовых соотношений вторичных колебаний ММГ в установившемся режиме.
 - 9. Статические и динамические характеристики ММА.
 - 10. Источники ошибок в ММГ и ММА.
 - 11. Аналитические методы расчета механических характеристик ММГ и ММА.
- 12. Принцип действия емкостных датчиков перемещений чувствительного элемента в ММГ и ММА. Основные соотношения. Вопросы проектирования.
- 13. Электростатические датчики управляющей силы и момента. Расчет энергетических характеристик и линейности преобразования.
- 14. Преобразователи «емкость напряжение». Виды преобразователей и расчетные соотношения.
- 15. Структуры систем автогенераторного возбуждения первичных колебаний в ММГ. Расчет параметров установившихся колебаний.
- 16. Структура и принцип работы системы возбуждения первичных колебаний в ММГ с опорным генератором.
- 17. Формирование контура фазовой подстройки частоты опорного генератора. Выбор параметров контура.
- 18. Принципы формирования выходного сигнала в ММГ и ММА в приборах прямого измерения. Схемотехника измерительного канала.
- 19. Формирования выходного сигнала в ММГ и ММА в приборах компенсационного типа.
- 20. Стабилизация амплитуды первичных колебаний ММГ управлением амплитудой импульсов возбуждения.
- 21. Стабилизация амплитуды первичных колебаний ММГ управлением длительностью импульсов возбуждения.
- 22. Сопряжение частот первичных и вторичных колебаний. Схемотехника и варианты решения задачи.
 - 23. Основные технологические процессы производства ММГ и ММА.
 - 24. Методики экспериментальных исследований характеристик ММГ и ММА.
 - 25. Технологическое и специальное оборудование для производства испытаний.
- 26. Автоматизация экспериментальных исследований. Методы обработки данных эксперимента.
- 27. Оценка случайных погрешностей выходного сигнала ММГ и ММА методом вариации Алана.
- 28. Датчики давления прямого преобразования
- 29. Датчики давления компенсационного типа
- 30. МЕМС датчики магнитного поля
- 31. Преобразование базисов магнитных измерений.
- 32. МЕМС компасы

- 33. Цифровое микрозеркальное устройство (DMD). DLP проекторы
- 34. Микротранспортеры. Микротурбины

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17)

Таблица 17 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифференцированного зачета
	Учебным планом не предусмотрено

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п Примерный перечень тем для выполнения курсовой работы / выпол курсового проекта	
	Учебным планом не предусмотрено

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
1	Назовите основные конструктивные элементы микромеханического
2	гироскопа.
	На измерении какого ускорения основан принцип работы
3	микромеханического гироскопа
	Из каких элементов состоит чувствительный элемент микромеханического
4	гироскопа
5	Объясните принцип работы микромеханического гироскопа.
6	Объясните методы определения нелинейности.
7	Назовите области применения микромеханических акселерометров.
8	Объясните принцип работы микромеханического акселерометра.
9	Приведите классификацию измерительных преобразователей
10	Перечислите основные факторы, которые учитываются при построении
	электронных схем емкостных преобразователей

5. Контрольные и практические задачи / задания по дисциплине (таблица 20)

Таблица 20 – Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий
Не предусмотрено	

10.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины «Микромеханические приборы и устройства» является изучение принципов построения, проектирования и изготовления микромеханических приборов и устройств, обладающих уникальными массогабаритными и стоимостными характеристиками, ознакомление с областями их применения и перспективами развития.

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- ознакомление студентов с физическими законами и принципами функционирования микромеханических гироскопов и акселерометров;
- изложение методов математического описания динамики движения микромеханических гироскопов и акселерометров различных типов и оценки их метрологических характеристик;
- ознакомление с методами возбуждения и стабилизации колебаний механических масс микромеханических гироскопов;
- изложение способов регистрации движения чувствительных масс в микромеханических гироскопах и акселерометрах и первичной обработки измерений;

- ознакомление с вопросами проектирования отдельных функциональных узлов микрогироскопов и акселерометров и приборов в целом;
- изложение методов и способов формирования обратных связей в микромеханических гироскопах и акселерометрах компенсационного типа;
- ознакомление со средствами автоматизации исследования и проектирования МЭМС;
- ознакомление с вопросами технологии изготовления микромеханических приборов и устройств;
- изучение факторов, определяющих погрешности микромеханических гироскопов и акселерометров и способов их компенсации.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Студенты разбиваются на подгруппы, по 3-4 человека. Перед проведением лабораторной работы обучающемся следует внимательно ознакомиться с методическими указаниями по ее выполнению. В соответствии с заданием обучающиеся должны подготовить необходимые данные, получить от преподавателя допуск к выполнению лабораторной работы, выполнить указанную последовательность действий, получить требуемые результаты, оформить и защитить отчет по лабораторной работе.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен включать в себя: титульный лист, формулировку задания, теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические

материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методический материал по дисциплине.

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине в форме экзамена и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».